schladming11a

Upload: jaime-feliciano-hernandez

Post on 02-Jun-2018

214 views

Category:

Documents


0 download

TRANSCRIPT

  • 8/10/2019 schladming11a

    1/37

    Renormalization Group: Applications in

    Statistical Physics

    Uwe C. Tauber

    Department of Physics, Virginia Tech

    Blacksburg, VA 24061-0435, USAemail: [email protected]

    http://www.phys.vt.edu/~tauber/utaeuber.html

    Schladming International Winter School

    Physics at All Scales: The Renormalization Group

    26 February 5 March, 2011

  • 8/10/2019 schladming11a

    2/37

    Lecture plan

    Critical Phenomena

    Continuous phase transitionsScaling theoryLandauGinzburgWilson HamiltonianGaussian approximationWilsons momentum shell renormalization groupDimensional expansion and critical exponentsLiterature

    Field Theory Approach to Critical Phenomena

    Perturbation expansion and Feynman diagramsUltraviolet and infrared divergences, renormalizationRenormalization group equation and critical exponentsLiterature

  • 8/10/2019 schladming11a

    3/37

    Critical Phenomena

  • 8/10/2019 schladming11a

    4/37

    Landau expansion; mean-field theory

    Expand free energy (density) in terms of order parameter (scalarfield) near a continuous(second-order) phase transitionat Tc:

    f() = r

    22 +

    u

    4!4 +. . . h ,

    r=a(T Tc), u>0; conjugate fieldh breaks Z(2) symmetry

    .

    f() = 0 equation of state:

    h(T, ) =r(T) +u

    63 ;

    stability: f() =r+ u22 >0.

    Critical isotherm at T =Tc:h(Tc, ) =

    u6

    3.

    Spontaneous order parameterfor

    r

    +-

    0Tc

    h < 0

    h > 0

    T

  • 8/10/2019 schladming11a

    5/37

    Thermodynamic singularities at critical point

    Isothermal order parameter susceptibility:

    V1T = hT =r+u

    22 T

    V = 1/r1 r>0

    1/2|r|1 r

  • 8/10/2019 schladming11a

    6/37

    Scaling hypothesis for free energy

    Postulate: (sing.) free energy generalized homogeneousfunction:

    fsing(, h) = ||2f h/|| , = T TcTc ;two-parameter scaling, with scaling functions f, f(0) = const.

    Landau theory: critical exponents= 0, = 3/2.

    Specific heat:

    Ch=0 = VTT2c

    2fsing

    2

    h=0

    =C || .

    Equation of state:

    (, h) = fsing

    h

    = ||2 f

    h/||

    .

    Coexistence line h= 0,

  • 8/10/2019 schladming11a

    7/37

    Scaling relations

    Critical isotherm: -dependence in f must cancel prefactor,

    f(x)

    x(2)/ as x

    ; hence

    (0, h) h(2)/ =h1/ , = / . Isothermal susceptibility:

    V = h, h=0 = || , =+ 2( 1) .

    Eliminate scaling relations: = , +(1 +) = 2 =+ 2+ , =(

    1) ;

    only two independent(static) critical exponents.

    Mean-field: = 0, = 12 , = 1, = 3, = 32 (dim. analysis).

    Experimental exponent values different, but still universal:depend only on symmetry, dimension . . ., notmicroscopic details.

  • 8/10/2019 schladming11a

    8/37

    Thermodynamic self-similarity in the vicinity ofTc

    Temperature dependence of the specific heat near the normal- tosuperfluid transition of He 4, shown in successively reduced scales.From: M.J. Buckingham and W.M. Fairbank, in: Progress in low temperature

    physics, Vol. III, ed. C.J. Gorter, 80112, North-Holland (Amsterdam, 1961).

  • 8/10/2019 schladming11a

    9/37

    LandauGinzburgWilson Hamiltonian

    Coarse-grained Hamiltonian, order parameter field S(x):

    H[S] = ddx r2S(x)2 +12[S(x)]2 + u4!S(x)4 h(x) S(x) ,where r=a(T T0c), u>0, h(x) local external field;gradient term [S(x)]2 suppresses spatial inhomogeneities.Probability density for configuration S(x): Boltzmann factor

    Ps[S] = exp(H[S]/kBT)/Z[h] ,canonical partition function and momentsfunctional integrals:Z[h] =

    D[S] eH[S]/kBT , = S(x) =

    D[S] S(x) Ps[S] .

