school of science –faculty of physics institute of applied

72
School of Science – Faculty of Physics Institute of Applied Physics [email protected] Downtown Dresden “Probing nanoscale physical properties in oxides by scanning probe methods” Lukas M. Eng IAP, TU Dresden Germany 5 th ISOE Cargèse, F August 24 – September 3 2021

Upload: others

Post on 16-Jun-2022

3 views

Category:

Documents


0 download

TRANSCRIPT

Page 1: School of Science –Faculty of Physics Institute of Applied

School of Science – Faculty of Physics Institute of Applied Physics

[email protected]

Downtown Dresden

“Probing nanoscale physical propertiesin oxides by scanning probe methods”

Lukas M. EngIAP, TU DresdenGermany

5th ISOECargèse, FAugust 24 –September 3 2021

Page 2: School of Science –Faculty of Physics Institute of Applied

Excellence Univ. 2019 - 2025

< 2 %

ct.qmat:Complexity

and Topology in Quantum

Materials Excellence Universities

Prague

Page 3: School of Science –Faculty of Physics Institute of Applied

School of Science – Faculty of Physics Institute of Applied Physics

[email protected]

Downtown Dresden

“Domain walls in oxides –A 2D-electron gas with exceptionalproperties”

Lukas M. EngIAP, TU DresdenGermany

5th ISOECargèse, FAugust 24 –September 3 2021

Thursday, Sept. 2, 2021

Page 4: School of Science –Faculty of Physics Institute of Applied

Nobel prize in physics, 1986IBM Rüschlikon

Switzerland

Scanning Tunneling Microscopy: STM

G. Binnig and H. Rohrer, Helv. Phys. Acta 55, 726 (1982)

STM-Discovery

Page 5: School of Science –Faculty of Physics Institute of Applied

Nobel prize in physics, 1986IBM Rüschlikon

Switzerland

Scanning Tunneling Microscopy: STM

G. Binnig and H. Rohrer, Helv. Phys. Acta 55, 726 (1982)

STM-Discovery

Page 6: School of Science –Faculty of Physics Institute of Applied

J. Repp et al., Phys. Rev. L.

94, 026803 (2005)

„Seeing“ wavefunctions

Page 7: School of Science –Faculty of Physics Institute of Applied

BaTiO3(111)

STM 4 oxides ?

Vsample= +2.2 VIt = 0.1 nA

vacuum-annealed @ 1500 K

(4 x 4) @ 1500 K

(3 x 3) @ 1550 K

(2 x 2) @ 1600 K

C. Hagendorf et al., Surf. Sci. 436, 121 (1999)

Page 8: School of Science –Faculty of Physics Institute of Applied

• 1 - 2 u.c. BTO• 2% compressive strain• c(2x2) superstructure• out-of-plane polarization (values ?)• annealing increases oxygen deficiency

STM 4 oxides ?

BaTiO3(100) / Pt

S. Förster et al., J. Chem. Phys.

135, 104701 (2011)

Page 9: School of Science –Faculty of Physics Institute of Applied

AC-STM

G.P. Kochanski, Phys. Rev. Lett. 62, 2285 (1989)

Page 10: School of Science –Faculty of Physics Institute of Applied

S.J. Stranick and P. S. WeissJ. Phys. Chem. 98, 1762 (1994)

AC-STM

CuO

5 nm

Al2O3/Al

Pb-silicate-glass

G.P. Kochanski, Phys. Rev. Lett. 62, 2285 (1989)

@ ~1 GHz

100 nm

Page 11: School of Science –Faculty of Physics Institute of Applied

Ch. Gerber et al.,Phys. Rev. Lett. 56, 930 (1986)

AFM-DiscoveryAtomic Force Microscopy: AFM

laserbeamdetector

sample

AFM tip

piezo scanner

tu-dresden.de/mn/physik/iap

Page 12: School of Science –Faculty of Physics Institute of Applied

Sichtbar - unsichtbar

Page 13: School of Science –Faculty of Physics Institute of Applied

J. Israelachvili, Academic Press (1985)D. Tabor, Cambridge Univ. Press (1979)

R

dL

a

dSNano-Tip

Chemical forces:attractive: binding & adhesion

repulsive: Pauli- & nuclear

Van der Waals forces: F.O. Goodman et al.,

Phys. Rev. B 43, 4728 (1991)

