scaledep! - emep · 6 2. d z } } o } p Ç! 2.1 simulations! each mode lling team carried out four...

63

Upload: others

Post on 28-Jun-2020

0 views

Category:

Documents


0 download

TRANSCRIPT

Page 1: ScaleDep! - EMEP · 6 2. D Z } } o } P Ç! 2.1 Simulations! Each mode lling team carried out four model! simulations with different horizontal! resolutions. The simulations were performed
Page 2: ScaleDep! - EMEP · 6 2. D Z } } o } P Ç! 2.1 Simulations! Each mode lling team carried out four model! simulations with different horizontal! resolutions. The simulations were performed

1

 

ScaleDep    

Performance  of  European  chemistry-­‐transport  models  as  function  of  horizontal  spatial  resolution  

       

  C.  Cuvelier,  P.  Thunis,  D.  Karam     European  Commission,  DG  Joint  Research  Centre     Institute  for  Environment  and  Sustainability     I-­‐21020  Ispra  (Va),  Italy    

  M.  Schaap,  C.  Hendriks,  R.  Kranenburg     TNO  Built  Environment  and  Geosciences,  Dept.  of  Air  Quality  and  Climate     P.O.  Box  80015,  NL-­‐3508TA  Utrecht,  The  Netherlands    

  H.  Fagerli,  A.  Nyiri,  D.  Simpson,  P.  Wind,  M.  Schulz     Air  Pollution  Section  Research  Department,  Norwegian  Meteorological  Institute     P.O.  Box  43,  Blindern,  N-­‐0313,  Oslo,  Norway    

                             B.  Bessagnet,  A.  Colette,    E.  Terrenoire,  L.  Rouïl     Industriel  et  des  Risques     Parc  Technologique,  ALATA,  F-­‐60550  Verneuil-­‐en-­‐Halatte,  France    

  R.  Stern     Freie  Universität  Berlin     Institut  für  Meteorologie  und  Troposphärische  Umweltforschung     Carl-­‐Heinrich-­‐Becker  Weg  6-­‐10,  D-­‐12165  Berlin,  Germany    

  A.  Graff                                Umweltbundesamt,  Postfach  1406                                D-­‐06813  Dessau-­‐Roßlau,  Germany       J.M.  Baldasano,  M.T.  Pay                                Barcelona  Supercomputing  Center                                c/  Jordi  Girona  29,  E-­‐08034  Barcelona,  Spain    

     

Page 3: ScaleDep! - EMEP · 6 2. D Z } } o } P Ç! 2.1 Simulations! Each mode lling team carried out four model! simulations with different horizontal! resolutions. The simulations were performed

2

 

The   exercise   showed   that   the   model   responses   to   an   increase   in   resolution   show   a  broadly  consistent  picture  among  all  models.    

The  analysis  showed  that  the  grid  size  does  not  play  a  major  role  for  air  quality  model  calculations  which  are  targeted  on  the  determination  of  the  background  (non-­‐urban)  air  quality.   Downscaling  model   resolution   does   not   change   concentration   estimates   and  model   performance   at   rural   and   EMEP   sites.   It   does   not   neither   impact   the  performance  of  models  regarding  the  capture  of  the  seasonal  variability  of  pollutants.  

However,   the  grid   resolution  plays  an   important   role   in  agglomerations  characterized  by  high  emission  densities.  The  urban  signal,  i.e.  the  concentration  difference  between  high  emission  areas  and  their  surroundings,  usually  increases  with  decreasing  grid  size.  This  grid  effect  is  more  pronounced  for  NO2  than  for  PM10,  because  a  large  part  of  the  urban  PM10  mass  consists  of  secondary  components.  This  part  of  the  PM10  mass  is  less  affected   by   a   decreasing   grid   size   in   contrast   to   the   locally   emitted   primary  components.  

The   grid   effect   differs   between   urban   regions.   The   strength   of   the   urban   signal   is   a  function  of  local  emission  conditions  (extension  of  the  emission  areas,  emission  density,  emission   gradient,   etc.)   and   meteorological   conditions   determining   ventilation  efficiency.  For  similar  emission  conditions,  regions  with  weak  wind  conditions  will  show  a  stronger  urban  signal  than  well  ventilated  regions.    

For   all   models,   increasing   model   resolution   improves   the   model   performance   at  stations   near   large   conglomerations   as   reflected   by   lower   mean   biases   for   all  components  and  increased  spatial  correlation  coefficients  for  primary  pollutants.    

As  about  70%  of  the  model  response  to  grid  resolution  is  determined  by  the  difference  in   emission   strengths,   improved   knowledge   on   emission   spatial   variations   at   high  resolution  is  a  key  for  the  improvement  of  modelled  urban  increments.  For  this  purpose  one   relies   on   the   replacement   of   currently   used   top-­‐down   European  wide   data  with  national  expertise.        

It  is  difficult  to  define  a  grid  size  that  is  adequate  to  resolve  the  urban  signal  under  all  conditions  occurring  in  a  European-­‐wide  modelling  area.  It  has  been  shown  before  that,  ideally,   a   grid   size   in   the   range  of  a   few  km  down   to  1  km  should  be   chosen.   Such  a  small  grid  size  is  not  feasible  for  regional  model  applications  because  the  data  demands  and   operating   requirements   are   far   too   large.   If   the   main   emphasis   of   a   model  application   is   targeted  on   the  determination  of  background  air  quality   for   rural  areas  and   large   agglomerations,   the   grid   scale  M2   (28   km)   or,   if   the   data   and   operational  requirements   can   be   fulfilled,   the   grid   scale   M3   (14   km)   seems   to   be   a   good  compromise   between   a   pure   background   application   and   an   application   which  reproduces  most  of  the  urban  signals  (M4-­‐  7km  or  even  higher  resolution).  

