se 207: modeling and simulation introduction to laplace transform dr. samir al-amer term 072

72
SE 207: Modeling and Simulation Introduction to Laplace Transform Dr. Samir Al-Amer Term 072

Upload: junior-caldwell

Post on 12-Jan-2016

215 views

Category:

Documents


1 download

TRANSCRIPT

Page 1: SE 207: Modeling and Simulation Introduction to Laplace Transform Dr. Samir Al-Amer Term 072

SE 207: Modeling and Simulation Introduction to Laplace Transform

Dr. Samir Al-Amer

Term 072

Page 2: SE 207: Modeling and Simulation Introduction to Laplace Transform Dr. Samir Al-Amer Term 072

Why do we use them We use transforms to transform the problem

into a one that is easier to solve then use the inverse transform to obtain the solution to the original problem

4.274110A

0.63080.38560.1553 0.089943.2log43.1log23.1loglog

43.2*43.1*23.1:

0.6308

A

AcomputeproblemOriginal

Page 3: SE 207: Modeling and Simulation Introduction to Laplace Transform Dr. Samir Al-Amer Term 072

Laplace Transform

t is a real variable

f(t) is a real function

Time Domain

s is complex variable

F(s) is a complex valued function

Frequency Domain

2

1)()( 2

ssFetf t

LLaplace Transform

L-1

InverseLaplace Transform

Page 4: SE 207: Modeling and Simulation Introduction to Laplace Transform Dr. Samir Al-Amer Term 072

Use of Laplace Transform in solving ODE

Differential Equation Laplace Transform

Algebraic Equation

Solution of theAlgebraic Equation

Inverse Laplace

transform

Solution of the Differential Equation

2

1)()(

0)(21)(1)0(,0)(2)(

2

ssXetx

sXssXxtxtx

t

Page 5: SE 207: Modeling and Simulation Introduction to Laplace Transform Dr. Samir Al-Amer Term 072

Definition of Laplace Transform

0

)()}({)( dtetftfLsF st

Sufficient conditions for existence of the Laplace transform

0

0

)(

thatsuch,,exist There

continuous piecewise is )(

ttforeMtf

tM

tf

t

Page 6: SE 207: Modeling and Simulation Introduction to Laplace Transform Dr. Samir Al-Amer Term 072

Examples of functions of exponential order

0,1,12)(

0,0,1)sin()(

0,0,100

01)(

0

0

0

tMTaketf

tMTakettf

tMTaket

ttf

x

Page 7: SE 207: Modeling and Simulation Introduction to Laplace Transform Dr. Samir Al-Amer Term 072

Exampleunit step

sss

edtedtf(t)eF(s)

ssF

t

ttf

st

stst 1101

:Proof

_______________________________________

1)(

00

01)(

0

00

Page 8: SE 207: Modeling and Simulation Introduction to Laplace Transform Dr. Samir Al-Amer Term 072

ExampleShifted Step

s

eA

s

eA

s

eAsF

dtAedtedtf(t)eF(s)

s

eAsF

t

tAtf

ssst

ststst

s

222

2

0 20

2

0)(

0

:Proof

_______________________________________

)(20

2)(

Page 9: SE 207: Modeling and Simulation Introduction to Laplace Transform Dr. Samir Al-Amer Term 072

Integration by parts

02

00000

0

000

1100

1

1,

1,,

?

ss

te

sdte

ss

tevduuvdtte

dtes

vdus

teuv

es

vdtdudtedvtuLet

dtte

vduuvudv

stst

stst

stst

stst

st

Example

Page 10: SE 207: Modeling and Simulation Introduction to Laplace Transform Dr. Samir Al-Amer Term 072