Electrostatic / magnetic forces:S. Hudlet et al.,

Euro. Phys. J. 25, (1998)

Forces in SFM – tip-model

Optical forces:induced dipolar interaction

Page 14: School of Science –Faculty of Physics Institute of Applied

Force

Distance

Force-Distance-curve

• Repulsive interaction

• Fstatic (³ 10 nN)

• Adhesion; large contact area

• Attractive interaction

• Cantilever oscillates at resonance frequency

• Measure Df ~ Interaction force

• true atomic resolution possible

Dw w» - 0

2kdFdz

³ 10 nm

tu-dresden.de/mn/physik/iap

(Non) Contact SFM

Page 15: School of Science –Faculty of Physics Institute of Applied

Outline

• Piezo-response Force Microscopy (PFM)

• PFM + Pull-off Force Spectroscopy (PFS)

• Kelvin-Probe Force Microscopy (KPFM)

• Scattering Near-field Optical Microscopy (SNOM)

• Metamaterials and Superlensing

• [Time-resolved Scanning Probe Microscopy (tr-SPM)]

• Wrap up

Page 16: School of Science –Faculty of Physics Institute of Applied

… pick the low-hanging fruits …

Page 17: School of Science –Faculty of Physics Institute of Applied

#1: PiezoresponseForce Microscopy (PFM)

K. Franke et al., Proc. IEEE Intern. Symp. Appl. Ferroelectr. & Europ. Conf. Appl. Polar Dielectr. and Piezoelectric

Force Microscopy Workshop (ISAF/ECAPD/PFM), 1 (2016) M. Abplanalp et al., Appl. Phys. A 66, S231 (1998)L.M. Eng et al., Appl. Phys. Lett. 74, 233 (1999)

Page 18: School of Science –Faculty of Physics Institute of Applied

M. Abplanalp et al., Appl. Phys. A

66, S231 (1998)

PFM

BTO (100)

Page 19: School of Science –Faculty of Physics Institute of Applied

L.M. Eng et al., Appl. Phys. Lett. 74, 233 (1999)

PFM – “X-ray”

Euler angles

dij

BaTiO3 ceramic

Page 20: School of Science –Faculty of Physics Institute of Applied

K. Franke and L.M. EngSurf. Sci. 600 4896 (2006)

PFM & PFS

PFM: piezoresponse force microscopyPFS: pull-off force spectroscopy

PZT (53/47)

Page 21: School of Science –Faculty of Physics Institute of Applied

K. Franke and L.M. EngSurf. Sci. 600 4896 (2006)

PFM & PFS

PFM: piezoresponse force microscopyPFS: pull-off force spectroscopy

• freely moveable surface charges of density r(for instance deposited by the tip of the SFM)

• charges representing the dipoles of the remanent polarization Pz

• charges screening these dipoles• charges trapped within the material, giving rise to local

electric fields and generating the internal bias voltage Uint• polarization charges influencing the SFM measurements

through the inverse piezoelectric effect.

Page 22: School of Science –Faculty of Physics Institute of Applied

K. Franke and L.M. EngSurf. Sci. 600 4896 (2006)

PFM & PFS

Results 1:• Pz = ~0.2 As/m2

• r: No surface charges up to + 45 V DC bias

surface charging for U < -20 V, and linear increase with U

Pz

r

PZT (53/47)

Page 23: School of Science –Faculty of Physics Institute of Applied

K. Franke and L.M. EngSurf. Sci. 600 4896 (2006)

PFM & PFS

Results 2:• A• A• A

•Pz , r , Uint , esurface , ebulk

Page 24: School of Science –Faculty of Physics Institute of Applied

Iron

Ceramics

V. Veselago, 1968, „The electrodynamics of substances with simultaneouslynegative values of e and µ“, Sov. Phys. Uspekhi 10, 509

e = e(w) Dielectric Constant µ = µ(w) Magnetic Susceptibility

Material Constants

Page 25: School of Science –Faculty of Physics Institute of Applied

n2 = e(w) µ(w)

e = e(w) Dielectric Constant µ = µ(w) Magnetic Susceptibilityn: complex refractive index

