section 2: lecture 1 integral form of the conservation...

29
1 MAE 5420 - Compressible Fluid Flow Section 2: Lecture 1 Integral Form of the Conservation Equations for Compressible Flow Anderson: Chapter 2 pp. 41-54

Upload: others

Post on 14-Mar-2021

2 views

Category:

Documents


1 download

TRANSCRIPT

Page 1: Section 2: Lecture 1 Integral Form of the Conservation ...mae-nas.eng.usu.edu/MAE_5420_Web/section2/section2.1.pdf7 MAE 5420 - Compressible Fluid Flow Conservation of Mass • At any

1MAE 5420 - Compressible Fluid Flow

Section 2: Lecture 1

Integral Form of the Conservation Equations

for Compressible Flow

Anderson: Chapter 2 pp. 41-54

Page 2: Section 2: Lecture 1 Integral Form of the Conservation ...mae-nas.eng.usu.edu/MAE_5420_Web/section2/section2.1.pdf7 MAE 5420 - Compressible Fluid Flow Conservation of Mass • At any

2MAE 5420 - Compressible Fluid Flow

Section 1 Review

• Equation of State:

• Relationship of Rg to specific heats,

• Internal Energy and Enthalpy

p = !RgT"> Rg =RuM

w

- Ru = 8314.4126 J/°K-(kg-mole)

- Rg (air) = 287.056 J/°K-(kg-mole)

cp= c

v+ R

g

h = e + Pv cv=

de

dT

!"#

$%&v

cp =dh

dT

!"#

$%&p

! =cp

cv

Page 3: Section 2: Lecture 1 Integral Form of the Conservation ...mae-nas.eng.usu.edu/MAE_5420_Web/section2/section2.1.pdf7 MAE 5420 - Compressible Fluid Flow Conservation of Mass • At any

3MAE 5420 - Compressible Fluid Flow

Chapter 1 Review (cont’d)

• First Law of Thermodynamics, reversible process

• First Law of Thermodynamics, isentropic process(adiabatic, reversible)

de= !pdv

de= dq ! pdv dh = dq+ vdp

dh = vdp

Page 4: Section 2: Lecture 1 Integral Form of the Conservation ...mae-nas.eng.usu.edu/MAE_5420_Web/section2/section2.1.pdf7 MAE 5420 - Compressible Fluid Flow Conservation of Mass • At any

4MAE 5420 - Compressible Fluid Flow

Chapter 1 Review (cont’d)

• Second Law of Thermodynamics, nonadiabatic,

reversible process

• Second Law of Thermodynamics, isentropic process(adiabatic, reversible)

s2! s

1= cp ln2

T2

T1

"

#$

%

&' ! Rg ln

p2

p1

"

#$

%

&'

p2

p1

=T2

T1

!

"#

$

%&

'' (1 p

2

p1

!

"#

$

%& =

'2

'1

!

"#

$

%&

(

Page 5: Section 2: Lecture 1 Integral Form of the Conservation ...mae-nas.eng.usu.edu/MAE_5420_Web/section2/section2.1.pdf7 MAE 5420 - Compressible Fluid Flow Conservation of Mass • At any

5MAE 5420 - Compressible Fluid Flow

Chapter 1 Review (concluded)

• Speed of Sound for calorically Perfect gas

• Mathematic definition of Mach Number

c = ! RgT

M =V

! RgT

Page 6: Section 2: Lecture 1 Integral Form of the Conservation ...mae-nas.eng.usu.edu/MAE_5420_Web/section2/section2.1.pdf7 MAE 5420 - Compressible Fluid Flow Conservation of Mass • At any

6MAE 5420 - Compressible Fluid Flow

Concept of a Control Volume

• Arbitrary Volume (C.V), fixed in space, with fluid flux across its boundaries

• Outer surface of C.V is known as Control Surface (C.S.)

• System defined as the Mass

Within the control volume at

Some Instant in time t

• Mass within control volume

Must OBEY Laws of mass

And momentum conservation

mout

min

Page 7: Section 2: Lecture 1 Integral Form of the Conservation ...mae-nas.eng.usu.edu/MAE_5420_Web/section2/section2.1.pdf7 MAE 5420 - Compressible Fluid Flow Conservation of Mass • At any

7MAE 5420 - Compressible Fluid Flow

Conservation of Mass• At any instant in time, the mass contained within the C.V. is conserved

• Within an elemental piece dv of the control volume

• And the total Contained mass is

!

!tm

C .V( ) = m

C .V .

"""in

# m

C .V .

"""out

dmC .V

= !dv

moutmout

min

dvmC .V

= !dvc.v.