It   should  be  noted   that   the   response   is  more  significant   for   the  CHIMERE  simulations  compared   to   the   other   participating   models.   This   seems   to   be   due   to   a   specific  treatment  of  the  mixing  parameterization  over  urban  areas  that  yields  a  bias  of  four  to  

Page 4: ScaleDep! - EMEP · 6 2. D Z } } o } P Ç! 2.1 Simulations! Each mode lling team carried out four model! simulations with different horizontal! resolutions. The simulations were performed

3

five   times   smaller   for   the   highest   resolution   in   urban   areas   compared   to   other  participating   models.   This   point   is   still   under   investigation   by   INERIS   with   sensitivity  analyses.    

The  limited  impact  of  horizontal  resolution  on  regional  scale  model  performance  shows  that   a   continuing   effort   is   needed   to   better   understand   atmospheric   processes   and  interactions  with   the   surface,   and   to   improve   our   knowledge   on   emissions   (amount,  speciation,  location  and  timing).  

Page 5: ScaleDep! - EMEP · 6 2. D Z } } o } P Ç! 2.1 Simulations! Each mode lling team carried out four model! simulations with different horizontal! resolutions. The simulations were performed

4

 

1.   Introduction  ............................................................................................................................  5  

2.   Methodology  ..........................................................................................................................  6  

2.1  Simulations  ...........................................................................................................................  6  

2.2    Emissions  ..............................................................................................................................  7  

2.3  Participating  chemistry-­‐transport  models  (CTMs)  ................................................................  9  

2.4  Definition  of  PM10  ..............................................................................................................  13  

2.5  Model  evaluation  procedure  ..............................................................................................  14  

2.5.1    EMEP  data  ...................................................................................................................  15  

2.5.2  AIRBASE  data  analysis  ..................................................................................................  15  

3.   Results  ...................................................................................................................................  19  

3.1    Modelled  concentration  patterns  ......................................................................................  19  

3.2      Scale  dependency  of  model  performances  .......................................................................  23  

3.2.1      PM10  ..........................................................................................................................  23  

3.2.2        NO2  ............................................................................................................................  26  

3.2.3      Ozone  .........................................................................................................................  30  

3.3        Scale  dependency  in  terms  of  seasonal  variations  ..........................................................  32  

3.4        Scale  dependency  in  terms  of  PM10  components  ..........................................................  34  

4.   Discussion  and  conclusions  ...................................................................................................  37  

5.   Acknowledgement  ................................................................................................................  39  

6.   References  ............................................................................................................................  40  

7.   Appendices  ...........................................................................................................................  41  

7.1    EMEP  model  description  ....................................................................................................  41  

7.2    CHIMERE  model  description  ..............................................................................................  43  

7.3    LOTOS-­‐EUROS  model  description  ......................................................................................  46  

7.4    REM-­‐CALGRID  (RCG)  model  description  ............................................................................  49  

7.5    CMAQv5.0  model  description  ............................................................................................  56  

7.6    The  ScaleDep  DataBase  ......................................................................................................  59  

 

   

Page 6: ScaleDep! - EMEP · 6 2. D Z } } o } P Ç! 2.1 Simulations! Each mode lling team carried out four model! simulations with different horizontal! resolutions. The simulations were performed

5

1.    

The   EMEP   MSC-­‐W   models   (http://www.emep.int)   have   been   instrumental   to   the  development   of   air   quality   policies   in   Europe   since   the   late   1970s.   In   the   1990s   the  EMEP  models  became  also  the  reference  tools  for  atmospheric  dispersion  calculations  as   input  to  the   Integrated  Assessment  Modelling,  which  supports  the  development  of  air  quality  policies  in  the  European  Union.  Since  1999,  the  EMEP  model  has  been  run  on  a  resolution  of  50x50  km2.  However,  the  last  years,  modification  of  the  EMEP  grid  has  been   discussed,   an   important   aspect   of   which   is   the   grid   resolution.   An   increase   in  model   resolution   requires   that   the   input   data   (most   importantly   the   emissions)   are  available   on   the   same   scale.   As   an   increase   in   model   resolution   will   increase   the  computational  costs  cubically,   it   is   important   to  determine  the  at   which   scale   the   improvement   in   resolution   does   not   give   improvement   in  performance  any  longer  and  for  which  the  computational  effort  is  not  too  large.  To  support  EMEP  in  this  decision,  an  initiative  was  taken  for  a  model  inter-­‐comparison  exercise   aimed   at   analysing   the   model   performance   of   different   chemical-­‐transport  models  as  a  function  of  model  horizontal  spatial  resolution.    Five   modelling   teams   participated   in   the   exercise:   EMEP  MSC-­‐W,   CHIMERE   (INERIS),  LOTOS-­‐EUROS  (TNO),  RCGC  (Berlin  Freie  Universität),  and  CMAQ  (BSC).  All  models  were  to  perform  four  runs  for  Europe  at  different  resolution.  The  specifics  of  the  models  and  the   experimental   set-­‐up   are   described   in   section   2.   A   (statistical)   evaluation   of   the  performance  of  the  models  at  different  resolutions  is  presented  in  section  3.  Section  4  presents   the  most   important   findings   from   this   exercise.   Descriptions   of   the   various  models   that   participated   in   this   Scale-­‐Dependency   exercise   are   reported   in   the  Appendices  (Section  7).  