ExampleRamp

stst

ststststst

es

vdtdudtedvtuLet

vduuvudv

ss

te

sdte

stedttedtf(t)eF(s)

ssF

t

tttf

1,,

partby n integratio UsingDone

1100

1

:Proof

_______________________________________

1)(

00

0)(

000

02

000

0

2

Page 11: SE 207: Modeling and Simulation Introduction to Laplace Transform Dr. Samir Al-Amer Term 072

ExampleExponential Function

asdtedteedtf(t)eF(s)

assFetf

tasstatst

at

1

:Proof

_______________________________________

1)()(

0

)(

00

Page 12: SE 207: Modeling and Simulation Introduction to Laplace Transform Dr. Samir Al-Amer Term 072

Examplesine Function

shortlygiven be willproof theof Details

)sin(

:Proof

_______________________________________

)()sin()(

2200

22

sdtetdtf(t)eF(s)

ssFttf

stst

Page 13: SE 207: Modeling and Simulation Introduction to Laplace Transform Dr. Samir Al-Amer Term 072

Examplecosine Function

2200

22

)cos(

:Proof

_______________________________________

)()cos()(

s

sdtetdtf(t)eF(s)

s

ssFttf

stst

Page 14: SE 207: Modeling and Simulation Introduction to Laplace Transform Dr. Samir Al-Amer Term 072

ExampleRectangle Pulse

)1(0

:Proof

_______________________________________

)1()(],(0

],0[)(

00

sLL

L

ststst

sL

es

AdtedtAedtf(t)eF(s)

es

AsF

Lt

LtAtf

Page 15: SE 207: Modeling and Simulation Introduction to Laplace Transform Dr. Samir Al-Amer Term 072

Properties of Laplace TransformAddition

000

)()()()()(

:Proof

)()()()(

__________________________________________________

)()()()(

)()(

)()(

dtetgdtetfdtetgf(t)tgtfL

tgLtfLtgtfL

sGsFtgtf

sGtg

sFtf

ststst

Page 16: SE 207: Modeling and Simulation Introduction to Laplace Transform Dr. Samir Al-Amer Term 072

Properties of Laplace TransformMultiplication by a constant

)()()(

:Proof

)()(

__________________________________________________

)()(

)()(

00

tfLadtetfadtf(t)eatfaL

tfLatfaL

sFatfa

sFtf

stst

Page 17: SE 207: Modeling and Simulation Introduction to Laplace Transform Dr. Samir Al-Amer Term 072

Properties of Laplace TransformMultiplication by exponential

__________________________________________________

)()(

)()(

asFetf

sFtfat

)()(

:Proof

)()(

0

)(

0

asFdtf(t)edtef(t)eetfL

asFetfL

tsastatat

at

Page 18: SE 207: Modeling and Simulation Introduction to Laplace Transform Dr. Samir Al-Amer Term 072

Properties of Laplace TransformExamples Multiplication by exponential

__________________________________________________

)()(

)()(

asFetf

sFtfat

22

2222

2222

)(

1,

1

)(

)()cos(,)cos(

)()sin(,)sin(

asetL

stL

as

asetL

s

stL

asetL

stL

at

at

at

Page 19: SE 207: Modeling and Simulation Introduction to Laplace Transform Dr. Samir Al-Amer Term 072

Useful Identities

jj

jj

j

j

eej

ee

je

je

2

1)sin(

2

1)cos(

)sin()cos(

)sin()cos(

Page 20: SE 207: Modeling and Simulation Introduction to Laplace Transform Dr. Samir Al-Amer Term 072

Examplesin Function

22

0 00

00

22

11

2

1

2

1

2

1

)sin(

_______________________________________

)()sin()(

sjsjsj

dtedtej

dteeej

dtetdtf(t)eF(s)

ssFttf

sttjsttjsttjtj

stst

Page 21: SE 207: Modeling and Simulation Introduction to Laplace Transform Dr. Samir Al-Amer Term 072