"""

Page 8: Section 2: Lecture 1 Integral Form of the Conservation ...mae-nas.eng.usu.edu/MAE_5420_Web/section2/section2.1.pdf7 MAE 5420 - Compressible Fluid Flow Conservation of Mass • At any

8MAE 5420 - Compressible Fluid Flow

Conservation of Mass (continued)

• The mass flow out of the C.V. across an elemental piece of

the control surface, ds, is

• And the incremental

mass-flow into the C.V. is:

• Integrating over the entire

control surface

d m

out

!"

#$ = %V

outcos &( )ds

moutmout

min

dv

n

v

!

dS

m

C .V . = ! "V!>

• ds

!>#$

%&

C .S .

''

d m

in

!"

#$ = %&V

incos '( )ds

! "V!>

• ds

!>#$

%&

C .S .

'' =((t

"dvc.v.

'''#

$)%

&*

Page 9: Section 2: Lecture 1 Integral Form of the Conservation ...mae-nas.eng.usu.edu/MAE_5420_Web/section2/section2.1.pdf7 MAE 5420 - Compressible Fluid Flow Conservation of Mass • At any

9MAE 5420 - Compressible Fluid Flow

Conservation of Mass (concluded)

• One Dimensional Steady Flow (mass flow in = mass flow out)

!!t

"dvc.v.

###$

%&'

()= 0 = * "V

*>

• ds

*>$%

'(

C .S .

## + "1V1A1= "

2V2A2

“continuity equation”

Page 10: Section 2: Lecture 1 Integral Form of the Conservation ...mae-nas.eng.usu.edu/MAE_5420_Web/section2/section2.1.pdf7 MAE 5420 - Compressible Fluid Flow Conservation of Mass • At any

10MAE 5420 - Compressible Fluid Flow

Conservation of Momentum• Newton’s second law applied to control volume

• Momentum flow across control surface

• But from earlier analysis, across an incremental

Surface area

F

!>

" =d

dtmV

!>#$

%& =

Momentum flow across C.S. +

Rate of Change of Momentum within C.V.

vn

V

n

V

m

•!"

#$

C .S .

%% V

&>

m

= !V">

• ds

">

# m

•$%

&'

C .S .

(( V

">

= !V">

• ds

">$%

&'

C .S .

(( V

">

Page 11: Section 2: Lecture 1 Integral Form of the Conservation ...mae-nas.eng.usu.edu/MAE_5420_Web/section2/section2.1.pdf7 MAE 5420 - Compressible Fluid Flow Conservation of Mass • At any

11MAE 5420 - Compressible Fluid Flow

Conservation of Momentum (cont’d)

• Rate of Momentum Change within Control Volume

• But from earlier (continuity) analysis

For an incremental volume, dv

• And total net rate of momentum change within the control volume is

dVn

V

n

V

!

!t(mV

">

)

m = !dv

!!t(mV

">

)C .V .

=!!t

#dvV">$

%&'

C .V .

((( =!!t

#V">$

%&' dv

C .V .

(((

Page 12: Section 2: Lecture 1 Integral Form of the Conservation ...mae-nas.eng.usu.edu/MAE_5420_Web/section2/section2.1.pdf7 MAE 5420 - Compressible Fluid Flow Conservation of Mass • At any

12MAE 5420 - Compressible Fluid Flow

Conservation of Momentum (cont’d)

• Then Newton’s second law becomes

• Resolution of Forces Acting on Control Volume

- Body Forces (electo-magnetic, gravitational, buoyancy etc.)

- Pressure Forces

- Viscous or frictional Forces

F

!>

" =d

dtmV

!>#$

%& = 'V

!>

• ds

!>#$

%&

C .S .

(( V

!>

+))t

'V!>#

$%& dv

C .V .

(((

F!>

"#$%&body

= ' fb!>

dvC .V .

(((

F!>

"#$%&pressure

= ! p( )C .S .

'' dS!> (Minus sign

Because pressure

Acts inward)

F!>

"#$%&fric

= | f!>

' dS!>#

$%&

C .S .

(( |dS

SC .S .

!>

Page 13: Section 2: Lecture 1 Integral Form of the Conservation ...mae-nas.eng.usu.edu/MAE_5420_Web/section2/section2.1.pdf7 MAE 5420 - Compressible Fluid Flow Conservation of Mass • At any

13MAE 5420 - Compressible Fluid Flow

Conservation of Momentum (continued)

• Collected terms for conservation of Momentum

• Steady, In-viscous

Flow, Body Forces negligible

! fb">

dvC .V .