Moreover: e(w) and µ(w) are complex

Material Constants

Page 26: School of Science –Faculty of Physics Institute of Applied

Excitations

Page 27: School of Science –Faculty of Physics Institute of Applied

… focus on the higher-hanging fruits …

Page 28: School of Science –Faculty of Physics Institute of Applied

Force

Distance

Force-Distance-curve

• Repulsive interaction

• Fstatic (³ 10 nN)

• Adhesion; large contact area

• Attractive interaction

• Cantilever oscillates at resonance frequency

• Measure Df ~ Interaction force

• true atomic resolution possible

Dw w» - 0

2kdFdz

³ 10 nm

tu-dresden.de/mn/physik/iap

Non-Contact interactions

Page 29: School of Science –Faculty of Physics Institute of Applied

Force

Distance h

Force-Distance-curve

Non-Contact interactions

1 2 3 4

1

w

W

W

h

w

W

Page 30: School of Science –Faculty of Physics Institute of Applied

nc-SFM modes

• nc-SFM: topography • MFM: magnetic texture• KPFM: surface CPD; capacitance• SDM: dissipated power (SDM: scanning dissipation microscopy)• SNOM: scattered light, Raman, local optical / IR / THz properties• …

illumination

Q-Cap

Page 31: School of Science –Faculty of Physics Institute of Applied

Fdrive : driven oscillator force Fts : tip-sample interaction forceswres : angular resonance frequency

ko : spring constantmeff : effective massGo : damping coefficient

nc-SFM modes

Fts separates: i) Fcons conservative; even/mirror symmetry: cosineii) Fdiss dissipative; odd/point symmetry: sine

J. E. Sader et al., Nanotechnology 16 (2005) S94; E. Neuber, PhD thesis, TUD (2019).

Page 32: School of Science –Faculty of Physics Institute of Applied

Dissipated Power

ko = 102 N/mwres = 105 HzQo = 105b = 0,1Aosc = 2 nmDAdrive = 10-15 m = 1 fm

with

1 aW

Page 33: School of Science –Faculty of Physics Institute of Applied

SDM mechanismsSDM: Scanning Dissipation Microscopy

• virtual dissipation:- artifacts - inappropriate control loop parameters

• energy transfer into higher order cantilever eigenmodes• dissipation based on interactions:

- tip / sample atomic interaction (adhesion hysteresis)- tip / sample phonon interaction

• electric dissipation: tip charge interacting with - (free) electron density of sample- sample phonons- electric sample texture

• magnetic dissipation: tip magnetization interacting with- sample magnetic dipoles / textures / spins- (free) sample electrons (eddy currents)

• “stochastic” dissipation: fluctuations, random fields• …

Page 34: School of Science –Faculty of Physics Institute of Applied

Skyrmions: SkLHedge hog Bloch SKY Néel SKY Anti-SKY

2 µm Mn1.4PtSnPRB 103, 184411 (2021)

GaV4S811,2 K50 mT

LT-Sky phase

Cu2OSeO3: 10 K, 80 mT

tilted conical phase[010]

[100]

Néel

Néel

npj Q-Mater. 5, 44 (2020)Sci. Rep. 7, 44663 (2017)N-Mater. 14, 1116 (2015)unpublished (2021)

Page 35: School of Science –Faculty of Physics Institute of Applied

Excitations

[m]

Au, Ag + different topologies thereof

Al, Ga, Ingraphene, TMDC, TI, 2DEG, multi-ferroics, …

Page 36: School of Science –Faculty of Physics Institute of Applied

#2: Kelvin probe force microscopy (KPFM)

U. Zerweck et al., Phys. Rev. B 71, 125424 (2005)T. Wagner et al., Appl. Phys. Lett. 103, 023102 (2013)

F, r, UCPD , CQ

Page 37: School of Science –Faculty of Physics Institute of Applied

-

+ + + + +

Ubias

- - - - -

+ + + + +

• workfunction change• interface and molecular dipoles• charge transfer• polarizability• others

Local Potentials by FM-KPFM

200 )(2 CPDDC UUzAR

kAff -=Dpe

A: osc. Amplitude = const.z: tip position = const.