Page 7: ScaleDep! - EMEP · 6 2. D Z } } o } P Ç! 2.1 Simulations! Each mode lling team carried out four model! simulations with different horizontal! resolutions. The simulations were performed

6

2.    

2.1  Simulations   Each   modelling   team   carried   out   four   model   simulations   with   different   horizontal  resolutions.   The   simulations   were   performed   for   the   year   2009   for   the   EC4MACS  domain  encompassing  Europe  (Figure  1).  For  details  regarding  the  EC4MACS  project  we  refer   to  http://www.ec4macs.eu/index.html.  Four   resolutions  were  used  doubling  the  resolution   between   each   simulation.   The   horizontal   spatial   resolution   ranges   from   a  1.0x0.5  degrees  to  0.125  x  0.0625  degrees   (see  Table  1),  which  corresponds  to  56x56  km  and  7x7  km  in  the  Northern  part  of  the  domain  and  to  88x56  km  and  11x7  km  in  the  Southern   part   of   the   domain,   respectively.   As   the   high   resolution   simulation   is   very  demanding  in  terms  of  computing  power  the  EC4MACS  domain  encompasses  southern  and  central  Europe  completely,  but  cuts  off  the  remote  area  in  northern  Scandinavia.    

Figure  1  :  Computational  domain  (grey  area)  broken  down  into  4  resolutions      

Table  1  :  Definition  of  the  four  resolution  domains.  nx  and  ny  indicate  the  number  of  cells   in   longitude  and   latitude  direction.  N  and  S   refer   to   cells   in   the  Northern  and  Southern  part  of  the  domain,  respectively.  

 Domain   nx   ny   Lon  

(degrees)  Lat  

(degrees)    x     Lat  

(km  x  km)  SW  corner  grid  centre  (Lon  /  Lat)  

EC4M1   41   52   1.0   0.5   56  x  56  (N)  88  x  56  (S)  

-­‐10.000  /  36.125  

EC4M2   82   104   0.5   0.25   28  x  28  (N)  44  x  28  

-­‐10.250  /  36.000  

EC4M3   164   208   0.25   0.125   14  x  14  (N)  22  x  14  (S)  

-­‐10.3750  /  35.9375  

EC4M4   328   416   0.125   0.0625   7  x  7  (N)  11  x  7  (S)  

-­‐10.43750  /  35.90625  

   

Page 8: ScaleDep! - EMEP · 6 2. D Z } } o } P Ç! 2.1 Simulations! Each mode lling team carried out four model! simulations with different horizontal! resolutions. The simulations were performed

7

All   other   input   parameters   were   not   prescribed.   This   means   that   the   models   use  different  meteorological   input   data   as  well   as   land   use   data.   In   case   of  meteorology  most  models  use  data  from  ECMWF,  whereas  RCGC  used  diagnostic  meteorology  from  TRAMPER   and   CMAQ   used   meteorological   fields   from   the   WRF-­‐ARW   model.   The  ECMWF  meteorology  has  a  resolution  of  ca.  16km,  so  that  models  running  at  e.g.  7km  are  essentially  running  with  fine-­‐scale  emissions  but  somewhat  smoothed  meteorology.    Only  CMAQ  has  a  meteorological  driver  that  runs  at  true  7km.  This  might  be  one  reason  for  different  behaviour  of  CMAQ  to  the  other  models  when  going  down  in  scale.  Boundary  conditions  were  derived  from  global  model  climatological  data  or  simulations  as  well   as   experimental   climatological   data.     For   a  more  detailed   specification  of   the  model  and  its  input  data  we  refer  to  Table  3  at  the  end  of  section  2.3.    The  output  required  for  the  exercise  was  prescribed  and  contains  hourly  as  well  as  daily  concentration  distributions  across  Europe  (see  Table  2).  The  output  species  contain  the  oxidants  as  well  as  particulate  matter  (PM),  its  components  and  precursor  species.  PM  and  its  components  include:  PM2.5  (<  2.5  µm)  and  PM10  (<  10  µm),  primary  particulate  matter   (PPM),   nitrate   (NO3),   sulphate   (SO4),   ammonium   (NH4),   secondary   organic  aerosol  (SOA),  Dust  and  Sea  Salt   (SS)   in  fine  and  coarse  fractions  (subscript  _f  and  _c,  respectively).   Besides   concentrations   also   deposition   fields   (D-­‐dry   and   W-­‐wet)   were  reported   to   be   able   to   perform   a   first   order   assessment   of   the   representation   of  atmospheric  input  to  eco-­‐systems.  Although  depositions  were  reported,  they  were  not  used  in  the  analysis  of  this  study.  

Table  2.  Model  output  variables.    