    Integral measure: discretize x xi D[S] = idS(xi); or employ Fourier transform: S(x) =

    ddq(2)d

    S(q) eiqx,

    D[S] = q

    dS(q)

    V

    = q,q1>0dRe S(q) dIm S(q)

    V

    .

  • 8/10/2019 schladming11a

    10/37

    LandauGinzburg approximation

    Most likely configuration GinzburgLandau equation:

    0 = H[S]S(x)

    = r 2 + u6

    S(x)2 S(x) h(x) .Linearize S(x) =+S(x): h(x) r 2 + u22 S(x).Fourier transform

    OrnsteinZernickesusceptibility:

    0(q) = 1

    r+ u22 +q2

    = 1

    2 +q2, =

    1/r1/2 r>0

    1/|2r|1/2 r

  • 8/10/2019 schladming11a

    11/37

    Scaling hypothesis for correlation function

    Scaling ansatz, defines Fisher exponent and correlation length :

    C(, q) = |q|2+

    C(q) , = ||

    .

    Thermodynamic susceptibility:

    (, q= 0)

    2

    |

    |(2) =

    |

    | , =(2

    ) .

    Spatial correlationsforx :

    C(, x) = |x|(d2+)C(x/) (d2+) ||(d2+) .S(x)S(0) S

    2

    =2

    ()2

    hyperscaling relations:=

    2(d 2 +) , 2 = d .

    Mean-field values: = 12 , = 0 (OrnsteinZernicke).

    Diverging spatial correlations induce thermodynamic singularities !

  • 8/10/2019 schladming11a

    12/37

    Gaussian approximation

    High-temperature phase, T >Tc: neglect nonlinear contributions:

    H0[S] = ddq(2)d

    12r+q2 |S(q)|2 h(q)S(q) .

    Linear transformation

    S(q) =S(q) h(q)

    r+q2,

    q

    . . .=

    ddq

    (2)d . . .:

    Z0[h] =D[S] exp(H0[S]/kBT) =

    = exp

    1

    2kBT

    q

    |h(q)|2r+q2

    D[

    S] exp

    q

    r+q2

    2kBT |

    S(q)|2

    S(q)S(q)0

    =(kBT)

    2

    Z0[h](2)2d 2Z0[h]

    h(q) h(q)

    h=0

    =C0(q) (2)d(q+q) , C0(q) =

    kBT

    r+q2 .

  • 8/10/2019 schladming11a

    13/37

    Gaussian model: free energy and specific heat

    F0[h] = kBTln Z0[h] = 12

    q

    |h(q)|2r+q2

    +kBT V ln2 kBT

    r+q2

    .

    Leading singularity in specific heat:

    Ch=0 = T

    2F0T2

    h=0

    VkB(aT0c)

    2

    2

    q

    1

    (r+q2)2 .

    d>4: integral UV-divergent; regularized by cutoff (Brillouin zone boundary) = 0 as in mean-field theory;

    d=dc= 4: integral diverges logarithmically: 0

    k3

    (1 +k2)2 dk ln() ;

    d

  • 8/10/2019 schladming11a

    14/37

    Renormalization group program in statistical physics

    Goal: critical(IR) singularities; perturbatively inaccessible. Exploit fundamental new symmetry:

    divergent correlation length induces scale invariance. Analyze theory in ultraviolet regime: integrate out

    short-wavelength modes / renormalize UV divergences. Rescale onto original Hamiltonian, obtain recursion relations

    for effective, now scale-dependent running couplings. Under such RG transformations:

    Relevantparameters grow: set to 0: critical surface. Certain couplings approach IR-stable fixed point:

    scale-invariant behavior.

    Irrelevant couplings vanish: origin ofuniversality. Scale invariance at critical fixed point infer correct IR

    scaling behavior from (approximative) analysis of UV regime derivation of scaling laws.

    Dimensional expansion: = dc

    dsmall parameter, permits

    perturbational treatment computationof critical exponents.

  • 8/10/2019 schladming11a

    15/37

    Wilsons momentum shell renormalization group

    RG transformation steps:

    (1) Carry out the partition integral over allFourier components S(q) with wavevectors /b |q| , where b>1:eliminates short-wavelength modes.