Examplecosine Function

22

0 00

00

22

11

2

1

2

1

2

1

)cos(

______________________________________________

)()cos()(

s

s

jsjs

dteedteedteee

dtetdtf(t)eF(s)

s

ssFttf

sttjsttjsttjtj

stst

Laplace Transform

Inverse Laplace Transform

Page 22: SE 207: Modeling and Simulation Introduction to Laplace Transform Dr. Samir Al-Amer Term 072

Properties of Laplace TransformMultiplication by time

43

3

1322

2

62)(

!)(

21)(

11)(

1)(

_________________________________

)()(

ssds

dtutL

s

ntutL

ssds

dtutL

ssds

dtutL

stuL

sFds

dtftL

nn

Page 23: SE 207: Modeling and Simulation Introduction to Laplace Transform Dr. Samir Al-Amer Term 072

Properties of Laplace Transform

s

sXxssXxsxsXs

tutxtxtxL

ffsfssFsdt

tfdL

fsfsFsdt

tfdL

fssFdt

tdfL

1)(2)]0()([3)0()0()(

)()(2)(3)(

__________________________________________________________

)0()0()0()()(

)0()0()()(

)0()()(

2

233

3

22

2

Page 24: SE 207: Modeling and Simulation Introduction to Laplace Transform Dr. Samir Al-Amer Term 072

Properties of Laplace TransformIntegration

)()()(.6

______________________________

)(1

)( 5.0

sFeatuatfL

sFs

dfL

sa

t

Page 25: SE 207: Modeling and Simulation Introduction to Laplace Transform Dr. Samir Al-Amer Term 072

Properties of Laplace TransformDelay

)()()(

)()()(

)()(

sFeatuatfL

sFeatuatf

sFtf

sa

sa

Page 26: SE 207: Modeling and Simulation Introduction to Laplace Transform Dr. Samir Al-Amer Term 072

Properties of Laplace Transform

LsLs es

ALes

As

AsF

LtALuLtuLtAtuAttf

Lt

LtAt

t

tf

11)(

)()()()()(

0

0

00

)(

22

Slope =A

L

Page 27: SE 207: Modeling and Simulation Introduction to Laplace Transform Dr. Samir Al-Amer Term 072

Properties of Laplace Transform4

Slope =A

L L

Slope =A_ _A L

Slope =A

L

=

Page 28: SE 207: Modeling and Simulation Introduction to Laplace Transform Dr. Samir Al-Amer Term 072

Summary

Page 29: SE 207: Modeling and Simulation Introduction to Laplace Transform Dr. Samir Al-Amer Term 072

SE 207: Modeling and SimulationLesson 3: Inverse Laplace Transform

Dr. Samir Al-Amer

Term 072

Page 30: SE 207: Modeling and Simulation Introduction to Laplace Transform Dr. Samir Al-Amer Term 072

Properties of Laplace Transform

)0()0(...)0()()(

)0()0()0()()(

)0()0()()(

)0()()(

)1()2(1

233

3

22

2

nnnnn

n

ffsfssFsdt

tfdL

ffsfssFsdt

tfdL

fsfsFsdt

tfdL

fssFdt

tdfL

Page 31: SE 207: Modeling and Simulation Introduction to Laplace Transform Dr. Samir Al-Amer Term 072

Solving Linear ODE using Laplace Transform

???)(

23

1)(

)(

1)(2)(3)(

1)(2)]0()([3)0()0()(

0)0()0(),()(2)(3)(

2

2

2

tx

nsformLaplaceTrainverseuse

ssssX

sXforsolves

sXssXsXs

ssXxssXxsxsXs

nsformLaplaceTrause

xxtutxtxtx

Page 32: SE 207: Modeling and Simulation Introduction to Laplace Transform Dr. Samir Al-Amer Term 072

Inverse Laplace Transform

them.sum and each term of inverse obtain thethen

sorder term second andfirst of sum theasF(s) Expand

ExpansionFraction Partial

)()(

Transform Laplace Inverse1 sFLtf

Page 33: SE 207: Modeling and Simulation Introduction to Laplace Transform Dr. Samir Al-Amer Term 072

