seanat manual v3 - cbd...seanat+manual,+4january2014+ + 4+ 4 sound+propagation+modelling+...

23
Centre for Marine Science and Technology . Subsea Environmental Acoustic Noise Assessment Tool (SEANAT) 4 January 2014 1 Introduction The Subsea Environmental Acoustic Noise Assessment Tool (SEANAT) provides a suite of tools for the modelling of underwater sound fields associated with anthropogenic underwater noise sources within the German Economic Exclusion Zone (EEZ). The software allows users to configure model scenarios, run underwater sound propagation models in realistic acoustic environments, compute received levels, and visualize the resulting sound fields. The sections below describe setup and use of the SEANAT software. System requirements and site access are described in Section 2. A brief overview of the system design is presented in Section 3. Finally, Section 4 describes use of the SEANAT site, in the context of a sample scenario. 2 System Requirements and Setup The SEANAT software resides on a secure web server, and is accessed using a web browser. As such, the only requirements for use of the software are an Internet connection, a JavaScriptenabled web browser, and a SEANAT user account. SEANAT supports most browsers, including current versions of Internet Explorer, Firefox, Safari, Chrome, and Opera. JavaScript must be enabled in the browser’s security settings in order for the SEANAT site to function correctly. JavaScript is enabled by default on most modern browsers, but may be restricted or blocked depending on a user’s specific security settings. If JavaScript is not available, an error message will appear at the top of the Main page upon login. If this message appears, please refer to your browser’s documentation to enable JavaScript or add the SEANAT site to the list of trusted sites. The SEANAT site is available at the following URL: http://cmstacoustics.com/SEANAT Login (Figure 1) requires a user name and password, which may be obtained from the SEANAT administrator.

Upload: others

Post on 03-Oct-2020

2 views

Category:

Documents


0 download

TRANSCRIPT

Page 1: SEANAT manual v3 - CBD...SEANAT+manual,+4January2014+ + 4+ 4 Sound+Propagation+Modelling+ ThefollowingsubMsectionsdescribetheprocess&of&creating&and&running&a&typical&model&

Centre  for  Marine  Science  and  Technology   .  

Subsea  Environmental  Acoustic  Noise  Assessment  Tool  (SEANAT)  4  January  2014  

1 Introduction  

The  Subsea  Environmental  Acoustic  Noise  Assessment  Tool  (SEANAT)  provides  a  suite  of  tools   for   the   modelling   of   underwater   sound   fields   associated   with   anthropogenic  underwater   noise   sources   within   the   German   Economic   Exclusion   Zone   (EEZ).   The  software   allows   users   to   configure  model   scenarios,   run   underwater   sound   propagation  models   in   realistic   acoustic   environments,   compute   received   levels,   and   visualize   the  resulting  sound  fields.  

The  sections  below  describe  setup  and  use  of  the  SEANAT  software.  System  requirements  and   site   access   are   described   in   Section   2.   A   brief   overview   of   the   system   design   is  presented  in  Section  3.  Finally,  Section  4  describes  use  of  the  SEANAT  site,  in  the  context  of  a  sample  scenario.  

2 System  Requirements  and  Setup  

The  SEANAT  software  resides  on  a  secure  web  server,  and  is  accessed  using  a  web  browser.  As   such,   the   only   requirements   for   use   of   the   software   are   an   Internet   connection,   a  JavaScript-­‐enabled  web  browser,  and  a  SEANAT  user  account.  

SEANAT  supports  most  browsers,  including  current  versions  of  Internet  Explorer,  Firefox,  Safari,  Chrome,  and  Opera.  JavaScript  must  be  enabled  in  the  browser’s  security  settings  in  order   for   the  SEANAT  site   to   function  correctly.   JavaScript   is  enabled  by  default  on  most  modern  browsers,  but  may  be  restricted  or  blocked  depending  on  a  user’s  specific  security  settings.  If  JavaScript  is  not  available,  an  error  message  will  appear  at  the  top  of  the  Main  page  upon  login.  If  this  message  appears,  please  refer  to  your  browser’s  documentation  to  enable  JavaScript  or  add  the  SEANAT  site  to  the  list  of  trusted  sites.  

The  SEANAT  site  is  available  at  the  following  URL:  

  http://cmstacoustics.com/SEANAT  

Login   (Figure   1)   requires   a   user   name   and   password,   which  may   be   obtained   from   the  SEANAT  administrator.    

Page 2: SEANAT manual v3 - CBD...SEANAT+manual,+4January2014+ + 4+ 4 Sound+Propagation+Modelling+ ThefollowingsubMsectionsdescribetheprocess&of&creating&and&running&a&typical&model&

SEANAT  manual,  4  January  2014     2  

Figure  1:  SEANAT  login  screen  

3 Overview  

The  SEANAT  system  includes  the  following  main  components:  

• Web-­‐based  graphical  interface  • User-­‐specific  configuration  and  results  files  • Databases  of  source  spectra,  environmental  data,  and  model  parameters  • A  high-­‐performance   computing   environment   on  which   sound  propagation  models  

are  run  

The   user   only   interacts   directly   with   the   first   of   these   components,   i.e.   the   graphical  interface.   However,   the   remaining   components   will   be   referred   to   in   the   sections   that  follow.  

Each  user  name  on  the  SEANAT  system  is  associated  with  a  secure  user  workspace  on  the  server,   within   which   the   user’s   configuration   and   results   files   are   stored.   Estimates   of  underwater   noise   are   generated   within   the   context   of   a   scenario,   which   consists   of   a  configuration   (one   or   more   acoustic   sources   and   their   associated   modelling   grids,   an  acoustic  environment,  and  a  set  of  model  parameters)  and   the  raw  and  processed  model  results  generated  using  that  configuration.  Multiple  related  scenarios  may  be  grouped  into  a   named   project,   and   a   user   may   have   multiple   projects.   Figure   2   should   make   this  structure  clearer.  