    (2) Scale transformation with the same scaleparameterb>1:x x =x/b , q q =b q .

    /b

    Accordingly, we also need to rescale the fields:

    S(x) S

    (x

    ) =b

    S(x) , S(q) S

    (q

    ) =bd

    S(q) .

    Proper choice of rescaled Hamiltonian assumes original form scale-dependent effective couplings, analyze dependence on b.Notice semi-groupcharacter: RG transformation has no inverse.

  • 8/10/2019 schladming11a

    16/37

    Momentum shell RG: Gaussian model

    H0[S] = q

    r+q2

    2 |S(q)|2 h(q) S(q)

    ,

    where 0. Other couplings irrelevant: vi vi =byivi, yi >0.

    After single RG transformation:

    fsing(, h,

    {ui

    },

    {vi

    }) =bdfsingb

    1/, bdh,ui+

    ui

    bxi,

    vi

    byi.

    After sufficiently many 1 RG transformations:fsing(, h, {ui}, {vi}) = bdfsing

    b/, b(d+2)/2h, {ui }, {0}

    .

    Choose matching condition b

    |

    | = 1

    scaling form:

    fsing(, h) = ||df

    h/||(d+2)/2 .Correlation function scaling law: use b =/

    C(, x,{

    ui}

    ,{

    vi}

    ) =b2Cb/, x

    b,{

    u

    i },{

    0}

    C(x/)

    |x|d2+ .

  • 8/10/2019 schladming11a

    18/37

    Perturbation expansion

    Nonlinear interaction term:

    Hint[S] = u

    4! |qi|

  • 8/10/2019 schladming11a

    19/37

    First-order correction to two-point function

    ConsiderS(q)S(q) =C(q) (2)d(q+q) for h= 0; to O(u):

    S(q)S(q)1 u

    4! |qi|

  • 8/10/2019 schladming11a

    20/37

    Wilson RG procedure: first-order recursion relations

    Split field variables in outer (S>) / inner (S.

    With Sd=Kd/(2)d = 1/2d1d/2(d/2) and = 0 to O(u):

    r =b2r+ u2

    A(r)= b2r+ u2

    Sd /b

    pd1

    r+p2dp,

    u =b4du

    1 3u2

    B(r)

    =b4du

    1 3u

    2 Sd

    /b

    pd1 dp

    (r+p2)2

    .

    r 1: fluctuation contributions disappear, Gaussian theory; r 1: expand

    A(r) =Sdd2 1 b2d

    d 2 r Sdd4 1 b4d

    d 4 +O(r2) ,

    B(

    r) =

    Sd

    d4 1

    b4d

    d 4 +O

    (r

    ) .

    Diff i l RG fl fi d i di i l i

  • 8/10/2019 schladming11a

    21/37

    Differential RG flow, fixed point, dimensional expansion

    Differential RG flow: set b=e with 0:dr()

    d = 2r() +u()

    2 Sdd2

    r()u()

    2 Sdd4 +O(ur2, u2),

    du()

    d = (4 d)u() 3

    2u()2Sd

    d4 +O(ur, u2) .

    Renormalization group fixed points: dr()/d= 0 =du()/d.

    Gauss: u0 = 0 Ising: uI Sd= 23(4 d)4d, d4, uI stable for d

  • 8/10/2019 schladming11a

    22/37

    Critical exponents

    Deviation from true Tc: =r rI T Tc.Recursion relation for this (relevant) running coupling:

    d()

    d = ()

    2 u()

    2 Sd

    d4 .Solve near Ising fixed point: () = (0) exp

    2 3

    .

    Compare with() =(0) e 1 = 2

    3

    .Consistently to order = 4 d:

    =1

    2+

    12+O(2) , = 0 +O(2) .

    Note at d=dc= 4: u() = u(0)/[1 + 3 u(0) /162]

    logarithmic correctionsto mean-field exponents.Renormalization group procedure:

    Derive scaling laws. Two relevant couplings

    independent critical exponents.

    Compute scaling exponents via power series in =dc d.

    S l t d lit t

  • 8/10/2019 schladming11a

    23/37

    Selected literature: J.J. Binney, N.J. Dowrick, A.J. Fisher, and M.E.J. Newman, The theory

    of critical phenomena, Oxford University Press (Oxford, 1993).