Notation

F(s) of thecalled are D(s) of roots

F(s) of thecalled are N(s) of roots

spolynomial are D(s) andN(s) whereD(s)

N(s)F(s)

as expressed becan it , sin function rational isF(s)

poles

zeros

Page 34: SE 207: Modeling and Simulation Introduction to Laplace Transform Dr. Samir Al-Amer Term 072

Notation

3:,5.0:12

3s

2:,4,3:3)4)(s(s

2s

127s

2s2

zeropoles

zeropoless

Page 35: SE 207: Modeling and Simulation Introduction to Laplace Transform Dr. Samir Al-Amer Term 072

Notation

F(s) of thecalled are D(s) of roots

F(s) of thecalled are N(s) of roots

spolynomial are D(s) andN(s) whereD(s)

N(s)F(s)

as expressed becan it , sin function rational isF(s)

poles

zeros

Page 36: SE 207: Modeling and Simulation Introduction to Laplace Transform Dr. Samir Al-Amer Term 072

Examples

properaress

s

s

properstrictlyaress

12

2s,

127s

23s,

127s

1

127s

2s,

127s

1

2

2

2

22

Page 37: SE 207: Modeling and Simulation Introduction to Laplace Transform Dr. Samir Al-Amer Term 072

Partial Fraction Expansion

polescomplex *

poles repeated *

polesdistict *

cases hreeconsider t willWe

Page 38: SE 207: Modeling and Simulation Introduction to Laplace Transform Dr. Samir Al-Amer Term 072

Partial Fraction Expansion

2j-2j,-11-at polescomplex wo t

2)-at poles (double -2sat pole repeatedone

0,-1at poles realdistict twohas)(

)52(s2)1)(ss(s

1)(

22

sF

ssF

Page 39: SE 207: Modeling and Simulation Introduction to Laplace Transform Dr. Samir Al-Amer Term 072

Partial Fraction Expansion

n

i

tsi

ssii

n

i i

i

i

i

eAf(t)

sFs-sA

where

s-s

AF(s)

1

1

Transform Laplace inverse

)(

as expressed becan F(s)

distict are of poles all andproper strictly is F(s) If

Page 40: SE 207: Modeling and Simulation Introduction to Laplace Transform Dr. Samir Al-Amer Term 072

Example

032Transform Laplace inverse

3)1(

5)(4)(

2)4(

5)(1)(

)4()1(

distinct41at are poles proper,strictly

)4)(1(

5

45

5

4

1

4122

1111

21

1

2

2

1

tforeeeAf(t)

s

ssFssFs-sA

s

ssFssFs-sA

where

s

A

s

A

s-s

AF(s)

,

ss

s

ss

sF(s)

ttn

i

tsi

ssss

ssss

n

i i

i

i

Page 41: SE 207: Modeling and Simulation Introduction to Laplace Transform Dr. Samir Al-Amer Term 072

Example

032

Transform Laplace inverse

)4(

3

)1(

2

)4)(1(

5

distinct41at are poles proper,strictly

)4)(1(

5

45

5

4

2

tforeef(t)

ssss

s

,

ss

s

ss

sF(s)

tt

Page 42: SE 207: Modeling and Simulation Introduction to Laplace Transform Dr. Samir Al-Amer Term 072

Alternative Way of Obtaining Ai

032Transform Laplace inverse

3,2;54,1

)4)(1(

5

)4)(1(

)4()()(

)4)(1(

)1()4(

)4()1(

distinct41at are poles proper,strictly

)4)(1(

5

45

5

4

1

212121

2121

2121

2

tforeeeAf(t)

AAsolveAAAA

ss

s

ss

AAAAssF

ss

sAsA

s

A

s

AF(s)