Page 3: SEANAT manual v3 - CBD...SEANAT+manual,+4January2014+ + 4+ 4 Sound+Propagation+Modelling+ ThefollowingsubMsectionsdescribetheprocess&of&creating&and&running&a&typical&model&

SEANAT  manual,  4  January  2014     3  

Figure   2:   Hierarchal   organization   of   user   workspaces,   projects,   and   scenarios   within   the  SEANAT  software  

The   SEANAT   site   is   organized   into   the   following   five   pages,   corresponding   to   the   main  steps  involved  in  generating  estimates  of  underwater  noise:  

• Main  Page:  Selection  or  creation  of  a  project  and  scenario  • Configuration   Page:   Definition   of   scenario   settings,   visualization   and   validation   of  

the  setup  • Model  Runs  Page:  Initiation  and  management  of  sound  propagation  modelling  tasks  • Model   Results:   Calculation   of   post-­‐processed   received   levels,   generation   of   final  

products  (e.g.,  images)  

These  steps  and  pages  are  discussed  further  in  the  following  section.  Note  that  each  page  includes  page-­‐specific  help,  accessed  by  clicking  the  “Show  page  help…”   link  at   the  top  of  each  page.  There  is  also  a  main  Help  page,  accessed  via  the  main  site  menu  bar.  

Sound  propagation  modelling  is  carried  out  using  two  models.  RAMGeo,  a  modified  version  of  the  widely  used  Range-­‐dependent  Acoustic  Model  (RAM)  (Collins  et  al.,  1996),  is  used  for  lower   frequencies,  up   to  2  kHz.  For   frequencies  higher   than  2  kHz,   sound  propagation   is  modelled   using   the   Bellhop   model   (Porter   and   Liu,   1994),   using   the   Bounce   model   to  estimate  the  bottom  reflection  coefficient.  

 

SEANAT  

User  1   User  2   User  3  

Project  1   Project  2  

Scenario  

1  

Scenario  

2  

Page 4: SEANAT manual v3 - CBD...SEANAT+manual,+4January2014+ + 4+ 4 Sound+Propagation+Modelling+ ThefollowingsubMsectionsdescribetheprocess&of&creating&and&running&a&typical&model&

SEANAT  manual,  4  January  2014     4  

4 Sound  Propagation  Modelling  

The   following   sub-­‐sections   describe   the   process   of   creating   and   running   a   typical  model  scenario,  using  a  simple  demo  scenario  involving  pile  driving  at  two  locations  in  the  North  Sea.    

4.1 Select  or  Create  a  Project  and  Scenario  

Projects  and  scenarios  are  created  and/or  selected  from  the  Main  Page  (Figure  3);  selecting  a  scenario   is  the  first  post-­‐login  step  for  all  work  done  via  the  SEANAT  site.  As  described  above,  a  user  may  have  one  or  more  projects,  and  each  project  may  contain  one  or  more  scenarios.  The  user  first  selects  an  existing  project  from  the  pull-­‐down  list  at  the  top  of  the  Main  Page,  or  creates  a  new  project  by  typing  the  name  of  the  new  project  into  the  “Create  new  project”  text  entry  box  and  clicking  “Create”  (Figure  3).  Any  scenarios  associated  with  the  project   (in   the   case   of   an   existing  project)   are   listed   in   the   “Select   existing   scenario”  pull-­‐down  menu;   the   scenario   name  may   then   be   selected   or   created   as   for   the   project  name.  A  message  appears  at  the  bottom  of  the  main  page  indicating  that  the  scenario  has  successfully   been   selected   (Figure   3),   and   the   remaining   pages   (described   below)   are  populated  from  the  scenario  configuration  file  on  the  server.  

Existing  projects  and/or  scenarios  that  are  no  longer  in  use  may  be  deleted  by  clicking  the  “Delete   current   project”   or   “Delete   current   scenario”   buttons   (Figure   3).   The   system  presents  a  confirmation  prompt  before  deleting  the  project  or  scenario,  but  deletion  cannot  be  undone  after  deletion  has  been  confirmed  via  this  prompt.  

Two  additional   items  may  be  seen   in   the  upper-­‐right  corner  of   the  Main  page  (Figure  3),  and   on   all   other   pages   of   the   site:   the   “Show  page   help”   link   displays   brief   page-­‐specific  help,  and  the  “Log  Out”  button  logs  the  user  out  of  the  site.    

 

Page 5: SEANAT manual v3 - CBD...SEANAT+manual,+4January2014+ + 4+ 4 Sound+Propagation+Modelling+ ThefollowingsubMsectionsdescribetheprocess&of&creating&and&running&a&typical&model&

SEANAT  manual,  4  January  2014     5  

Figure  3:  Main  page,  after  the  user  has  created  the  scenario  “North  Sea  pile  driving”  within  the  project  “Demo  project”  

4.2 Configure  the  Scenario  

Once  a  scenario  has  been  selected  from  the  Main  page  (Section  4.1),  the  Configuration  page  is  used   to  define   the   scenario  or  edit   the   scenario   configuration.    As  outlined   in   the   sub-­‐sections   below,   the   Configuration   page   consists   of   tables   used   to   define   the   acoustic  sources   to  be   included   in   the   scenario   and   the  parameters   common   to   all   sources   in   the  scenario.    

An   interactive   map   (Figure   4)   under   the   Acoustic   Sources   heading   of   the   Configuration  page   provides   a   visual   summary   of   the   scenario   configuration.   Source   locations   and   the  associated   acoustic   field   grids   are   plotted   over   a   default   base   map,   as   are   bathymetry  contours   and   an   outline   of   the   German   Exclusive   Economic   Zone.   Moving   the   mouse  pointer  over  the  source   locations  or  bathymetry  contours  displays  the  feature   labels.  The  map  includes  standard  pan  and  zoom  controls,  an  indicator  of  the  current  cursor  position,  and  a  layer  selector  allowing  the  user  to  control  which  layers  are  visible  on  the  map  (Figure  4).  Note  that  the  layer  selector  is  hidden  by  default,  and  is  accessed  by  clicking  on  the  small  blue  box  in  the  upper  right  corner  of  the  map.  The  map  is  updated  whenever  the  source  or  configuration  tables  are  updated.  

Page 6: SEANAT manual v3 - CBD...SEANAT+manual,+4January2014+ + 4+ 4 Sound+Propagation+Modelling+ ThefollowingsubMsectionsdescribetheprocess&of&creating&and&running&a&typical&model&

SEANAT  manual,  4  January  2014     6  

Figure  4:  Sample  configuration  map,  showing  two  source  locations  off  the  coast  of  Germany.  Source  locations  and  associated  field  grids  are  shown  in  red,  bathymetry  contours  are  shown  in  blue,  and  the  German  EEZ  is  outlined  in  black.  The  map  includes  pan  and  zoom  controls  (upper   left   corner),   a  pull-­‐out   layer   selector   (upper   right   corner,  normally   collapsed),   and  the  current  cursor  position  (lower  right  corner).  Moving  the  mouse  pointer  over  the  source  locations  or  bathymetry  contours  displays  the  feature  labels.  