Time  resolution  

PM  and  components   Gases   Deposition  Fluxes  

Meteorology  

Hourly   PM2.5,  PM10   O3,  NO2,  NO     -­‐   U10,  T2m,  Kz,  PBL,  u*  

Daily   PM2.5,  PM10    PPM_fine,  PPM_coarse  NO3_f,  NO3_c  SO4_f,  SO4_c  NH4_f,  NH4_c  SOA_f,  SOA_c  Dust_f,  Dust_c  SS_f,  SS_c    

SO2,  NH3,  HNO3   D_NOx,  D_SOx,  D_NHx,  W_NOx,  W_SOx,  W_NHx  

Rain  amount  

  2.2    Emissions   The   anthropogenic   emission   input   was   harmonized   by   using   a   common   EC4MACS  emission   dataset.   The   emission   dataset   was   delivered   by   INERIS   for   all   model  resolutions   separately.   Except   for   SNAP2,   prescribed   time   profiles   and   height  distributions  were  used  following  the  EURODELTA  protocol  (cf.  Thunis  &  Cuvelier  et  al.  (2008)).  For  SNAP2  daily  gridded  modulation  factors  were  calculated  based  on  the  daily  temperatures,  while  the  SNAP2  hourly  variations  were  based  on  the  EURODELTA  hour-­‐

Page 9: ScaleDep! - EMEP · 6 2. D Z } } o } P Ç! 2.1 Simulations! Each mode lling team carried out four model! simulations with different horizontal! resolutions. The simulations were performed

8

of-­‐the-­‐day   profile.   The   gridded   distribution   of   anthropogenic   emissions   used   for   this  exercise  were  provided  by  INERIS  and  they  are  based  on  a  merging  of  databases  from:    

TNO  0.125°×0.0625°  emissions  for  2007  from  MACC  (cf.  Kuenen  et  al.  2011)    

  EMEP  0.5°×0.5°  for  2009  (cf.  Vestreng  et  al.  2007)    

  Emission  data  from  the  GAINS  database  (see  http://gains.iiasa.ac.at/gains)    

  INERIS  expertise  on  re-­‐gridding  with  various  proxies  (population,  landuse,  LPS  data)    

The  large  point  sources  (LPS)  from  the  fine  scale  (0.125°×0.0625°)  TNO-­‐MACC  emissions  data  for  2007  were  added  to  surface  emissions  to  get  only  one  type  of  emissions.  For  the  various  activity  sectors  the  processing  steps  were  the  following:    

SNAP2:  The  country  emissions  were   re-­‐gridded  with  coefficients  based  on  population  density  and  French  bottom-­‐up  data,  the  methodology  was  extrapolated  to  the  whole  of  Europe.   For   PM2.5,   the   annual   EMEP   totals   were   kept   except   for   the   countries   CZ,  BA,BE,  BY,  ES,  FR,  HR,  IE,  LT,  LU,  MD,  MK,  NL,  CS,  TR.  For  the  rest,  PM2.5  emissions  from  GAINS   were   used.   Additional   factors   were   applied   on   Polish   regions   (×4   or   ×8)   for  PM2.5  and  PM10  emissions.    

SNAP3,7,8,9,10:   TNO-­‐MACC   emissions   were   used   as   proxy   to   regrid   EMEP   0.5°x0.5°  annual  totals    

SNAP1,4,5,6  

 

For  countries  where  TNO-­‐MACC  emissions  are  not  available,  EMEP  0.5°×0.5°  emissions  are  used  (Iceland,  small  countries,  Asian  countries).   For  SNAP2,  we  also  propose  a  new  temporal  profile  of  the  emissions  according  to  the  

variable  to  express    is  defined   as:  Dj   =  max(0,   20-­‐TD)  where   TD   is   the   daily  mean   2m   ambient   temperature.  Therefore,   a   first   guess   daily  modulation   factor   could   be   defined   as:     with  the   annual   2   emissions   are   not   only  

related   to   the  air   temperature   (e.g.  emissions  due   to  production  of  hot   tap  water),  a  second   term   is   introduced   in   the   formula  by  means  of   a   constant  offset  C.   To  better  assess   the   influence  of   this  offset,  C   can  be  expressed  as  a   fraction  of     (degree  day  average).  Considering:                                                                      C  =  A  .  where  A  =  0.1  (defined  by  user)                                                                              (2.2.1)    the  daily  modulation  factor  (Fj)  is  therefore  defined  as:                                                      where    and                                                  (2.2.2)  

 Note  that  F   is  mass  conservative  over   the  year  and  replaces  the  original  monthly  and  daily  modulation  factors.    

Page 10: ScaleDep! - EMEP · 6 2. D Z } } o } P Ç! 2.1 Simulations! Each mode lling team carried out four model! simulations with different horizontal! resolutions. The simulations were performed

9

As  an  illustration,  Figure  2  shows  the  2009  daily  modulation  factor  apply  to  the  SNAP2  emissions  at  3  different  locations:  Katowice  (Poland),  Paris  (France)  and  Madrid  (Spain).  We  observe  that  the  highest  factors  for  the  three  locations  are  logically  seen  during  the  winter  period  and  the  lowest  ones  during  the  summer.  This  means,    for  example,    that  during   the   cold   periods   the   emission   from   SNAP2   can   be   up   to   three   times   more  intense  (e.g.  beginning  of  January  for  Madrid  or  end  of  February  for  Paris)  than  during  the   spring  or   the   autumn  periods.   Interestingly,  we  note   that   in   Katowice  during   the  beginning  of   the  year   the   factors  are   relatively   lower   than  at   the   two  other   locations  meaning  that  over  this  period  the  different  between  the  daily  mean  temperature  and  the  annual  mean  is  lower  in  Katowice  than  the  one  at  the  two  other  locations.  In  other  words,  Madrid   and   Paris   experienced   a   cold   period   in   January   and   end   of   February,  respectively,  whose   intensity  was  higher   than  over  Katowice.   Inversely,   at   the  end  of  the  year,  all  the  locations  experienced  a  cold  outbreak  of  the  same  intensity  relatively  to  their  local  annual  mean  temperature.    

Figure  2:  Daily  modulation  factors  (Fj)  applied  for  the  SNAP2  emission  over  the  city  of  Katowice,  Paris  and  Madrid  for  the  year  2009.    