    J. Cardy, Scaling and renormalization in statistical physics, CambridgeUniversity Press (Cambridge, 1996).

    M.E. Fisher, The renormalization group in the theory of critical behavior,Rev. Mod. Phys. 46, 597616 (1974).

    N. Goldenfeld, Lectures on phase transitions and the renormalizationgroup, AddisonWesley (Reading, 1992).

    S.-k. Ma, Modern theory of critical phenomena, BenjaminCummings(Reading, 1976).

    G.F. Mazenko, Fluctuations, order, and defects, WileyInterscience(Hoboken, 2003).

    A.Z. Patashinskii and V.L. Pokrovskii, Fluctuation theory of phase

    transitions, Pergamon Press (New York, 1979). U.C. Tauber, Critical Dynamics A Field Theory Approach to

    Equilibrium and Non-equilibrium Scaling Behavior, Cambridge UniversityPress (Cambridge, 201?), Chap. 1; seehttp://www.phys.vt.edu/~tauber/utaeuber.html.

    K.G. Wilson and J. Kogut, The renormalization group and the

    expansion, Phys. Rep. 12 C, 75200 (1974).

    S i

  • 8/10/2019 schladming11a

    24/37

    Some exercises1. Landau theory for the6 model.

    Consider the effective free energy

    f() =r

    22 +

    u

    4!4 +

    v

    6!6 h .

    Here, r = a(T T0), v > 0, and h denotes an external field.(a) Show that for u> 0, there is a second-order phase transition at h = 0 and T = T0 with the usual mean-fieldcritical exponents , , , and . Why can vbe neglected near the critical point ?(b) Compute t, t, t, and t at the tricritical point u= 0.

    (c) Now assume u= |u| < 0 and h = 0. Show that there is a first-order transition at rd = 5u2/8v, and

    calculate the jump in the order parameter and the associated free-energy barrier.(d) For non-zero external field h = 0 and u< 0, find parametric equations rc(|u|, v) and hc(|u|, v) for two

    additionalsecond-ordertransition lines, with all three continuous phase boundaries merging at the tricritical pointu= 0, h = 0.

    2. Gaussian approximation for the Heisenberg model.Isotropic magnets with continuous rotational spin symmetry are described by the Heisenberg model. Thecorresponding effective LandauGinzburgWilson Hamiltonian reads

    H[S] = ddxn

    =1

    r2

    [S

    (x)]2

    +1

    2[S

    (x)]

    2+

    u

    4!

    n

    =1

    [S

    (x)]2

    [S

    (x)]2 h

    (x) S

    (x) ,

    where S(x) is an n-component order parameter vector field.(a) Determine the two-point correlation functions in the high- and low-temperature phases in harmonic (Gaussian)approximation.Notice: For T < Tc, it is useful to expand about the spontaneous magnetization: e.g., S

    (x) = (x) for = 1, . . . , n 1, and Sn (x) = + (x); then = 0 = . The components along and perpendicular to must be carefully distinguished.

    (b) For d < dc= 4, compute the specific heat in Gaussian approximation on both sides of the phase transition,and show that Ch=0 = C||

    (4d)/2. Compute the universal amplitude ratio C+/C = 2d/2n.

    More exercises

  • 8/10/2019 schladming11a

    25/37

    More exercises

    3. First-order recursion relations for the Heisenberg model.For the n-component Heisenberg model above, derive the renormalization group recursion relations

    r

    = b2

    r+n+ 2

    6u A(r)

    , u

    = b

    4du

    1

    n+ 8

    6u B(r)

    .

    Determine the associated RG fixed points and discuss their stability. Compute the critical exponent to first orderin = 4 d.

    4. RG flow equations for the n-vector model with cubic anisotropy.The O(n) rotational invariance of the Hamiltonian in the previous problems is broken by additional quartic termswith cubic symmetry,

    H[S] =

    d

    dx

    n=1

    v

    4![S

    (x)]4

    .

    (a) Derive the differential RG flow equations for the running couplings r(), u(), and v().(b) Discuss the ensuing RG fixed points and their stability as function of the number n of order parametercomponents, and compute the associated correlation length critical exponents .