4.2.1 Environment  and  Model  Parameters  

The   two   tables   under   the   "Environment   and   Model   Parameters"   heading   (Figure   5)  describe  parameters  common  to  all  acoustic  sources  included  in  the  scenario.  The  first  of  these   two   tables,   titled   “Acoustic   Environment”,   allows   the   user   to   select   databases   of  bathymetry   data,   water   column   profiles,   and   sub-­‐bottom   profiles.   The   same   set   of  databases  is  used  for  all  acoustic  sources  included  in  the  scenario,  but  site-­‐specific  profiles  are   extracted   from   the   data   sets   using   the   source   locations   and   acoustic   field   grids.   The  following  is  a  brief  description  of  the  databases  available  within  each  category:  

Page 7: SEANAT manual v3 - CBD...SEANAT+manual,+4January2014+ + 4+ 4 Sound+Propagation+Modelling+ ThefollowingsubMsectionsdescribetheprocess&of&creating&and&running&a&typical&model&

SEANAT  manual,  4  January  2014     7  

• Bathymetry:  Bathymetry  data  are  taken  from  the  General  Bathymetric  Chart  of  the  Oceans  (GEBCO)  (BODC,  2009),  which  has  a  resolution  of  30  arc-­‐seconds.  For  speed  of   loading,  the  SEANAT  database  contains  two  sub-­‐sets  of  the  GEBCO  data  set,  one  for  the  North  Sea  and  one  for  the  Baltic  Sea.  Bathymetry  data  are  displayed  on  the  interactive  map  as  contours  (Figure  4).  Note  that  a  global  bathymetric  chart  such  as  GEBCO   should   be   used   with   some   caution   near-­‐shore   and/or   in   shallow   waters,  where   the   resolution   may   not   be   adequate   to   capture   finer   features,   and   where  assumptions  made  with   regards   to   the   vertical   datum   (GEBCO   assumes   a   vertical  datum  of  mean  sea  level)  may  not  apply  to  all  data  sets  included  in  the  database.  

• Water   column   profiles:   Profiles   of   temperature   and   salinity   are   taken   from   the  World   Ocean   Atlas   data   set   (NODC,   2005),   and   are   used   to   compute   profiles   of  density  and  sound  speed  as  per  the  formulae  outlined  in  Fofonoff  et  al.  (1983)  and  Millero  and  Li  (1994),  respectively.  The  WOA  climatological  data  are  available  on  a  1°  grid  and  have  a  vertical  resolution  of  10  m.  Four  WOA  data  sets  are  available,  one  per  season.  In  order  to  ensure  full  water  column  coverage  over  the  region  modelled,  the   SEANAT   engine   seeks  WOA   profiles  within   1°   of   a   given   source   location,   and  then  retains  the  deepest  profile  if  more  than  one  is  found.  Note  that  only  one  WOA  profile   is   available   for   the  Baltic   Sea,   for   a   location   of   54.5°N,   14.5°E;   this   profile,  which   has   a  maximum   depth   of   30  m,   has   been   extended   to   60  m   by   assuming   a  constant  sound  speed  between  30  and  60  m.  This  profile   is   labelled  “Baltic”   in   the  list   of   available  water   column  profiles,   and   should   be   used   for  model   runs   in   this  region.   The   water   column   profile(s)   extracted   for   the   source   location(s)   defined  under  the  “Acoustic  Sources”  heading  may  be  plotted  using  the  “Plot  Water  Column  Profiles”   button   (Figure   5,   Figure   6).   A   custom  water   column   profile  may   also   be  defined  by  clicking  on   the   “Custom  profile…”  button   (Figure  5),  which  brings  up  a  dialogue   box   (Figure   7)   allowing   the   user   to   define   depth-­‐dependent   profiles   of  water  column  sound  speed  and  density.  The  density  profile   is  optional;  a  constant  density  of  1025  kg/m3  is  assumed  if  no  profile  is  specified.  The  profile  name  (Figure  7)  is  the  name  that  will  be  shown  in  the  water  column  profile  selection  box  (Figure  5).  Custom  profiles  are  stored  at  the  project  level  (Section  3),  and  are  available  to  all  scenarios  within  the  project.  Because  the  profile  name  uniquely  identifies  a  profile,  it   cannot   be   the   same   as   any   of   the   default   application   data   sources.   The   profile  name  should  also  be  unique  within  the  project  unless  the  user  wishes  to  overwrite  a  previously  defined  custom  data  source;  a  warning  is  provided  in  this  case,  as  one  or  more  scenarios  may  be  affected.    

• Sub-­‐bottom  profile:  Two  sub-­‐bottom  profiles  are  currently  available.  Both  assume  a  smooth   bottom,   and   the   following   values   at   the   top   of   the   sediment   layer:  compressional   sound  speed  of  1475  m/s,  density  of  1100  kg/m3,  and  sound  speed  attenuation  of  0.3  dB/λ.  The  compressional  sound  speed  and  density  increase  with  depth   below   the   sea   floor   in   both   profiles,   but   the   gradients   are   steeper   for   the  progressive  profile  (Figure  8).  The  profiles  of  geoacoustic  properties  may  be  plotted  using  the  “Plot  Sub-­‐Bottom  Profile”  button  (Figure  8).  Similarly  to  the  water  column  profiles,   a   custom  sub-­‐bottom  profile  may  be  defined  by  providing  a  profile  name  and  depth-­‐dependent  values  for  the  sound  speed,  density,  and  attenuation.  

Page 8: SEANAT manual v3 - CBD...SEANAT+manual,+4January2014+ + 4+ 4 Sound+Propagation+Modelling+ ThefollowingsubMsectionsdescribetheprocess&of&creating&and&running&a&typical&model&

SEANAT  manual,  4  January  2014     8  

The  second  table,  titled  “Propagation  Model  Parameters”  (Figure  5),  defines  the  frequency  range  and  model  parameters  to  be  used  for  the  sound  propagation  models.  The  frequency  range  is  entered  in  terms  of  the  minimum  (as  low  as  50  Hz)  and  maximum  (up  to  200  kHz)  frequencies  for  which  the  models  are  to  be  run.  The  frequency  range  should  be  selected  to  provide  good  coverage  over  the  range  of  frequencies  where  significant   levels  of  noise  are  generated  by  the  source  and  where  target  species  are  reasonably  sensitive,  bearing  in  mind  that  computation  time  increases  with  the  number  of  frequencies  to  be  modelled.  The  same  frequency  range  is  used  for  all  acoustic  sources.  Pre-­‐defined  sets  of  model  parameters  are  selected   from   the   list   beside   the   "Parameter   Set"   label.   Currently   only   one   set   of  parameters,  suited  for  most  modelling  situations,  is  available.  Parameter  values  included  in  this  configuration  are  included  in  Appendix  A  for  reference  purposes.  