 2.3  Participating  chemistry-­‐transport  models  (CTMs)    In   this   study   five   Eulerian   CTMs   are   applied   to   address   the   sensitivity   of   the   model  performance   for   particulate   matter,   nitrogen   dioxide,   and   ozone,.   The   participating  modelling  systems  are:    

-­‐ EMEP  MSC-­‐W  -­‐ CHIMERE  (INERIS)  -­‐ LOTOS-­‐EUROS  (TNO)  -­‐ RCGC    (Berlin  Freie  Universität)  -­‐ CMAQ  (BSC)  

 In   Table   3   the   main   characteristics   of   these   model   systems   are   listed.   For   detailed  model   descriptions   we   refer   to   the   literature   on   these   models.   In   the   Appendices  (Section  7),  we  introduce  the  models  shortly.    

Page 11: ScaleDep! - EMEP · 6 2. D Z } } o } P Ç! 2.1 Simulations! Each mode lling team carried out four model! simulations with different horizontal! resolutions. The simulations were performed

10

Table  3.  Overview  of  model  characteristics.  For  bibliographical  references  see  the  Appendices.  

MODEL   EMEP  MSC-­‐W  (§7.1)  

CHIMERE    (§7.2)  

 LOTOS-­‐EUROS  (§7.3)    

RCGC    (§7.4)  

CMAQ    §7.5)  

version     rv4beta12     v1.8   v2.1   v5.0  

operator   met.no   INERIS/IPSL-­‐CNRS   TNO/KNMI/RIVM   FU  Berlin   BSC-­‐CNS  

contact   David  Simpson   Bertrand  Bessagnet   Martijn  Schaap   Rainer  Stern   José  María  Baldasano  

email   [email protected]   [email protected]    

[email protected]   rstern@zedat-­‐fu-­‐berlin.de   [email protected]  

VERTICAL  MODEL  STRUCTURE  Vertical  layers  

20  sigma   9  sigma   4   (3   dynamic   layers   and   a  surface  layer)  

5   fixed   terrain   following  layers  

15  sigma  

Vertical  extent  

100  hPa   500  hPa   3500  m   3000  m   50  hPa  

Depth   first  layer  

90  m   20  m   25  m   25  m   19  m  

NATURAL  EMISSIONS  BVOC   Based   upon   maps   of   115  

species   from   Koeble   and  Seufert,   and   hourly  temperature  and  light.  See  Simpson  et  al.,  2012  

MEGAN  model   Based   upon   maps   of   115  species   from   Koeble   and  Seufert,   and   hourly  temperature  and  light.  See  Denier   van   der  Gon   et   al.,  2009  

Based   upon   maps   of   115  species   from   Koeble   and  Seufert,   and   hourly  temperature  and  light.using  emissions   factors   of  Simpson  et  al.  (1999).    

MEGAN  model  v2.0  

Forest  fires   FINNv1,  daily   Monthyl  GFED3  database     MACC  forest  fires   none   none  

Soil-­‐NO   Simpson  et  al.  (2012)   MEGAN  model   Not  used  here   Simpson  et  al.  (1999)   MEGAN  model  v2.0  

Lightning   Climatological   fields,  Köhler  et  al.  (1995)  

none   none   none   none  

Sea  salt   Monahan  (2006)  and  Martensson   (2006),  see   Tsyro   et   al.  (2011).  

Monahan  et  al.,  2006   Martensson   et   al.,   2006  and  Monahan  et  al.,  1986  

Gong   et   al.   (1997)   and  Monahan  et  al.  (1986)  

Zhang   et   al.   (2005)   and  Clarke  et  al.(2006)  

Windblown  Dust    

Simpson  et  al.,  2012   Vautard   et   al.   (2005),   not  used  here  

Denier   van   der   Gon   et   al.  (2009).  Not  used  here  

 Loosemore  &  Hunt   (2000),  Claiborn  et  al.  (1998)  

none  

Agricultural  land  management  

None   none   Denier   van   der   Gon   et   al.  (2009),  Not  used  here  

none   none  

Dust   traffic  suspension  

Denier   van   der   Gon   et   al.  (2009).  

none   Denier   van   der   Gon   et   al.  (2009),  Not  used  here  

none   none  

Saharan   dust  inflow  

Not  used  here   Yes   Not  used  here   Not  used  here   BSC-­‐DREAM8bv2.0  

LAND  USE  Landuse  database  

CCE/SEI   for   Europe,  elsewhere  GLC2000  

GLOBCOVER  (24  classes)   Corine   Land   Cover   2000  (13  classes)    

Corine  Land  Cover  2000  (13  classes)    

Corine  Land  Cover  2006  (44  classes)  

Resolution   Flexible,  CCE/SEI  ~  5  km   300  m   1/60  x  1/60  degrees     1/60  x  1/60  degrees   100m  x  100m  

BOUNDARY  CONDITIONS  Ozone   and  oxidants  

As   available   (from   global  model  or  specified)  

LMDzINCA  monthly  clim.   MOZART  3-­‐hourly   O3   monthly   clim   (Logan,  1998);   all   other   species  clim.  background  values  

MOZART-­‐4/NCEP   monthly  mean  

PM  comp.   clim.  background  values   GOCART  monthly  clim.   MOZART  3-­‐hourly   clim.  background  values   clim.  background  values  

Page 12: ScaleDep! - EMEP · 6 2. D Z } } o } P Ç! 2.1 Simulations! Each mode lling team carried out four model! simulations with different horizontal! resolutions. The simulations were performed