  • 8/10/2019 schladming11a

    26/37

    Field Theory Approach to Critical Phenomena

    Perturbation expansion

  • 8/10/2019 schladming11a

    27/37

    Perturbation expansion

    O(n)-symmetric Hamiltonian (set kBT= 1):

    H[S] =ddxn

    =1r

    2S

    (x)

    2

    +

    1

    2[S

    (x)]

    2

    +

    u

    4!

    n

    =1

    S

    (x)

    2

    S

    (x)

    2.Construct perturbation expansion for

    ijS

    i Sj

    :

    ijS

    i Sj eHint[S]

    0eHint[S]0 = ijS

    i Sj

    l=0

    (Hint[S])l

    l!

    0l=0 (Hint[S])ll! 0 .Diagrammatic representation:

    Propagator C0(q) = (r+q2)1;

    Vertexu6 .

    = (q)C

    0

    q

    =

    u

    6

    Generating functionalfor correlation functions (cumulants):

    Z[h] =

    exp

    ddx

    hS

    ,

    iSi

    (c)=

    i(ln)Z[h]

    hi h=0

    .

    Vertex functions

  • 8/10/2019 schladming11a

    28/37

    Vertex functions connectedFeynman diagrams:

    u u

    + +

    uu

    u

    +

    u u

    Dyson equation:= + + + ...

    +=

    propagator self-energy: C(q)1 =C0(q)1 (q).Generating functional for vertex functions, =ln Z[h]/h:

    [] =

    ln

    Z[h] +

    ddx

    h ,

    (N){i}

    =N

    i[]

    i h=0;

    (2)(q) =C(q)1 , 4

    i=1

    S(qi)

    c=

    4i=1

    C(qi) (4)({qi})

    one-particle irreducibleFeynman graphs.

    Perturbation series in nonlinear coupling u loop expansion.

    Explicit results

  • 8/10/2019 schladming11a

    29/37

    Explicit results

    Two-point

    vertex

    function totwo-loop

    order:

    +

    uu

    u

    +

    u u

    (2)

    (q) =r+q2

    +

    n+ 2

    6 uk1

    r+k2

    n+ 2

    6 u

    2 k

    1

    r+k2

    k

    1

    (r+k2)2

    n+ 2

    18 u2 k

    1

    r+k2 k1

    r+k2

    1

    r+ (q k k)2 ;four-point vertex function to one-loop order:

    (4)(

    {qi = 0

    }) =u

    n+ 8

    6

    u2 k1

    (r+k2

    )2

    . u u

    Ultraviolet and infrared divergences

  • 8/10/2019 schladming11a

    30/37

    Ultraviolet and infrared divergencesFluctuation correction to four-point vertex function:

    d4

    as ,ultravioletdivergences for d>dc= 4: upper critical dimension.Power counting in terms of arbitrary momentum scale :

    [x] =1, [q] =, [S(x)] =1+d/2;

    [r] =2 relevant, [u] =4d marginalat dc= 4; only divergent vertex functions: (2)(q), (4)({qi = 0});

    field dimensionless at lower critical dimensiondlc= 2.

    Dimension regimes and dimensional regularization

  • 8/10/2019 schladming11a

    31/37

    Dimension regimes and dimensional regularization

    dimension perturbation O(n)-symmetric criticalinterval series 4 field theory behavior

    d dlc= 2 IR-singular ill-defined no long-rangeUV-convergent u relevant order (n 2)

    2 < d< 4 IR-singular super-renormalizable non-classicalUV-convergent u relevant exponents

    d=dc= 4 logarithmic IR-/ renormalizable logarithmicUV-divergence umarginal corrections

    d> 4 IR-regular non-renormalizable mean-fieldUV-divergent u irrelevant exponents

    Integrals in dimensional regularization: even for non-integer d, :

    ddk(2)d

    k2

    (+k2)s =(+d/2)(s d/2)

    2d d/2 (d/2)(s) s+d/2 ;

    discard divergent surface integrals;

    UV singularities dimensional polesin Euler functions.

    Renormalization

  • 8/10/2019 schladming11a

    32/37

    RenormalizationSusceptibility 1 =C(q= 0)1 = (2)(q= 0) ==r rc

    rc=

    n+ 2

    6 uk

    1

    rc+k2+O(u2) =

    n+ 2

    6

    u Kd

    (2)d

    d2

    d 2 ,

    (non-universal) Tc-shift: additive renormalization.

    (q)1 =q2 +

    1 n+ 26

    u

    k

    1

    k2(+k2)

    .