Clicking   the  "Update  configuration"  button  at   the  bottom  of   the  “Environment  and  Model  Parameters”   section   (Figure  5)   saves   the  environment  and  parameter  settings   to   file  and  updates   the   bathymetry   contours   on   the   map   (Figure   4).   Any   informational   or   error  messages   are   displayed   at   the   bottom   of   the   section.   To   ensure   that   model   results   in   a  scenario  are  consistent  with  the  current  configuration,  updating  the  configuration  file  will  delete   any   incompatible   model   results   (after   confirmation   by   the   user   that   this   is   the  desired  result).  Any  modelling  jobs  currently  being  run  will  also  be  cancelled.     If   the  user  wishes  to  run  a  modified  scenario  while  retaining  previous  results  it  is  therefore  essential  to  create  a  new  scenario.    

Figure  5:  Sample  Environment  and  Model  Parameters  tables  for  a  location  in  the  North  Sea,  summer  water  column  profile,  and  linear  sub-­‐bottom  profile.  The  frequency  range  is  based  on  the  source  spectrum.  

Page 9: SEANAT manual v3 - CBD...SEANAT+manual,+4January2014+ + 4+ 4 Sound+Propagation+Modelling+ ThefollowingsubMsectionsdescribetheprocess&of&creating&and&running&a&typical&model&

SEANAT  manual,  4  January  2014     9  

Figure  6:  Sample  plot  of  water  column  sound  speed  profiles,  for  the  source  locations  shown  in  Figure  4.  Data  are  taken  from  the  WOA-­‐summer  data  set.    

Figure  7:  Custom  water  column  profile  dialogue  box  

Page 10: SEANAT manual v3 - CBD...SEANAT+manual,+4January2014+ + 4+ 4 Sound+Propagation+Modelling+ ThefollowingsubMsectionsdescribetheprocess&of&creating&and&running&a&typical&model&

SEANAT  manual,  4  January  2014     10  

 

 

Figure  8:  Sample  plots  of  geoacoustic  properties,  for  the  linear  (top  panels)  and  progressive  (bottom  panels)  profiles  

Page 11: SEANAT manual v3 - CBD...SEANAT+manual,+4January2014+ + 4+ 4 Sound+Propagation+Modelling+ ThefollowingsubMsectionsdescribetheprocess&of&creating&and&running&a&typical&model&

SEANAT  manual,  4  January  2014     11  

4.2.2 Acoustic  Sources  

The  tabbed  tables  under  the  "Acoustic  Sources"  heading    (Figure  9)  describe  the  sources  of  underwater  noise  to  be  considered  as  part  of  the  current  scenario.  A  scenario  may  have  one  or  more  acoustic  sources.  Sources  are  selected,  added,  or  removed  using  the  tabs  at  the  top  of   the   table  area.  Specifically,   clicking   the  “Add  a  source…”  button  adds  a  source   tab,  and  clicking  the  small  “x”  on  a  tab  deletes  the  source  (after  confirming  that  this  action  is  in  fact  desired).  Each  source  table  contains  the  following  two  sections:  

• Source  Characteristics:  This  section  describes  the  location  and  source  spectrum  for  a  single  acoustic  source,  and  includes  the  following  parameters:  

o Source  name:  This   is   a  unique  name   to  be  used   to   refer   to   the   source.  The  name  will   be   used   as   the   tab   title   once   the   source   configuration   has   been  submitted.  This  can  be  any  name  that  is  significant  to  the  user,  so  long  as  it  is  unique  within  the  scenario  (i.e.,  no  other  tab  has  the  same  title)  and  contains  only   legal   characters   (letters,   numbers,   spaces,   and   underscores).   Two  sources   have   been   defined   in   the   example   shown   in   Figure   9,   named   “Pile  driver  1”  and  “Pile  driver  2”.  

o Source   spectrum:   Pre-­‐defined   sources   are   selected   from   a   pull-­‐down   list.  Both  sources  shown  in  Figure  9  make  use  of  the  “Pile  driving  –  100  kJ”  source  spectrum,   corresponding   to  an   impact  pile  driver  with  an   impact  energy  of  100  kJ.   Source  details  may  be  viewed  by   clicking   the   “Details…”   link  beside  the  source  selection  menu.  An  optional  offset  (in  dB)  may  be  applied  to  the  spectral   levels,   e.g.   to   adjust   for   hammer   energy.   The   source   spectrum  (adjusted   by   the   specified   offset)  may   be   displayed   using   the   "Plot   Source  Spectrum"   button   below   the   table;   a   sample   plot   is   shown   in   Figure   10.  Custom   source   spectra   may   also   be   defined   by   clicking   on   the   “Custom  spectrum…”   button,   bringing   up   the   New   Source   Spectrum   dialogue   box  (Figure  11).  Once  submitted,  the  name  of  the  custom  spectrum  appears  in  the  pull-­‐down   list   alongside   the   default   spectra   provided   by   the   software.   As  with   the   custom   environmental   profiles   discussed   in   Section   4.2.1,   user-­‐defined  spectra  are  stored  at  the  project  level,  and  are  shared  by  all  scenarios  within  the  project.    

o Source   location:   The   source   location   is   defined   by   specifying   the   location  units   (either   decimal   degrees   or   UTM   coordinates)   and   the   x   and   y  coordinates  of   the  source.  Depending  on  the  units  selected,  coordinates  can  be   typed   into   the   table   as   a   latitude   and   longitude   or   as   a   northing   and  easting;   for  example,   the   location  of  Pile  driver  1   in  Figure  9   is   specified   in  decimal  degrees.  If  coordinates  are  to  be  entered  as  a  northing  and  easting,  a  numeric   UTM   zone   must   also   be   provided   using   the   optional   field   that  appears  when  the  units  are  set  to  “UTM”.    (The  North  Sea  component  of  the  German  EEZ  is  in  UTM  zones  31  and  32  whereas  the  Baltic  Sea  component  is  in  zones  32  and  33.)    Alternatively,  clicking  the  "Capture  location  from  map"  button   allows   the   user   to   select   a   source   location   in   decimal   degrees   by  clicking  on   the   live  map.  Clicking  on   the  map   in   this  mode  updates   the   text  input  boxes,  and  places  an  orange  dot  on  the  current  position.  Clicking  on  the  