,

ss

s

ss

sF(s)

ttn

i

tsi

i

Page 43: SE 207: Modeling and Simulation Introduction to Laplace Transform Dr. Samir Al-Amer Term 072

Repeated poles

1)2(

165)()5(

1)5(

)165()5(5

)5(

165)()2(

2)5(

165)()2(

)5()2()2(

2at are poles reperated and 5at poledistict proper,strictly

)5()2(

165

5252

2

2

22

212

22

211

2122

11

2

ss

sss

ss

s

ssFsA

s

ss

s

s

ds

dsFs

ds

dA

s

ssFsA

s

A

s

A

s

AF(s)

ss

sF(s)

Page 44: SE 207: Modeling and Simulation Introduction to Laplace Transform Dr. Samir Al-Amer Term 072

Repeated poles

1)5(

)165()5(5

)5(

165)()2(

sother term oft coefficien for the formula New *

2)5(

165)()2(

case poledistict in as obtained is order termhigest oft coefficien The *

presentare)2()2(

bothNote*

1)2(

165)()5(before as obtained is poledistict oft coefficien The *

2at are poles reperated and 5at poledistict )5()2()2(

2

2

22

212

22

211

122

11

5252

2122

11

sss

ss

ss

s

ss

s

s

ds

dsFs

ds

dA

s

ssFsA

s

Aand

s

A

s

ssFsA

s

A

s

A

s

AF(s)

Page 45: SE 207: Modeling and Simulation Introduction to Laplace Transform Dr. Samir Al-Amer Term 072

Repeated poles

0112Transform Laplaceinverse

)(1)2(

165)()5(

1)5(

)165()5(5

)5(

165)()2(

2)5(

165)()2(

)5()2()2(

52,2at are poles proper,strictly )5()2(

165

modifiedis obtain tousedformula thepoles repeated has If

522

5252

2

2

22

212

22

211

2122

11

2

1

tforeetef(t)

poledisticts

ssFsA

s

ss

s

s

ds

dsFs

ds

dA

s

ssFsA

s

A

s

A

s

AF(s)

,ss

sF(s)

AF(s)

ttt

ss

sss

ss

Page 46: SE 207: Modeling and Simulation Introduction to Laplace Transform Dr. Samir Al-Amer Term 072

Repeated poles

05.0Transform Laplaceinverse

)()()4(

)()1(

)()1(

)()1(

)4()1()1()1(

4,11,1at are poles proper,strictly )4()1(

3

modifiedis obtain tousedformula thepoles repeated has If

421312

211

42

1

32

2

13

1

312

1

311

2132

123

11

3

1

tforeAeAteAetAf(t)

poledistictsFsA

sFsds

dA

sFsds

dA

sFsA

s

A

s

A

s

A

s

AF(s)

,ss

sF(s)

AF(s)

tttt

s

s

s

s

2!1

Page 47: SE 207: Modeling and Simulation Introduction to Laplace Transform Dr. Samir Al-Amer Term 072

Common Error

)4()1()1()1(

as expanded be shouldIt general.invalidnotisThis

)4()1(

)4()1(

3 expandmaySome

2132

123

11

23

11

3

s

A

s

A

s

A

s

AF(s)

s

A

s

AF(s)

asss

sF(s)

Page 48: SE 207: Modeling and Simulation Introduction to Laplace Transform Dr. Samir Al-Amer Term 072

Complex Poles

?)(

)()21(

)()21(

)21()21(

j2-1- andj21-at polescomplex twohas52

84

)21(2

)21(1

1212

211

21

2

tjtj

js

js

ekektf

ksFjsk

sFjsk

js

k

js

kF(s)

ss

sF(s)

Page 49: SE 207: Modeling and Simulation Introduction to Laplace Transform Dr. Samir Al-Amer Term 072