    Multiplicative renormalization:absorb UV poles at = 0 into renormalizedfields and parameters:

    SR =Z1/2S S

    (N)R =ZN/2S (N) ;R=Z

    2 , uR=Zuu Add4 , Ad =

    (3 d/2)2

    d1

    d/2

    .

    Normalization pointoutside IR regime, R= 1 or q=:

    O(uR) : Z = 1 n+ 26

    uR

    , Zu= 1 n+ 8

    6

    uR

    ;

    O(u2R

    ) : ZS

    = 1 +n+ 2

    144

    u2R

    .

    Renormalization group equation

  • 8/10/2019 schladming11a

    33/37

    Renormalization group equation

    Unrenormalizedquantities cannotdepend on arbitrary scale :

    0 =

    d

    d

    (N)

    (, u) =

    d

    d ZN/2S (N)R (, R, uR) renormalization groupequation:

    +

    N

    2 S+R

    R+u

    uR

    (N)R (, R, uR) = 0.

    with Wilsons flowand RG beta functions:

    S=

    0ln ZS= n+ 2

    72 u2R+O(u

    3R) ,

    =

    0

    lnR

    = 2 + n+ 26

    uR+O(u2R) ,

    u=

    0

    uR=uR

    d 4 +

    0

    ln Zu

    =uR+ n+ 86 uR+O(u2R).0

    Ru

    u

    Method of characteristics

  • 8/10/2019 schladming11a

    34/37

    Method of characteristicsSusceptibility (q) = (2)(q)1:

    R(, R, uR, q)1 =2 R(R, uR, q/)

    1 .

    solve RG equation: method of characteristics

    () = ,

    R

    ()1 =R

    (1)1 2 exp

    1

    S()

    d

    ,u(l)

    u(1)

    (l)(1)

    with running couplings, initial values (1) =R, u(1) =uR:

    d()

    d

    = () () , du()

    d

    =u() .

    Near infrared-stable RG fixed point: u(u) = 0, u(u

    )> 0

    () R , R(R, q)1 2 2+S R(R, u, q/ )1,

    matching= |q|/ scaling form with = S , = 1/.

    Critical exponents

  • 8/10/2019 schladming11a

    35/37

    p

    Systematic = 4 d expansion:u=uR

    +n+ 8

    6

    uR+O(u2R) u0 = 0 , uH= 6 n+ 8 +O(2) ;

    IR stability: u(u)> 0

    0Ru

    u

    d>4: Gaussianfixed point u0 = 0,= 12 (mean-field); d

  • 8/10/2019 schladming11a

    36/37

    D.J. Amit, Field theory, the renormalization group, andcritical phenomena, World Scientific (Singapore, 1984).

    M. Le Bellac, Quantum and statistical field theory, OxfordUniversity Press (Oxford, 1991).

    C. Itzykson and J.M. Drouffe, Statistical field theory, Vol. I,

    Cambridge University Press (Cambridge, 1989). G. Parisi, Statistical field theory, AddisonWesley (Redwood

    City, 1988).

    P. Ramond, Field theory A modern primer,

    BenjaminCummings (Reading, 1981). J. Zinn-Justin, Quantum field theory and critical phenomena,

    Clarendon Press (Oxford, 1993).

    Some exercises

  • 8/10/2019 schladming11a

    37/37

    1. Relationship between cumulants and vertex functions.By means of appropriate derivatives of the generating functional for the vertex functions, establish therelations

    (2)

    (q) = C(q)1

    , 4

    i=1S(qi)

    c =

    4i=1

    C(qi) (4)

    ({qi})

    between the two- and four-point vertex functions and cumulants.

    2. Explicit two-loop p erturbation theory for the vertex functions.

    Confirm the explicit two-loop result for (2)(q) and the one-loop expression for (4)({qi = 0}).

    3. Singular contribution to the two-loop propagator self-energy.Employ Feynman parametrization

    1

    Ar Bs =

    (r+s)

    (r) (s)

    10

    xr1 (1 x)s1

    [x A+ (1 x) B]r+s dx

    to extract the UV-singular part of the two-loop integral

    D(q) =

    k

    1

    +k2

    k

    1

    +k2

    1

    + (q kk)2 ,

    D(q)

    q2

    sing.q=0

    = A2d

    8 .