### " p( )C .S .

## dS">

+ | f">

$ dS">%

&'(

C .S .

## |dS

SC .S .

">

=

!V">

• ds">%

&'(

C .S .

## V">

+))t

!V">%

&'( dv

C .V .

###

! fb">

dvC .V .

### " p( )C .S .

## dS">

+ | f">

$ dS">%

&'(

C .S .

## |dS

SC .S .

">

=

!V">

• ds">%

&'(

C .S .

## V">

+))t

!V">%

&'( dv

C .V .

### ! p( )C .S .

"" dS!>

= #V!>

• ds!>$

%&'

C .S .

"" V!>

Page 14: Section 2: Lecture 1 Integral Form of the Conservation ...mae-nas.eng.usu.edu/MAE_5420_Web/section2/section2.1.pdf7 MAE 5420 - Compressible Fluid Flow Conservation of Mass • At any

14MAE 5420 - Compressible Fluid Flow

Conservation of Momentum (cont’d)

• One-Dimensional Flow

! p( )C .S .

"" dS!>

= #V!>

• ds!>$

%&'

C .S .

"" V!>

p1

p2

A2

A2

V1

V2

• No flow across solid boundary

! p2A2! p

1A1( ) i_

x = "2V2A2V2i_

x! "1V1A1V1i_

x

# p1+ "

1V1

2( )A1 = p2+ "

2V2

2$% &'A2

Page 15: Section 2: Lecture 1 Integral Form of the Conservation ...mae-nas.eng.usu.edu/MAE_5420_Web/section2/section2.1.pdf7 MAE 5420 - Compressible Fluid Flow Conservation of Mass • At any

15MAE 5420 - Compressible Fluid Flow

Conservation of Momentum (concluded)

• One-Dimensional Flow

! p( )C .S .

"" dS!>

= #V!>

• ds!>$

%&'

C .S .

"" V!>

p1

p2

A2

A2

V1

V2

• No flow across solid boundary

p1+ !

1V1

2( )A1 = p2+ !

2V2

2"# $%A2 &

! j =pj

RgTj

=' pj' RgTj

=' pjcj2& p

11+ '

V1

2

c1

2

(

)*+

,-A1= p

21+ '

V2

2

c2

2

(

)*+

,-A2

p2

p1

=A1

A2

1+ 'M1

2( )1+ 'M

2

2( )

Page 16: Section 2: Lecture 1 Integral Form of the Conservation ...mae-nas.eng.usu.edu/MAE_5420_Web/section2/section2.1.pdf7 MAE 5420 - Compressible Fluid Flow Conservation of Mass • At any

16MAE 5420 - Compressible Fluid Flow

Conservation of Energy

• From First law of thermodynamics (reversible process)

(corresponding to inviscid fluid)

Rate of change of fluid energy as it flows thru C.V.

Rate of external heat addition to C.V.

Rate of work done to fluid inside of C.V.

dE

dt=dQ

dt+dW

dtdE

dt!

dQ

dt!

dW

dt!

Page 17: Section 2: Lecture 1 Integral Form of the Conservation ...mae-nas.eng.usu.edu/MAE_5420_Web/section2/section2.1.pdf7 MAE 5420 - Compressible Fluid Flow Conservation of Mass • At any

17MAE 5420 - Compressible Fluid Flow

Conservation of Energy (cont’d)

Rate of change of fluid energy as it flows thru C.V. •

Earlier thermodynamic discussions were for static fluid… flow thru C.V. is not static

… Kinetic Energy terms must also Be captured … following process similar to

Momentum flow through C.V.

dE

dt!

dE

dt=

!!t

" e +V2

2

#

$%

&

'( dv

#

$%%

&

'((

C .V .

))) + "V*>

• d S

*>

e +V2

2

#

$%

&

'(

C .S .

))

Rate of change of energy with C.V Energy Flow Across C.S.

Page 18: Section 2: Lecture 1 Integral Form of the Conservation ...mae-nas.eng.usu.edu/MAE_5420_Web/section2/section2.1.pdf7 MAE 5420 - Compressible Fluid Flow Conservation of Mass • At any

18MAE 5420 - Compressible Fluid Flow

Conservation of Energy (cont’d)

Rate of heat addition to C.V. •dQ

dt! ! q

•"#

$% dv

"#&

$%'

C .V .