Complex Poles

)sin()cos()(

2,1,8,4

2)1(41252

)( as expressed becan

52

84

WayeAlternativ

2222

222

teaBC

tBetf

aCB

sssss

as

CBs

ss

sF(s)

atat

Page 50: SE 207: Modeling and Simulation Introduction to Laplace Transform Dr. Samir Al-Amer Term 072

What do we do if F(s) is not strictly proper

023)()(

)2(

2

)1(

31

)1)(2(

41

23

41

23

64

proper.strictly isG(s) andnumber real a isk where

G(s)kF(s) asit express odivision t long use

proper strictly not but proper isF(s)If

2

22

2

tforeettf

ssss

sF(s)

ss

s

ss

ssF(s)

tt

Page 51: SE 207: Modeling and Simulation Introduction to Laplace Transform Dr. Samir Al-Amer Term 072

Solving for the Response

23

5)(

0)(2]1)([32)(

0)(2)]0()([3)0()0()(

2)0(,1)0(,0)(2)(3)(

__________________________________________________________

)0()0()()(

)0()()(

2

2

2

22

2

ss

ssX

sXssXssXs

sXxssXxsxsXs

xxtxtxtxSolve

fsfsFsdt

tfdL

fssFdt

tdfL

Page 52: SE 207: Modeling and Simulation Introduction to Laplace Transform Dr. Samir Al-Amer Term 072

Final value theorem

0)40)(10(

0

)4)(1(

2lim)(

03

2

3

2)(

03

2

3

2

)4(32

)1(32

)4)(1(

2

0

4

4

ss

sf

eef

tforeef(t)

ssssF(s)

s

tt

Page 53: SE 207: Modeling and Simulation Introduction to Laplace Transform Dr. Samir Al-Amer Term 072

Final value theorem

parts real positive with poles no

hasF if theorem valuefinalapply can eRemember w

0)40)(10(

0

)4)(1(

2lim)(

5

2

5

2)(

05

2

5

2

)4(52

)1(52

)4)(1(

2

0

4

4

validNotss

sf

eef

tforeef(t)

ssssF(s)

s

tt

Page 54: SE 207: Modeling and Simulation Introduction to Laplace Transform Dr. Samir Al-Amer Term 072

Step function

s

AU(s)

t

tAu(t)

00

0

A

Page 55: SE 207: Modeling and Simulation Introduction to Laplace Transform Dr. Samir Al-Amer Term 072

impulse function

0,1

1)(00

dt(t)

sFtfor(t)

Page 56: SE 207: Modeling and Simulation Introduction to Laplace Transform Dr. Samir Al-Amer Term 072

impulse function

propertysampling

otherwise

bacifcfdttfc)(t

dt(t)

(t)Ltfor(t)

b

a

0

],[)()(

0,1

100

Page 57: SE 207: Modeling and Simulation Introduction to Laplace Transform Dr. Samir Al-Amer Term 072

Initial Value& Final Value Theorems

Transfrom Laplace inverse

obtain toneed out thewith

F(s) fromdirectly obtained becan

)( ValueFinal)0( Value Initial fandf

Page 58: SE 207: Modeling and Simulation Introduction to Laplace Transform Dr. Samir Al-Amer Term 072

Initial Value Theorem

)(limlimit theby taking obtained is

timeinitial at thefunction theof valuethe

)(lim)0(

sFs

sFsf

s

s

Page 59: SE 207: Modeling and Simulation Introduction to Laplace Transform Dr. Samir Al-Amer Term 072

Final Value Theorems

).()(

3)2)(ss(s

4s)(,

3)-2)(s(s

5sG(s)

:Examples

origin. at the pole single of

exception possible a with and planecomplex theof

halfright in the on the poles no has F(s) provided

)(lim)(0

gnotbutfobtaincanWe

sF

sFsfs

Page 60: SE 207: Modeling and Simulation Introduction to Laplace Transform Dr. Samir Al-Amer Term 072

SE 207: Modeling and SimulationLesson 4: Additional properties of Laplace transform and solution of ODE