11

Table  3.  Continued    

MODEL   EMEP  MSC-­‐W    (§7.1)  

CHIMERE    (§7.2)  

LOTOS-­‐EUROS  (§7.3)  

RCGC    (§7.4)  

CMAQ    (§7.5)  

METEOROLOGY  Description   ECMWF   ECMWF  IFS  +  urban  mixing   ECMWF   TRAMPER  diagnostic     WRF-­‐ARW  v3.3.1  

Resolution   0.22  deg  x  0.22  deg     1/2  x  1/4  degrees     1/2  x  1/4  degrees     1/2  x  1/4  degrees     The  same  as  CMAQ  

PROCESSES  Advection   Bott  (1989a,b)   Van  Leer  (1984)   Walcek  (2000)   Walcek   (2000)   modified   by  

Yamartino  (2003).  Piecewise  parabolic  method  (PPM)   (Colella   and  Woodward,  1984)  

Vertical  diffusion  

Kz  approach   Kz   approach   following  Troen  and  Mart,  1986    

Kz  approach   Kz-­‐approach   ACM2   PBL   scheme   (Pleim,  2007)  

Dry  deposition    

resistance   approach,  Simpson  et  al  (2012)  

resistance   approach  Emberson  (2000a,b)                                                                                              

DEPAC3.11  /  Van  Zanten  et  al.(2010)  

resistance   approach,  DEPAC-­‐module  

Resistant   approach,  Venkatram   and   Pleim  (1999)  

Landuse  class  

16  classes   9  classes   9  classes   9  classes   USGS  24-­‐category  system  

Compensation  points    

No,   but   zero   NH3  deposition   over   growing  crops  

no   only  for  NH3  (for  stomatal,  external   leaf   surface   and  soil  (=  0))  

no   no  

Stomatal  resistance  

DO3SE-­‐EMEP:   Emberson  et   al,   2000,   Tuovinen   et  al.,   2004.   Simpson   et   al.,  2012  

Emberson  (2000a,b)                                                                                              Emberson  (2000a,b)                                                                                              Wesely  (1989)   Wesely  (1989)  

Wet  deposotion  gases  

In-­‐cloud   and   sub-­‐cloud  scavenging  coefficients  

In-­‐cloud   and   sub-­‐cloud  scavenging  coefficients  

pH   dependent   scavenging  coefficients  (Banzhaf  et  al.,  2011)  

pH   dependent   scavenging  coefficients  

 In-­‐cloud   and   sub-­‐cloud  scavenging   which   depends  

dissociation   constants   and  cloud   water   pH.   Chang   et  al.  (1987)  

Wet  deposition  particles  

In-­‐cloud   and   sub-­‐cloud  scavenging  

In-­‐cloud   and   sub-­‐cloud  scavenging  

In-­‐cloud   and   sub-­‐cloud  scavenging  

In-­‐cloud   and   sub-­‐cloud  scavenging  

In-­‐cloud   and   sub-­‐cloud  scavenging   which   depends  

dissociation   constants   and  cloud   water   pH.   Chang   et  al.  (1987)  

Gas   phase  chemistry  

EmChem09     MELCHIOR     TNO-­‐CBM-­‐IV   CBM-­‐IV   CB-­‐05   with   chlorine  chemistry   extensions  (Yarwood  et  al.,  2005)  

Cloud  chemistry  

Aqueous  SO2  chemistry   Aqueous  SO2  chemistry   Banzhaf  et  al.  (2011)   Aqueous  SO2  chemistry     Aqueous   SO2   chemistry  (Walcek  and  Taylor,  1986)  

Coarse  nitrate    

yes   no   yes   no   Yes  

Ammonium  nitrate  equilibrium    

MARS   ISORROPIA   (Nenes   et   al.,  1999)  

ISORROPIA2   ISORROPIA   ISORROPIAv1.7  

SOA  formation  

VBS-­‐NPAS   Simpson   et   al.  (2012)  

After   Bessagnet   et   al.,  2009  

not  used   SORGAM  module   (Schell   et  al.,  2001)  

SORGAM  module   (Schell   et  al.,  2001)  

VBS     Yes,   Bergström   et   al  (2012),   Simpson   et   al.  (2012)  

no   not  used   none   none  

Aerosol  model  

Bulk-­‐  approach  (2  modes)   8  bins  (40  nm  -­‐  10  µm)   Bulk-­‐  approach  (2  modes)   Bulk-­‐  approach  (2  modes)   AERO5  (Carlton  et  al.,  2010)    Log-­‐normal   approach   (3  modes)  

Aerosol  physics  

not  used   coagulation/condensation/nucleation  

not  used   none   Coagulation/condensation/nucleation  

   

Page 13: ScaleDep! - EMEP · 6 2. D Z } } o } P Ç! 2.1 Simulations! Each mode lling team carried out four model! simulations with different horizontal! resolutions. The simulations were performed