Page 38: School of Science –Faculty of Physics Institute of Applied

Bias voltage modulation

Page 39: School of Science –Faculty of Physics Institute of Applied

Bias voltage modulation

Noncontact AFM:

lever vibrated at its resonance frequency fo

³ 10 nm

Voltage applied between tip and sample:

Attractive electrostatic force: withF CzUel =

12

2¶¶

U U U f text DC mod mod= + cos( )2p

U U eext= - Df /

Df = workfunction difference between tip and sample (=contact potential difference CPD)

Idea: Modulation electrostatic force can be discriminated against other forces with high sensitivity

U. Zerweck et al., Phys. Rev. B 71, 125424 (2005)

FM-KPFM: Frequency-modulated Kelvin force-probe-microscopy

Page 40: School of Science –Faculty of Physics Institute of Applied

Bias voltage modulation

Page 41: School of Science –Faculty of Physics Institute of Applied

Bias voltage modulation

Page 42: School of Science –Faculty of Physics Institute of Applied

Bias voltage modulation

Page 43: School of Science –Faculty of Physics Institute of Applied

FM-KPFM

U. Zerweck et al., Phys. Rev. B 71, 125424 (2005)

Page 44: School of Science –Faculty of Physics Institute of Applied

fMOD

f0-fMOD f0+fMOD

f0+2fMODf0-2fMOD

sideband at f0-fMOD is measured via lock-in techniques

f0 f

Aforce gradient

FM Kelvinforce AM Kelvin

U. Zerweck et al., Phys. Rev. B 71, 125424 (2005)

Frequency Spectrum

f0 = 151 kHz, fMOD = 2 kHz

1/f-noise

Page 45: School of Science –Faculty of Physics Institute of Applied

non-invasive FM-KPFM

UCPD = 5 mVscale x 10

UCPD = 50 mV

UCPD = 500 mV

dB

frequency [kHz]

U. Zerweck et al., Phys. Rev. B 71, 125424 (2005)

Page 46: School of Science –Faculty of Physics Institute of Applied

Cu-TBPP

Cu (100)

Surface potential Cu-TBPPCu-TBPP: Copper-Tetrabuthyl-Porphyrin

Page 47: School of Science –Faculty of Physics Institute of Applied

fMOD

f0-fMOD f0+fMOD

f0+2fMODf0-2fMOD

sideband at f0-fMOD is measured via lock-in techniques

f0 f

Aforce gradient

FM Kelvin

U. Zerweck et al., Phys. Rev. B 71, 125424 (2005)

f0 = 151 kHz, fMOD = 2 kHz

force gradientQuantum

capacitance

Frequency Spectrum

Page 48: School of Science –Faculty of Physics Institute of Applied

FM-KPFM

U. Zerweck et al., Phys. Rev. B 71, 125424 (2005)

Page 49: School of Science –Faculty of Physics Institute of Applied

Luminescence

0 V

0.15 V

0 nm

16 nm

10 µm 10 µm

1

2

3

5 µm

1

2

3

7 ML Optical layer ID

0 ML

KPFMTopo

1

2 3

Graphene on SiO2

T. Wagner et al., Appl. Phys.Lett. 103, 023102 (2013)

1st sideband: FM-KPFM

Page 50: School of Science –Faculty of Physics Institute of Applied

Graphene on SiO2

Quantum Capacitance

# of chargecarriers

ML

BL

ML

BL

T. Wagner et al., Appl. Phys.Lett. 103, 023102 (2013)

2nd sideband: Quantum capacitance

F, r, UCPD , CQ

Page 51: School of Science –Faculty of Physics Institute of Applied

#3: Scanning Nonlinear Dielectric Microscopy (SNDM)