Dr. Samir Al-Amer

Term 072

Page 61: SE 207: Modeling and Simulation Introduction to Laplace Transform Dr. Samir Al-Amer Term 072

Outlines What to do if we have proper function? Time delay Inversion of some irrational functions Examples

Page 62: SE 207: Modeling and Simulation Introduction to Laplace Transform Dr. Samir Al-Amer Term 072

Step function

s

AU(s)

t

tAu(t)

00

0

A

Page 63: SE 207: Modeling and Simulation Introduction to Laplace Transform Dr. Samir Al-Amer Term 072

impulse function

0,1

1)(00

dt(t)

sFtfor(t)

Page 64: SE 207: Modeling and Simulation Introduction to Laplace Transform Dr. Samir Al-Amer Term 072

impulse function

1

Area=1

You can consider the unit impulse as the limiting case for a rectangle pulse with unit area as the width of the pulse approaches zero

Page 65: SE 207: Modeling and Simulation Introduction to Laplace Transform Dr. Samir Al-Amer Term 072

impulse function

otherwise

bacifcfdttfc)(t

propertysampling

dt(t)

(t)Ltfor(t)

b

a 0

],[)()(

0,1

100

Page 66: SE 207: Modeling and Simulation Introduction to Laplace Transform Dr. Samir Al-Amer Term 072

Sample property of impulse function

03

3

)6cos()3cos(2

2

5

35

1

5

1

dte)(t

edte)(t

dtt)(t

t

t

Page 67: SE 207: Modeling and Simulation Introduction to Laplace Transform Dr. Samir Al-Amer Term 072

Time delay

f(t) F(s)g(t) G(s)

sesFsG

tftg2)()(

)2()(

Page 68: SE 207: Modeling and Simulation Introduction to Laplace Transform Dr. Samir Al-Amer Term 072

What do we do if F(s) is not strictly proper

rationalNotess

ssF

cannotnotss

ss

s22

2

2

45

6)(

earlier. discussed s techniquethe

apply Weproper,strictly 45

65H(s)

earlier. discussed techniques

apply thecan Weproper,strictly 4)3)(s(s

1G(s)

Page 69: SE 207: Modeling and Simulation Introduction to Laplace Transform Dr. Samir Al-Amer Term 072

What do we do if F(s) is not strictly proper

022)()(

)2(

2

)1(

21

)1)(2(

641

23

641

23

87

proper.strictly isG(s) andnumber real a isk where

G(s)kF(s) asit express odivision t long use

proper strictly not but proper isF(s)If

2

22

2

tforeettf

ssss

sF(s)

ss

s

ss

ssF(s)

tt

Page 70: SE 207: Modeling and Simulation Introduction to Laplace Transform Dr. Samir Al-Amer Term 072

Example

57

882

3244

2

44

32

2

22

2

2

s

ss

ssss

ss

ssF(s)

44

572

2

ss

s

− − −

Page 71: SE 207: Modeling and Simulation Introduction to Laplace Transform Dr. Samir Al-Amer Term 072

Example

tt

ss

s

etetss

Ltf

sds

d

s

ss

ds

dB

s

ssA

s

B

s

A

s

s

ss

s

ss

ssF(s)

222

1

22

2

2

2

2

2

2

222

2

79)(22

7

2

92)(

7572

572

92

572

222

2

572

44

572

44

32

Page 72: SE 207: Modeling and Simulation Introduction to Laplace Transform Dr. Samir Al-Amer Term 072

Solving for the Response

23

5)(

0)(2]1)([32)(

0)(2)]0()([3)0()0()(

2)0(,1)0(,0)(2)(3)(

__________________________________________________________

)0()0()()(

)0()()(

2

2

2

22

2

ss

ssX

sXssXssXs

sXxssXxsxsXs

xxtxtxtxSolve

fsfsFsdt

tfdL

fssFdt

tdfL