(((

• dW

dt! Rate of work done to fluid inside of C.V.

dW

dt!

d

dt(F • dx) = F •V ! dx = direction " of " motion

Consider: 1) Pressure Forces, 2) Body Forces

Page 19: Section 2: Lecture 1 Integral Form of the Conservation ...mae-nas.eng.usu.edu/MAE_5420_Web/section2/section2.1.pdf7 MAE 5420 - Compressible Fluid Flow Conservation of Mass • At any

19MAE 5420 - Compressible Fluid Flow

Conservation of Energy (cont’d)

1) Pressure Forces

2) Body Forces

! (pd S!>

) •V!>

C .S .

""

(! f">

dv) •V">

C .V .

###

Page 20: Section 2: Lecture 1 Integral Form of the Conservation ...mae-nas.eng.usu.edu/MAE_5420_Web/section2/section2.1.pdf7 MAE 5420 - Compressible Fluid Flow Conservation of Mass • At any

MAE 5420 - Compressible Fluid Flow 20

Conservation of Energy (cont’d)

• Collected Energy EquationScalar equation

Page 21: Section 2: Lecture 1 Integral Form of the Conservation ...mae-nas.eng.usu.edu/MAE_5420_Web/section2/section2.1.pdf7 MAE 5420 - Compressible Fluid Flow Conservation of Mass • At any

MAE 5420 - Compressible Fluid Flow 21

Conservation of Energy (concluded)

• Steady, Inviscid quasi 1-D Flow, Body Forces negligible

1-D eqn.
Page 22: Section 2: Lecture 1 Integral Form of the Conservation ...mae-nas.eng.usu.edu/MAE_5420_Web/section2/section2.1.pdf7 MAE 5420 - Compressible Fluid Flow Conservation of Mass • At any

MAE 5420 - Compressible Fluid Flow 22

Conservation of Energy (concluded)

• Steady, Inviscid quasi-1-D Flow, Body Forces negligible

Page 23: Section 2: Lecture 1 Integral Form of the Conservation ...mae-nas.eng.usu.edu/MAE_5420_Web/section2/section2.1.pdf7 MAE 5420 - Compressible Fluid Flow Conservation of Mass • At any

MAE 5420 - Compressible Fluid Flow 23

Conservation of Energy (concluded)

• Steady, Inviscid quasi 1-D Flow, Body Forces negligible

Page 24: Section 2: Lecture 1 Integral Form of the Conservation ...mae-nas.eng.usu.edu/MAE_5420_Web/section2/section2.1.pdf7 MAE 5420 - Compressible Fluid Flow Conservation of Mass • At any

MAE 5420 - Compressible Fluid Flow 24

Conservation of Energy (concluded)

• Steady, Inviscid quasi 1-D Flow, Body Forces negligible, collected

• Divide through by massflow

Page 25: Section 2: Lecture 1 Integral Form of the Conservation ...mae-nas.eng.usu.edu/MAE_5420_Web/section2/section2.1.pdf7 MAE 5420 - Compressible Fluid Flow Conservation of Mass • At any

MAE 5420 - Compressible Fluid Flow 25

Conservation of Energy (concluded)

• but from continuity, equation of state

Page 26: Section 2: Lecture 1 Integral Form of the Conservation ...mae-nas.eng.usu.edu/MAE_5420_Web/section2/section2.1.pdf7 MAE 5420 - Compressible Fluid Flow Conservation of Mass • At any

MAE 5420 - Compressible Fluid Flow 26

Conservation of Energy (concluded)

• but from continuity, equation of state

h = e + Pv = e +RgT

Combine internal energy and thermal energy into enthalpy
Page 27: Section 2: Lecture 1 Integral Form of the Conservation ...mae-nas.eng.usu.edu/MAE_5420_Web/section2/section2.1.pdf7 MAE 5420 - Compressible Fluid Flow Conservation of Mass • At any

MAE 5420 - Compressible Fluid Flow 27

Summary

• Continuity (conservation of mass)

• Steady quasi One-dimensional Flow

Page 28: Section 2: Lecture 1 Integral Form of the Conservation ...mae-nas.eng.usu.edu/MAE_5420_Web/section2/section2.1.pdf7 MAE 5420 - Compressible Fluid Flow Conservation of Mass • At any

MAE 5420 - Compressible Fluid Flow 28

Summary (continued)

• Newton’s Second law-- Time rate of change of momentumEquals integral of external forces

• Steady, Inviscid quasi 1-D Flow, Body Forces negligible

Page 29: Section 2: Lecture 1 Integral Form of the Conservation ...mae-nas.eng.usu.edu/MAE_5420_Web/section2/section2.1.pdf7 MAE 5420 - Compressible Fluid Flow Conservation of Mass • At any

MAE 5420 - Compressible Fluid Flow 29

Summary (concluded)

• Conservation of Energy--

• Steady, Inviscid quasi 1-D Flow, Body Forces negligible