K. Honda et al., J. Phys.: Conf. Ser. 209, 012050 (2010)

Page 52: School of Science –Faculty of Physics Institute of Applied

Nonlinear Dielectric Microsc.

e(0 Hz)e(wp) e(2wp)

K. Honda et al., J. Phys.: Conf. Ser. 209, 012050 (2010)

Page 53: School of Science –Faculty of Physics Institute of Applied

n-/p-doped semiconductors

5 layersP,n-doped

7 layersB,p-doped

K. Honda et al., J. Phys.: Conf. Ser. 209, 012050 (2010)

DC = 10-22F

Page 54: School of Science –Faculty of Physics Institute of Applied

MOSFET Failure Analysis

MOSFET with 40 nm gate channels

K. Honda et al., J. Phys.: Conf. Ser. 209, 012050 (2010)

e(w)

Page 55: School of Science –Faculty of Physics Institute of Applied

S.C. Kehr et al., Synch. Rad. News 30, 31 (2017) J. Döring et al., J. Appl. Phys. 120, 84103 (2016)

J. Döring et al., Appl. Phys. Lett. 105, 053109 (2014) R. Jacob et al., Optics Express 18, 26206 (2010)

M.P. Nikiforov et al., J. Appl. Phys. 106, 114307 (2010)

Ωilluminationread out

sample

#4: Scattering scanning near-field optical microscopy

Page 56: School of Science –Faculty of Physics Institute of Applied

visibleIR

s-SNOM

1 2 3 4

1wW

W

h

wW

• based on non-contact AFM • far-field illumination and read out• tip serves as antenna• analysis of local optical properties

B. Knoll et al., Opt. Comm. 182, 321 (2000)S. Kehr et al., PRL 100, 256403 (2008)

visible, IR, THz

Page 57: School of Science –Faculty of Physics Institute of Applied

Tip resonancePlasmon polariton(vis. wavelengths)

Sample resonancePhonon polariton(IR/THz wavelengths)b = es -1

es +1

p-polarization

Resonant field enhancement

ei (w)^

e1

e1

e2e1 e2 e1 e2

w: vis … THz

at tip polarizabilityh tip-sample distanceb sample responseaeff total polarizabilityes sample dielelctric

Page 58: School of Science –Faculty of Physics Institute of Applied

n(λ)

T=4-300K

• local optical / IR properties• optical resolution ~ 5 nm <<• low-temperature measurements

• FELBE-SNIM (RT): polariton-based resonances

• THz-SNIM (RT): field-driven transient states

• LT-SNIM (FELBE): (structural) phase transitions

IR-s-SNIM @ FELBE/TELBEs-SNIM: scattering-type scanning near-field IR optical microscopy

• free-electron laser (FELBE): 4-250 μm; 75-1,2 THz; 310-5 meV; 2500-40 cm-1

• superradiant THz sources (TELBE): 0,1-3 mm; 3-0,1 THz; 15-0,5 meV; 100-3,3 cm-1

⇒ resonant excitation:phonons, magnons, spinons

⇒ spectroscopy + imaging / microscopy

l

Page 59: School of Science –Faculty of Physics Institute of Applied

D. Lang et al., Rev. Sci. Instrum. 89, 033702 (2018)

Si/SiO2 contrast @ 7 K

- l = 9,7 μm (FEL)- near-field decay: ~30 nm

Topography Topography

Near field NF2W Near field NF2We(w) , a

Page 60: School of Science –Faculty of Physics Institute of Applied

R. Jacob et al., Opt. Express 18, 26206 (2010)

Theory: (4,0 ± 1,0) x 1019 cm-3

Experiment: (3,7 ± 0,3) x 1019 cm-3

Burried p:Si

N

Page 61: School of Science –Faculty of Physics Institute of Applied

Doped GaAs/InGaAs NWs

- local - contact-free- non-invasive

ωpl, gp N,m*,µ

D. Lang, et al., Nanotechnol. 30, 084003 (2019)

N, m*, µ

Page 62: School of Science –Faculty of Physics Institute of Applied

LT-IR-s-SNOM spectroscopy

tetragonalorthorhombic

J. Döring et al., APL 105, 053109 (2014)J. Döring et al., JAP 120, 84103 (2016)

e(w,T)