Page 12: SEANAT manual v3 - CBD...SEANAT+manual,+4January2014+ + 4+ 4 Sound+Propagation+Modelling+ ThefollowingsubMsectionsdescribetheprocess&of&creating&and&running&a&typical&model&

SEANAT  manual,  4  January  2014     12  

map   again   will   further   update   the   source   location,   until   either   the   "Stop  capture"   button   is   selected   or   the   source   information   is   committed   to   file.  Once  the  source  location  is  committed  to  file,  the  source  is  displayed  as  a  red  dot  on  the  map  (e.g.,  Figure  4).  Note  that  source  locations  must  be  within  the  German  EEZ.  

o Depth   below   sea   surface:   The   depth   below   the   sea   surface   is   specified   in  metres.  If  the  depth  is  greater  than  the  bottom  depth,  a  sub-­‐bottom  source  is  assumed.   This   is   compatible   with   RAMGeo,   the   model   used   for   lower  frequencies,   but   not   with   the   Bellhop   model   used   for   frequencies   greater  than  2kHz.  

• Acoustic   Field   Grid:   This   section   describes   the   radials   along   which   the   sound  propagation  model(s)  will  be  run  for  the  specified  source.  Two  fields  are  included:  

o Azimuths:  Azimuths  are  specified  as  degrees  clockwise   from  north,  and  are  entered  as  a  list  with  items  separated  by  spaces,  commas,  or  semi-­‐colons.  The  azimuths   list   may   also   be   defined   using   a   beginning,   end,   and   step   value,  using   the   following   notation:   (start   azimuth):(azimuth   separation):(end  azimuth).   For   example,   the   input   "0:20:180"   is   equivalent   to  "0,20,40,60,80,100,120,140,160,180".  

o Maximum  ranges:  Maximum  ranges  (in  kilometres)  may  be  input  either  as  a  list  (with  items  separated  by  spaces,  commas,  or  semi-­‐colons)  with  the  same  number  of  items  as  the  list  of  azimuths,  or  as  a  single  value  to  be  applied  to  all  radials.    

Once   a   source   configuration   containing   a   source   location   and   a   set   of   radials   and  azimuths  is  committed  to  file,  the  source  is  displayed  on  the  map  as  a  red  dot  with  red  lines  representing  the  model  radials  (Figure  4).  

The   source   configuration   is   committed   to   file   by   clicking   on   the   "Update   Source  Information"   button   (Figure   9).   Note   that   information   entered   into   the   form   is   not  persistent   until   the   information   is   stored   to   file,   and   so  will   be   lost   if   the  user   navigates  away  from  the  form  without  submitting.  

If  the  source  information  is  successfully  committed  to  file,  the  source  locations  and  acoustic  field  grids  are  displayed  or  updated  on  the  map  (Figure  4).   If   the  configuration  update   is  unsuccessful  for  any  reason,  previous  settings  will  be  retained,  and  an  error  message  will  be  shown  below  the  Acoustic  Sources  table.    

As  with  updates  to  the  environment  and  model  parameters,  most  non-­‐trivial  changes  to  the  source   configuration   will   result   in   the   deletion   of   previously   generated   results   (after  confirmation  by   the  user   that   this   is   the  desired   result).   For   example,   changing   a   source  spectrum  will  delete  processed  model  results,  and  changing  a  source  location  will  result  in  deletion   of   previously   generated   transmission   loss   files   and   cancellation   of   any   active  modelling   jobs.   If   the   user   wishes   to   run   a   modified   scenario   while   retaining   previous  results  it  is  therefore  essential  to  create  a  new  scenario.  

Page 13: SEANAT manual v3 - CBD...SEANAT+manual,+4January2014+ + 4+ 4 Sound+Propagation+Modelling+ ThefollowingsubMsectionsdescribetheprocess&of&creating&and&running&a&typical&model&

SEANAT  manual,  4  January  2014     13  

Figure   9:   Acoustic   Sources   section   of   the   Configuration   Page.   Two   sources   have   been  configured  in  this  example,  named  “Pile  driver  1”  and  “Pile  driver  2”.  

Figure  10:  Sample  source  spectrum  plot,  for  a  100kJ  pile  driver  

Page 14: SEANAT manual v3 - CBD...SEANAT+manual,+4January2014+ + 4+ 4 Sound+Propagation+Modelling+ ThefollowingsubMsectionsdescribetheprocess&of&creating&and&running&a&typical&model&

SEANAT  manual,  4  January  2014     14  

Figure  11:  Custom  source  spectrum  dialogue  box.  Note  that  the  units  shown  for  the  “Level”  

column  depend  on  the  source  type  (continuous  or  impulsive).  

4.3 Run  the  Models  

Once   a   scenario   has   been   configured   (Section   4.2),   it   is   possible   to   run   the   sound  propagation  models   in  order   to  generate  estimates  of   transmission   loss.  At   this  stage   the  scenario   is   broken   down   into   smaller   units   that   can   be   handled   by   the   SEANAT   sound  propagation  models.  Specifically,  a  single  instance  of  a  modelling  run,  or  job,  is  based  on  a  single   source   location   and   depth,   radial,   frequency,   and   set   of   environmental   and  model  parameters.    

Modelling   jobs   are   handled   by   SEANAT’s   grid   computing   environment,   wherein   several  modelling   jobs   can  be   run   simultaneously  by  a   set  of  dedicated  computational  nodes.  An  individual  user  submits  his  or  her  jobs  to  a  queue,  and  the  runs  are  processed  as  soon  as  a  computational   node   is   available.  Depending  on   the   current   system   load,   the   jobs  may  be  processed   immediately,   or  may  have   to  wait   until   other  users’   jobs  have   completed.  The  SEANAT  front-­‐end  is  used  to  submit  jobs  to  the  run  engine  and  to  manage  existing  jobs.  

If   a   scenario   has   been   selected   and   configured,   the   available   sources,   frequencies,   and  azimuths  are  displayed  in  the  list  boxes  at  the  top  of  the  Model  Runs  page  (Figure  12).  The  list  of  azimuths  displayed  depends  on   the  acoustic  source(s)  currently  selected;   selecting  one   or   more   sources   from   the   "Source"   menu   updates   the   "Azimuths"   list   with   the  corresponding  list  of  azimuths,  as  previously  defined  on  the  Configuration  page.  

