scientific mission applications

21
04.07.22 Scientific Mission Applications P. K. Toivanen, P. Janhunen, and J.-P. Luntama

Upload: lexiss

Post on 08-Feb-2016

28 views

Category:

Documents


0 download

DESCRIPTION

Scientific Mission Applications. P. K. Toivanen, P. Janhunen, and J.-P. Luntama. Outline. Example mission to Mars Optimal orbit to Mars Optimal operation of the sail Optimal operations and real solar wind Solar wind variations and sail performance Density variations Wind speed variations - PowerPoint PPT Presentation

TRANSCRIPT

Page 1: Scientific Mission Applications

22.04.23

Scientific Mission Applications

P. K. Toivanen, P. Janhunen, and J.-P. Luntama

Page 2: Scientific Mission Applications

22.04.23Ilmatieteen laitos / PowerPoint ohjeistus 2

Outline

Example mission to Mars

Optimal orbit to Mars

• Optimal operation of the sail

• Optimal operations and real solar wind

Solar wind variations and sail performance

• Density variations

• Wind speed variations

• Average performance

• Tether voltage and navigation

Page 3: Scientific Mission Applications

22.04.23Ilmatieteen laitos / PowerPoint ohjeistus 3

Electric sail and science missions

About mass budget of electric sail

About economics of electric sail missions

Interstellar Heliospheric Probe (IHP)

Kuiper/centaur flyby mission

Asteroid tour

Space weather monitoring

Page 4: Scientific Mission Applications

22.04.23Ilmatieteen laitos / PowerPoint ohjeistus 4

Optimal orbit to Mars

Mengali, Quarta, and Janhunen:

• Journal of Spacecraft and Rockets, 2008.

• Solar wind speed, 400 km/s

• Density, 7.3 cm-3

• Electron temperature,12 eV

• Radial scaling laws for the solar wind parameters

• Total mass 200 kg

Page 5: Scientific Mission Applications

22.04.23Ilmatieteen laitos / PowerPoint ohjeistus 5

Optimal solution includes:

• Initial acceleration of about 0.5 mm/s2 (Earth)

• Coasting phase (shading)

• Constant thrust angle of 20 deg

• Acceleration at Mars of about 0.3 mm/s2

• Travel time of 600 days

Optimal operation of the sail

Page 6: Scientific Mission Applications

22.04.23Ilmatieteen laitos / PowerPoint ohjeistus 6

Optimal operations andreal solar wind

Varying density and speed:

• Acceleration varies about 40% around the average

• Mars missed!

• But s/c kind of got there…

Page 7: Scientific Mission Applications

22.04.23Ilmatieteen laitos / PowerPoint ohjeistus 7

Solar wind variations andsail performance

Some severe weather conditions:

• Densities higher than 30 cm-3 may occur

• Solar wind speed may be higher than 1000 km/s

• Variations in acceleration far more mellow than those of the solar wind driving the sail

Page 8: Scientific Mission Applications

22.04.23Ilmatieteen laitos / PowerPoint ohjeistus 8

Density variations

Acceleration limited:

• Electron current to the tethers increases

• Electron gun power limited by the given solar panel power

• Tether voltage drops

Page 9: Scientific Mission Applications

22.04.23Ilmatieteen laitos / PowerPoint ohjeistus 9

Wind speed variations #1

Acceleration is regulated:

• Solar wind speed drive not linear:

Page 10: Scientific Mission Applications

22.04.23Ilmatieteen laitos / PowerPoint ohjeistus 10

Wind speed variations #2

For small wind speed values:

• Solar wind kinetic energy less than the tether electric potential

• Dynamic pressure term dominates

For large wind speed values:

• Solar wind kinetic energy larger than the tether electric potential

• Solar wind penetrates to the tether potential structure

Page 11: Scientific Mission Applications

22.04.23Ilmatieteen laitos / PowerPoint ohjeistus 11

Average performance #1

3-month averaged thrust in cases of:

• Limited tether voltage (40 kV, thick)

• No tether voltage limitation (thin)

• Variations relatively small around average at 70 nN/m

• Missions can be desinged for the minimum thrust (dotted) without missing much of the maximum thrust (dashed)