Page 63: School of Science –Faculty of Physics Institute of Applied

L. Wehmeier et al., Phys. Rev. B

100, 035444 (2019)

sample scanning

l1 = 15.3 µml2 = 15.8 µm

c

c

a

a

c

c

a

a

PFM: Piezoresponse Force MicroscopyPbZr0.2Ti0.8O3: PZT(001)

Page 64: School of Science –Faculty of Physics Institute of Applied

#5 Superlensing & Metamaterials

S.C. Kehr et al., ACS Photonics 3, 20 (2016)M. Fehrenbacher et al., Nano Lett. 15, 1057 (2015)

S.C. Kehr et al., Nature Comm. 2, 249 (2011)S.C. Kehr et al., Optical Material Express 1, 1051 (2011)

Page 65: School of Science –Faculty of Physics Institute of Applied

Iron

Ceramics

V. Veselago, 1968, „The electrodynamics of substances with simultaneouslynegative values of e and µ“, Sov. Phys. Uspekhi 10, 509

Material Constants

n2 = e(w) µ(w)

Page 66: School of Science –Faculty of Physics Institute of Applied

LHM: left handed materialNRM: negative refractive material

RHM:

V. Veselago, 1968, „The electrodynamics of substances with simultaneouslynegative values of e and µ“, Sov. Phys. Uspekhi 10, 509.

Meta-material

Negative Refraction

Page 67: School of Science –Faculty of Physics Institute of Applied

metamaterial

2d

point source

point image

Superfocusing with LHMs

J.B. Pendry, Phys. Rev. Lett. 85, 3966 (2000)

e1= e1 (w) e1= e1 (w)e2= e2 (w)

LHM: Left-Handed Material

BA A

Page 68: School of Science –Faculty of Physics Institute of Applied

λ [µm]10 20

Re(

ε)

SrRuO3

0

-250

BiFeO3

PZT

SrTiO3

Im(ε

)10-2

BiFeO3

PZT

SrTiO3

SrRuO3

103

PZT: PbZrO3/PbTiO3BFO: BiFeO3STO: SrTiO3

Superlens Sample Design

d

2d

d

eA = +1

eA = +1

eB = -1

250

Possible pairs A-B-A:PZT-STO-PZTBFO-STO-BFOBFO-PZT-BFO

12 16

SL

5

-5

0

Phonon-enhanced near-field

14Re(εA)= - Re(εB)

Page 69: School of Science –Faculty of Physics Institute of Applied

perovskitemetamaterial

2dd d

Ferroic superlensing

S.C. Kehr et al., Nature Comm. 2, 249 (2011)S.C. Kehr et al., Optical Mater. Express 1, 1051 (2011)

e1= e1 (w) e1= e1 (w)e2= e2 (w)

S.C. Kehr et al., ACS Photonics 3, 20 (2016)

Page 70: School of Science –Faculty of Physics Institute of Applied

The Future –

Time-resolved SPM

Page 71: School of Science –Faculty of Physics Institute of Applied

#6: Pump-probe Kelvin probeforce microscopy (pp-KPFM)J. Murawski et al., J. Appl. Phys. 118, 154302 (2015) J. Murawski et al., J. Appl. Phys. 118, 244502 (2015)

#7: Time-resolved SNOM (tr-s-SNOM)F. Kuschewski et al., Sci. Rep. 340, 6136 (2015)

Ch. Loppacher et al., Nanotechnology 16, S1 (2005)

#8: Optical pump – electrical probe KPFM (op/ep-KPFM)

The Future

Page 72: School of Science –Faculty of Physics Institute of Applied

Summary

• Pz , r , Uint , esurface , ebulk

• dij

•F, r, UCPD , CQ

• e(w) , a(w)

• N, m*, µ

• time-resolved properties

• dissipation

• nonlinearities, higher-order SPM

• …