12

All  models  have   kept   there  model   codes   the   same   for   each   resolution.   The  expected  change  in  concentrations  due  to  an  increase  in  resolution  is  therefore  due  to  the  much  sharper   gradients   in   the   emissions   and   the   sensitivities   of   process   descriptions   to  concentration   differences.   Also,   the   land   use   data   are   available   as   a   mosaic   at   high  resolution,  meaning  that  the  7  km  cells  inside  a  56  km  cell  will  have  the  same  land  cover  total  per  land  use  class  but  that  they  are  also  allocated  with  more  detail  at  the  higher  resolution.  All  models  interpolate  the  input  meteorological  data  to  the  required  model  resolution.  In  the  case  of  CMAQ,  the  WRF-­‐AWR  model  is  run  at  the  required  resolution  for  the  4  cases.    One  exception  should  be  mentioned.  Within  CHIMERE  an  adjustment  is  made  to  mixing  parameters   above   urban   areas.   This   means   that   this   adjustment   is   different   in   the  simulations  performed  here.  The   full  motivation  by  the  CHIMERE   team  is  given   in  the  appendix  (Section  7.2).  Instead  of  applying  a  correcting  profile  to  downscale  the  model  outputs   near   the   ground,   the   CHIMERE   pre-­‐processing   was  modified   to   diagnose   an  improved   urban   meteorology.   In   short,   they   argue   that   the   mixing   in   the   urban  environment  within  the  canopy  layer  is  overestimated  with  standard  similarity  theory.  Therefore,  the  Kz  in  the  first  CHIMERE  layer  above  urban  areas  is  modified  as  follows:      

                                                                                                                   2

1(1 ) zKz ) Kz (z< z                                                                                                    (2.1)  

 

where  z1  =  20  m,  computed  with  similarity  theory.  The  factor  of  2  (derived  from  the  literature)  is  also  applied  to  lower  the  wind  speeds  in  the  first  CHIMERE  layer  so  as  to   limit  the  advection  and  dilution  of  primary  pollutants  close   to   the  ground.     This   refined   representation  of   turbulent  mixing  as  a   function  of  landuse   (the   fraction   of   urban   grid   cells)   is   analogous   to   the   landuse   dependent  roughness,   or   dry   deposition.   But   on   the   contrary   to   the   later   processes   that   are  included   in   all   participating   models,   only   CHIMERE   proposed   this   dedicated   urban  mixing  representation.    Impact  of  the  urban  correction  in  CHIMERE    

Figure   3   presents   the   difference   in   concentrations   between   the   simulation   using   the  urban  correction  and  the  simulation  which  is  not  using  any  correction  over  urban  areas,  for   four  main  pollutants:  NO2,  O3,   and  PM10.   For   all   examined  pollutants,  we  note   a  rather  strong  impact  over  all  major  European  cities.  For  NO2,  we  observe  an  increase  in  concentrations   ranging   from   a   few   ppb   (suburban   areas)   to   12-­‐15   ppb   (e.g.   Paris,  London,   Madrid   and   Milan).   Consequently,   to   the   NO2   concentrations   increase   over  cities,  we  note  a  decrease  of  O3  (NO2  titration  essentially),  not  only  over  the  main  cities  (5  ppb  on  average  up  to  7  ppb  in  the  city  centres),  but  also  over  medium  size  cities  (1  to  2  ppb).  However  the  strongest  impact  is  observed  for  PM10  for  which  an  increase  from  a  few  µg/m3  to  40  µg/m3  for  cities  such  as  Milan  or  Paris  is  seen,  but  up  to  70  µg/m3  for  the  region  of  Katowice  in  southern  Poland.    

Page 14: ScaleDep! - EMEP · 6 2. D Z } } o } P Ç! 2.1 Simulations! Each mode lling team carried out four model! simulations with different horizontal! resolutions. The simulations were performed

13

   Figure  3  Difference   in  concentration  for   three  main  pollutants  between  the  simulation  using  the  urban  correction  and  the  simulation  not  using  the  urban  correction  for  PM10   in  µg/m

3  (top   left),  NO2     in  ppb  (top  right),  and  O3  in  ppb  (bottom  left).    2.4  Definition  of  PM10    The   participating   models   differ   in   the   availability   of   PM   components   and   formation  routes.   For   instance,   EMEP,   LOTOS-­‐EUROS   and   CMAQ   contain   coarse   mode   nitrate  formation,  whereas  the  others  do  not.  Also,  CHIMERE,  CMAQ,  EMEP  and  RCGC  report  secondary   organic   aerosol,   where   the   LOTOS-­‐EUROS   modelling   team   considers   their  SOA   model   formulations   too   uncertain   for   use   in   policy   support.   The   PM10  concentration  is  calculated  as  follows  in  each  model:    

EMEP   PM10  =  PPMcoarse+  PPMfine  +  SO42-­‐+NO3

-­‐+NH4++  Sea  Salt  +  SOA  +  Dust  

 

CHIMERE   PM10  =  PPMcoarse+  PPMfine  +  SO42-­‐+NO3

-­‐+NH4++  Sea  Salt  +  SOA  +  Dust  

 

CMAQ   PM10  =  PPMcoarse+  PPMfine  +  SO42-­‐+NO3

-­‐+NH4++  Sea  Salt  +  SOA  +  Dust  

 

LOTOS-­‐EUROS   PM10  =  PPMcoarse+  PPMfine  +  SO42-­‐+NO3

-­‐+NH4++  Sea  Salt  

 

RCGC     PM10  =  PPMcoarse+  PPMfine  +  SO42-­‐+NO3

-­‐+NH4++  Sea  Salt  +  SOA  +  Dust,  

 where  PPM  stands  for  Primary  Particulate  Matter.  Hence,  the  modelled  components  and  therefore  the  explained  mass  will  differ  between  models   hampering   the   comparability.   Also,   the   components   that   are   not   common  (dust,  SOA,  coarse  nitrate)  are  associated  with  the  largest  uncertainties.  Hence,  we  also  

Page 15: ScaleDep! - EMEP · 6 2. D Z } } o } P Ç! 2.1 Simulations! Each mode lling team carried out four model! simulations with different horizontal! resolutions. The simulations were performed