Page 15: SEANAT manual v3 - CBD...SEANAT+manual,+4January2014+ + 4+ 4 Sound+Propagation+Modelling+ ThefollowingsubMsectionsdescribetheprocess&of&creating&and&running&a&typical&model&

SEANAT  manual,  4  January  2014     15  

Modelling  jobs  are  submitted  to  the  run  engine  by  selecting  one  or  more  acoustic  sources,  frequencies,  and  azimuths  from  the  menus  at  the  top  of  the  Model  Runs  page  and  clicking  on  the  "Submit  to  Scheduler"  button  (Figure  12).  Model-­‐specific  input  files  are  then  created  and   submitted   to   the   run  engine  queue,   a  process   that  may   take   several   seconds,   during  which  time  the  submission  and  management  controls  are  locked  (controls  are  greyed  out  and  labelled  “Busy…”).  Once  the  jobs  have  been  submitted  to  the  computational  grid,  they  are  listed  in  the  job  status  table  (Figure  12);  the  table  includes  scroll  controls  for  viewing  long   lists   of   jobs.   Jobs  will   be   shown   as   "queued   and   active",   then   "running",   and   finally  "finished".  The  table  refreshes  every  10  seconds  until  all  runs  are  complete.  Note  that  it  is  not   necessary   to   wait   until   a   batch   of   modelling   runs   has   finished   running   before  submitting  another  batch.  

The  "Manage  selected  jobs"  menu  below  the  job  status  table  (Figure  12)  allows  the  user  to  perform  the  following  administrative  tasks:  

• Pause  jobs:  Jobs  are  held  back  until  the  user  selects  "resume"  or  (in  the  case  of  jobs  that  were  already  running  when  they  were  paused)  all  other  jobs  have  completed.  

• Resume  jobs:  Paused  jobs  are  allowed  to  return  to  the  queue  as  normal.  • Cancel   jobs:   Jobs  are  stopped  and  removed  from  the  queue,  and  any  model  results  

associated  with  the  jobs  are  deleted.  

Jobs   to  manage  are   selected  via   the   check  boxes   in   the   "Job   ID"   column  of   the   job   status  table.   Jobs   may   be   selected   individually,   or   the   box   beside   the   column   heading   may   be  checked/unchecked  to  select/unselect  all  jobs  in  the  list.  

Once   one   or  more   jobs   have   finished   running,   clicking   "Fetch   Results"  moves   the  model  results   from   the   grid   computing   environment   back   to   the  main   user  workspace,  making  them  available   for  display   and  post-­‐processing.  Only   finished   jobs   are   retrieved;   running  jobs  are  not  interrupted.  The  fetching  process  may  take  up  to  a  few  minutes,  depending  on  the  number  of  model  runs  involved.  

Page 16: SEANAT manual v3 - CBD...SEANAT+manual,+4January2014+ + 4+ 4 Sound+Propagation+Modelling+ ThefollowingsubMsectionsdescribetheprocess&of&creating&and&running&a&typical&model&

SEANAT  manual,  4  January  2014     16  

Figure   12:   SEANAT  Model   Runs   page.   In   this   example   12   jobs   have   been   submitted   to   the  computational  grid.  

4.4 Post-­‐Process  and  Plot  the  Model  Results  

Once  model  results  have  been  fetched  from  the  Model  Runs  page,  post-­‐processing  is  carried  out   from   the   Model   Results   page   (Figure   13).   This   page   is   split   into   sections   for   the  handling  of   transmission   losses  and  received   levels,  respectively.  Available  model  results,  in  terms  of  sources,  frequencies,  and  azimuths,  are  listed  at  the  top  of  each  section.  As  on  the  Model  Runs  page,  the  menus  of  frequencies  and  azimuths  are  updated  when  a  source  is  selected.  

Frequency-­‐dependent  transmission  losses  may  be  plotted  as  a  function  of  range  and  depth  by   selecting   the   desired   sources,   frequencies,   and   azimuths   from   the   lists   under   the  "Transmission   Losses"   heading   and   clicking   "Plot   Transmission   Loss"   (Figure   13).  Optionally,   the  colour   limits  used  for  plotting  may  be  specified  via  the   input  boxes  below  the   selection   boxes.   The  message   "Processing.   Please  wait..."   appears  while   the   plots   are  being  generated   (which  may   take   some   time   if   a   large  number  of  plots  were   requested),  

Page 17: SEANAT manual v3 - CBD...SEANAT+manual,+4January2014+ + 4+ 4 Sound+Propagation+Modelling+ ThefollowingsubMsectionsdescribetheprocess&of&creating&and&running&a&typical&model&

SEANAT  manual,  4  January  2014     17  

and  the  resulting  plots  are  then  listed  in  the  image  gallery  below  the  menus;  sample  output  is  shown  in  Figure  14.  Plots  within  the  gallery  may  be  browsed  using  the  controls  above  the  plot  panel,  or  using  the  menu  to  the  left  of  the  gallery  (Figure  14).    

Transmission   loss   data   may   also   be   downloaded   via   the   “Download   Data   Files”   button  (Figure   13).   Raw   data   files   for   the   selected   sources,   frequencies,   and   azimuths   are  compressed  (zip  format)  and  downloaded  to  the  user's  computer.  The  compressed  archive  contains   raw   data   in   plain-­‐text   files   (one   for   each   individual  model   run),   organized   into  directories   for   each   source   and   azimuth   selected.   The   individual   file   names   indicate   the  model  used  and  the  modelling  frequency.  Within  each  plain-­‐text  file,  transmission  loss  data  are   presented  with   one   row  per   receiver   range   and   one   column  per   receiver   depth.   The  first  column  after  the  receiver  range  column  contains  the  range-­‐dependent  bottom  depth.  

Once   the   user   is   satisfied   that   the   transmission   loss   estimates   are   sensible,   they  may   be  combined   with   the   source   spectra   selected   on   the   Configuration   page   to   generate  frequency-­‐dependent   received   level   estimates   for   each   acoustic   source.   This   is   done   by  selecting   the  desired   sources,   frequencies,   and  azimuths  and   clicking   “Compute  Received  Levels”   (Figure   13).   Available   received   levels   are   then   listed   in   the   menus   under   the  "Received   Levels"   heading.   If   all   available   frequencies   are   selected   for   received   level  computations,   the   overall   (sum  of   received   energy  over   frequency)   received   level   is   also  computed;  this  resulting  file  is  listed  as  “sum”  in  the  list  of  frequencies  under  the  “Received  Levels”  heading  (e.g.,  Figure  13).  