Page 12: Scientific Mission Applications

22.04.23Ilmatieteen laitos / PowerPoint ohjeistus 12

Average performance #2

Thrust vs. solar panel power:

• For small power values, difference between the maximum and minimum thrust not large

• For large power values, the minimum thrust saturates

Page 13: Scientific Mission Applications

22.04.23Ilmatieteen laitos / PowerPoint ohjeistus 13

Average performance #3

Thrust vs. averaging window:

• Down to averaging over about ten days, difference between maximum and minimum thrust does not change dramatically

• Averages below ten days are not relevant in mission time scales

Page 14: Scientific Mission Applications

22.04.23Ilmatieteen laitos / PowerPoint ohjeistus 14

Tether voltage and navigation

Simple navigation procedure:

• Onboard accelerometer

• Time-integrate measured acceleration for spacecraft speed, Vsc

• Compare hourly Vsc with speed at optimal orbit, V0

• If Vsc < V0, increase tether potential by 5kV for the next hour

• If Vsc > V0, decrease tether potential by 5kV for the next hour

Page 15: Scientific Mission Applications

22.04.23Ilmatieteen laitos / PowerPoint ohjeistus 15

Electric sail and science missions

High delta-v for small payloads

Interplanetary Heliospheric Probe (IHP)

Kuiper/Centaur flyby mission

Asteroid tour

Space weather monitoring

Other missions

Near-solar missions

Planetary missions

Page 16: Scientific Mission Applications

22.04.23Ilmatieteen laitos / PowerPoint ohjeistus 16

Electric sail propulsion system

100 X 20 km aluminium four-fold Hoytether

Tethers: 7.3 kg (20 µm)

Reels: 22.0 kg (3 X tethers)

Electron gun + radiator: 1.5 kg (40 kV & 1kW)

High-voltage power source: 2.0 kg

Avionics + tether direction sensor: 7.0 kg

Solar panels: 6.0 kg (1.1 kW)

Battery Li-ion: 1.0 kg (8 Ah)

S/c frame with thermal isolation: 4.5 kg

AOCS thrusters: 1.0 kg

Total: 52.3 kg

Page 17: Scientific Mission Applications

22.04.23Ilmatieteen laitos / PowerPoint ohjeistus 17

About economics of electric sail missions

Payload more expensive than the launch

Soyuz-fregat: 1.3 ton payload to escape orbit

Electric sailer with 1.3 ton payload accelerates slowly

Smaller booster saves no that much

4-6 electric sailers per launch

Piggybag

Page 18: Scientific Mission Applications

22.04.23Ilmatieteen laitos / PowerPoint ohjeistus 18

Interstellar Heliospheric Probe

Fast flight to interstellar medium:

• Formation of the heliosphere

• Pioneer anomaly

• Present proposed mission time is tens of years

• Electric sailer is an enabling technology

• Reduced travel time

• Weight issue

• Use of several electric sailers

Page 19: Scientific Mission Applications

22.04.23Ilmatieteen laitos / PowerPoint ohjeistus 19

Kuiper/centaur flyby mission

Properties of primoidal objects:

• Group of flyby probes, target per probe

• One launch with Siamise Twins spin-up for each pair

• Small payload (total mass 150-200 kg)

• Minimal instrument set only to study the target

• Fast travel time

• Fast flyby, data into memory and slow downloading

Page 20: Scientific Mission Applications

22.04.23Ilmatieteen laitos / PowerPoint ohjeistus 20

Asteroid tour

More for the same money:

• Single electric sailer can visit several asteroids

• Water/hydrogen on asteroids

• Mineral composition

• Morphology

• Imager, radar, and spectroscope (infrared, neutron, and gamma)

• Shoot bullet with a railgun

• Laser heating

• Micrometeor flashes on dark side

Page 21: Scientific Mission Applications

22.04.23Ilmatieteen laitos / PowerPoint ohjeistus 21

Space weather monitoring

Off-Lagrange point monitoring:

• Propellantless operation needed

• Longer than the 1-hour time delay to Earth (solar wind)

• Solar wind monitoring for other planet missions (as a piggybag)

• Tether voltage cycled:

• off during monitoring

• on during orbit control