Once  received  levels  have  been  generated,  they  may  be  plotted  using  the  controls  under  the  "Received   Levels"   heading   (Figure   13),   and   the   corresponding   data   may   also   be  downloaded.  Three  plot/download  types  are  available:    

• Received   levels   as   a   function   of   range   and   depth:   As   with   the   range-­‐depth   plot  option  under  the  “Transmission  Loss”  heading  (Figure  14),  one  plot  is  generated  for  each  source,  frequency,  and  azimuth  selected.  The  colour  legend  used  for  plotting  of  received   levels   may   be   modified   by   specifying   minimum   and   maximum   received  levels   for   the   colour   scale.  Additionally,   checking   the   “Apply   threshold   levels”   box  (Figure   13)   generates   a   colour   scale  with   breaks   at   140  dB  re.  1  µPa2s   (avoidance  threshold)   and   160  dB  re.  1  µPa2s   (temporary   threshold   shift   level).   Clicking  "Download  Data"   initiates  download  of  plain-­‐text  files,  as  for  the  transmission  loss  data.  

• Received  levels  as  a  function  of  geographic  location:  The  map  view  (e.g.,  Figure  15)  accepts  one  frequency  and  one  or  more  sources  and  azimuths,  as  well  as  the  desired  depth   below   the   sea   surface   and   whether   or   not   received   levels   from   different  sources  should  be  summed;  the  latter  controls  are  made  visible  when  the  plot  type  is  set  to  “Received  level  vs.  geographic  location”  (Figure  13).  If  a  numeric  plot  depth  is  provided,   the  map  represents  a  horizontal   “slice”   through   the  sound   field  at   the  depth  indicated.  If  the  depth  is  greater  than  the  bottom  depth,  the  sub-­‐bottom  sound  field   will   be   shown   in   the   case   of   RAMGeo   (Bellhop   does   not   model   sub-­‐bottom  sound   propagation).   Alternatively,   ticking   the   “maximum   over   depth”   check   box  generates  a  map  where   the   level   at   each  x,   y  point   represents   the  maximum   level  

Page 18: SEANAT manual v3 - CBD...SEANAT+manual,+4January2014+ + 4+ 4 Sound+Propagation+Modelling+ ThefollowingsubMsectionsdescribetheprocess&of&creating&and&running&a&typical&model&

SEANAT  manual,  4  January  2014     18  

over  all  water  depths  modelled  for  that  point  (sub-­‐bottom  grid  points  are  excluded).  If   more   than   one   source   is   selected   from   the   source   menu   and   the   “Combine  received  levels  from  all  sources”  box  is  checked,  the  received  levels  from  the  various  input   sources   are   interpolated   to   a   common   spatial   grid   and   then   summed  incoherently  in  order  to  generate  a  map  of  the  total  received  level  from  the  selected  acoustic  sources.  Optionally,  axis   limits  and  colour  scale  options  may  be  specified; note,  however,  that  axis  limits  may  be  modified  internally  before  display  if  the  limits  specified   will   prevent   the   map   from   rendering   correctly.   Finally,   selecting  "Download  Data"   for   this   output   type  yields   a  plain-­‐text   file   of   received   level   as   a  function  of  geographic  location,  as  well  as  a  shapefile  of  received  level  contours.  The  shapefile  download   includes  all   three   files   (extensions   .shp,   .shx,   and   .dbf)  needed  for  display  by  standard  GIS  software.  

• Received  spectrum  at  a  specified  location:  This  option  accepts  one  or  more  sources  and  azimuths  (all  frequencies  are  used  by  default),  as  well  as  a  target  depth  (again,  either  a  numeric  depth  or  maximum-­‐over-­‐depth)  and   location.  The   target   location  may   be   specified   as   a   range   and   azimuth   from   one   of   the   selected   sources,   as   a  latitude  and  longitude,  or  as  UTM  coordinates.  Sample  output  is  shown  in  Figure  16.  Optionally,   an   audiogram   may   be   defined   and/or   selected   to   plot   alongside   the  received   spectrum   or   spectra.   A   plain-­‐text   file   containing   the   data   points   plotted  may  also  be  downloaded.  

Figure  13:  Model  Results  page,   showing  available   raw  and  processed   results   after   all   runs  shown   in   Figure   12   have   been   run,   fetched,   and   converted   to   received   levels.   Optional  settings  for  the  plot  of  received  levels  as  a  function  of  geographic  location  are  shown.  

Page 19: SEANAT manual v3 - CBD...SEANAT+manual,+4January2014+ + 4+ 4 Sound+Propagation+Modelling+ ThefollowingsubMsectionsdescribetheprocess&of&creating&and&running&a&typical&model&

SEANAT  manual,  4  January  2014     19  

Figure   14:   Sample   plot   of   transmission   loss   as   a   function   of   range   and   depth.   The   source  location  and  bottom  depth  are   shown  as   a  black  asterisk   and  black   line,   respectively.  The  menu   to   the   left   of   the   plot   is   updated   as   plots   are   created   (here,   10   plots   have   been  generated);  the  menu  and  Previous/Next  controls  are  used  to  navigate  the  Plots  gallery.  

Figure   15:   Sample   map   of   SEL   for   Pile   driver   1,   for   values   maximized   over   depth.   The  shoreline  is  shown  in  gray.  

Page 20: SEANAT manual v3 - CBD...SEANAT+manual,+4January2014+ + 4+ 4 Sound+Propagation+Modelling+ ThefollowingsubMsectionsdescribetheprocess&of&creating&and&running&a&typical&model&

SEANAT  manual,  4  January  2014     20  

Figure  16:  Sample  source  spectrum  plot,  for  a  location  2  km  east  of  Pile  driver  1  

5 References  

Collins,  M.D.,  R.J.  Cederberg,  D.B.  King,  and  S.A.  Chin-­‐Bing,  1996.  Comparison  of  algorithms  for  solving  parabolic  wave  equations.  Journal  of  the  Acoustical  Society  of  America  100(1):  178-­‐182.  

Collins,  M.D.,  1997.  User’s  Guide  for  RAM  Versions  1.0  and  1.0p.  Naval  Research  Laboratory,  14pp.  

British  Oceanographic  Data  Centre  (BODC),  2009.  The  GEBCO_08  Grid,  version  20091120,  General  Bathymetric  Chart  of  the  Oceans  (GEBCO),  http://www.gebco.net.  

Fofonoff,   N.P,   and   R.C.   Millard   Jr.,   1983.   Algorithms   for   computation   of   fundamental  properties  of  seawater,  UNESCO  Technical  Papers  in  Marine  Science,  Vol.  44,  53  pp.  

Millero,   F.J.,   and   X.   Li,   1994.   Comments   on   “On   equations   for   the   speed   of   sound   in  seawater”   [J.   Acoust.   Soc.   Am.  93,   255–275   (1993)].   Journal   of   the   Acoustical   Society   of  America  95(5):  2757-­‐2759.    

National   Oceanographic   Data   Center   (NODC),   2005.   World   Ocean   Atlas   2005,  http://www.nodc.noaa.gov/OC5/WOA05/pr_woa05.html.  

Page 21: SEANAT manual v3 - CBD...SEANAT+manual,+4January2014+ + 4+ 4 Sound+Propagation+Modelling+ ThefollowingsubMsectionsdescribetheprocess&of&creating&and&running&a&typical&model&

SEANAT  manual,  4  January  2014     21  

Porter,  M.B.,  2006.  The  BELLHOP  Manual  and  Users  Guide.  HLS  Research,  La  Jolla,  CA,  USA.,  57pp.  

Porter,  M.B.,  and  Y-­‐C  Liu,  1994.  Finite-­‐Element  Ray  Tracing.  Theoretical  and  Computational  Acoustics  2:  947-­‐956.  

   

Page 22: SEANAT manual v3 - CBD...SEANAT+manual,+4January2014+ + 4+ 4 Sound+Propagation+Modelling+ ThefollowingsubMsectionsdescribetheprocess&of&creating&and&running&a&typical&model&

SEANAT  manual,  4  January  2014     22  

Appendix  A:  Default  Model  Parameters  

Sound  propagation  modelling  parameters  included  in  the  “Default  Parameters”  parameter  set   (Section   4.2.1)   are   outlined   in   Table   1.   The   parameter   values   shown   in   the   table   are  suitable  for  most  environments,  and  are  included  here  only  for  reference.  

As   noted   in   Section   4.2.1,   the   acoustic   models   are   run   at   third-­‐octave   band   centre  frequencies   from   50   Hz   to   200  kHz.   RAMGeo   (a   parabolic   equation   model)   is   used   for  frequencies  up  to  and  including  2  kHz,  and  Bellhop  (a  ray  tracing  model)  is  used  for  higher  frequencies   (Table  1).  The  Bounce  model   is  used   in  conjunction  with  Bellhop   in  order   to  compute   the  bottom  reflection  coefficient.  Note   that  while  a   frequency  cut-­‐off  of  2  kHz   is  suitable   for   most   environments   in   the   German   EEZ,   Bellhop   may   tend   to   over-­‐estimate  transmission  losses  in  very  shallow  water  for  frequencies  near  the  cut-­‐off.  

Detailed  information  on  the  RAMGeo  and  Bellhop  parameters  listed  in  Table  1  is  available  in  the  RAM  and  Bellhop  manuals  (Collins,  1997;  Porter,  2006).  SEANAT  uses  the  following  approach  to  select  frequency-­‐appropriate  parameters  for  RAMGeo:  

• The   resolution   of   the   computational   grid   is   defined   in   terms   of   the   wavelength,  providing  a  balance  of  accuracy  and  computational  efficiency.  In  this  approach,  the  depth  grid  spacing  is  specified  as  a  multiple  of  the  wavelength,  and  the  range  step  is  specified  as  a  multiple  of  the  depth  increment.  Maximum  values  are  used  for  each  in  order   to   avoid  overly   coarse   grids   at   low   frequencies.   The  output   values   are   then  sub-­‐sampled   on   a   computational   grid   with   depth   and   range   step   increments   as  defined   in  Table  1.  Because   the   range   step   is   defined   in   terms  of   the  wavelength-­‐dependent   depth   increment   rather   than   as   a   fraction   of   the   maximum   range  specified   in   the  Acoustic  Field  Grid  table  on  the  Configuration  Page  (Figure  9),   the  farthest   range   modelled   may   be   some   fraction   of   a   range   step   less   than   the  maximum  range.  

• An  attenuating  layer  is  added  to  the  bottom  of  the  sediment  half-­‐space  to  simulate  loss  of  sound  energy   into  deeper  sediment   layers.  The   thickness  of   this   layer,  as  a  number  of  wavelengths,  and  the  attenuation  assumed  within  the  layer  are  defined  in  Table  1.  

Page 23: SEANAT manual v3 - CBD...SEANAT+manual,+4January2014+ + 4+ 4 Sound+Propagation+Modelling+ ThefollowingsubMsectionsdescribetheprocess&of&creating&and&running&a&typical&model&

SEANAT  manual,  4  January  2014     23  

Table  1:  Default  parameters  used  for  sound  propagation  modelling  

Parameters  common  to  all  models  Model  frequencies  (Hz)   50,  63,  80,  100,  125,  160,  200,  250,  315,  400,  500,  630,  

800,  1000,  1250,  1600,  2000,  2500,  3150,  4000,  5000,  6300,  8000,  10  000,  12  500,  16  000,  20  000,  25  000,  32  000,  40  000,  51  000,  64  000,  81  000,  100  000,  130  000,  160  000,  200  000  

Output  depth  grid  spacing  (m)   1  RAMGeo  parameters  Frequency  range  where  the  model  is  applied  (Hz)  

50  –  2000  

Computational  depth  grid  spacing  (number  of  wavelengths)  

0.1  

Maximum  computational  depth  grid  spacing  (m)  

1  

Computational  range  step  (multiple  of  the  depth  grid  spacing)  

2  

Maximum  computational  range  step  (m)  

2  

Output  range  step  (m)   50  Reference  sound  speed  (m/s)   1500  Number  of  terms  in  rational  approximation  

5  

Number  of  stability  constraints   1  Maximum  range  of  stability  constraints  

0  

Sediment  layer  thickness  (number  of  wavelengths)  

10  

Bottom  attenuation  layer  thickness  (number  of  wavelengths)  

10  

Maximum  attenuation  (dB/wavelength)  

10  

Bellhop  parameters  Frequency  range  where  the  model  is  applied  (Hz)  

2001  –  200  000  

Run  type   Semicoherent  TL  calculation  Beam  type   Gaussian  beams  Number  of  beams   5000  Range  of  beam  angles  (degrees)   -­‐80  –  80  Beam  angular  step   Automatically  determined  Number  of  range  steps   1000