14

defined  a  common  PM10  measure  that  includes  the  PM10-­‐components  that  all  models  have:    

                       PM10_common    =    PPM  coarse  +  PPMfine  +  SO42-­‐  +  NO3

-­‐  +  NH4+  +  SeaSalt            

 

This  quantity  allows  for  a  fair  comparison  between  the  different  models.  Note,  that  due  to   the  neglect  of   several   components   an  underestimation   is   expected  as  observed   in  many  model  evaluation  studies  and  previous  model  intercomparisons  (e.g.  Stern  et  al.,  2008;   Vautard   et   al.,   2009;   Solazzo   et   al.,   2012;   Pay   et   al.,   2012).   However,   in   this  analysis   the   PM10_common   concentrations   were   not   used,   so   that   the   PM10  concentrations  in  the  models  reflect  different  compositions.  We  refer  to  Table  4  for  the  PM   components   that   are   included   in   the   PM10   and   PM2.5   concentration   of   each  model.    Table   4.   Overview   of   PM   components   that   are   included   in   the   PMfine   and   PMcoarse  fractions  of   each  model.     Filled   grey   =   Included   in  model   simulations   and   reported;   x   =  included  in  model  but  not  reported,  blank  =  not  in  the  model.  

Fine  mode   Coarse  mode  

SO4

NO

3

NH

4

PPM

ASO

A

BSO

A

SS

Dus

t

SO4

NO

3

NH

4

PPM

ASO

A

BSO

A

SS

Dus

t

EMEP   x x x x CHIMERE   LOTOS-­‐E   RCGC   x CMAQ   For  further  information  on  reported  and  available  results,  we  refer  to  Section  7.6  of  this  report.    2.5  Model  evaluation  procedure      The   impact   of   the   increase   of   the  model   resolution   on   its   performance   needs   to   be  quantified.   As   an   important   feature   of   the   increased   resolution   should   be   to   better  describe  horizontal  gradients  and  better  resolve  the  gradients  between  source  regions  and   the   regional   background,   the   quantification   of   the   spatial   correlations   for   all  resolution   is   the   first  analysis  performed  here.  The  higher  resolution  of   the  emissions  and   the  model  may   separate   rural   background  monitoring   sites   from   those   of   urban  locations   and   source   areas   by   the   fact   that   they   appear   in   different  model   grids.   To  analyse   the   improvement   in   the   spatial   gradients   the   spatial   correlation,   the   slope  of  the  best   fit  and  the  bias  are  used.  Not  only  the  gradients  should  be  described  better,  also  a  small  improvement  of  the  temporal  representation  of  the  measured  times  series  is  expected  for  primary  components.  The  reason  is  that  plumes  of  a  source  region  may  or  may  not  hit  the  station  in  the  high  resolution,  whereas  in  the  coarse  resolution  the  site  could  be  in  the  same  grid  cell  and  it  will  always  be  affected.  Hence,  the  second  part  of  the  evaluation  focuses  on  the  temporal  behaviour  looking  at  correlation  coefficients  and  RMSE.  The  model  to  measurement  comparison  was  performed  at  a  central  location  (JRC)   to   ensure   a   harmonised   evaluation   procedure.   For   this   purpose   the   DeltaTool  (Thunis  et  al.,  2011)  developed  in  the  frame  of  the  FAIRMODE  activity  has  been  used.      

Page 16: ScaleDep! - EMEP · 6 2. D Z } } o } P Ç! 2.1 Simulations! Each mode lling team carried out four model! simulations with different horizontal! resolutions. The simulations were performed

15

 In  this  exercise  monitoring  data  from  two  networks  were  used  (see  Table  5).    

Table  5.  Monitoring  data  from  two  different  databases    

EMEP   AIRBASE  O3   O3  

O3_8HrMax   O3_8HrMax  NO2   NO2  PM10   PM10  SO4    NO3    

 The   first   network   is   the   EMEP   network   (http://www.emep.int,   Törseth   et   al   (2012)).  This   network   was   designed   to   evaluate   regional   scale   models   aimed   at   correctly  describing  trans-­‐boundary  air  pollution.  As  these  models  used  to  have  resolutions  of  50     150   km   when   the   network   was   designed,   the   locations   of   most   stations   are   at   a  considerable  distance  from  source  areas  in  rural  or  remote  regions.  The  only  exception  is  ammonia,  as  the  major  ammonia  sources  are  associated  with  agricultural  rural  areas.  Hence,   the   EMEP   network  may   not   be   the  most   suitable   network   to   investigate   the  impact   of   high   resolution   modelling.   Therefore,   we   also   use   the   AIRBASE   database  (http://acm.eionet.europa.eu/databases/airbase/)   which   contains   a   host   of   stations  located   in   rural   and  urban  areas.  To   focus  on   the   representation  of  gradients  around  large   agglomerations   a   specific   selection   of   stations   was   performed   as   presented  below.   Note   that   the   AIRBASE   network   contains   only   the   major   pollutants.   Hence,  particulate  matter  speciation  is  addressed  using  the  EMEP  network.          2.5.1    EMEP  data   The  EMEP  network  is  not  used  to  its  full  extent  here.  The  analysis  aimed  to  the  urban  agglomerations   was   prioritised   as   the   first   evaluation   showed   little   impact   of  model  resolution  at  rural  monitoring  stations.  See  below.    2.5.2  AIRBASE  data  analysis    To   highlight   the   differences   between   the   model   results   obtained   with   the   4   spatial  resolutions,  we  focus  the  analysis  on  30  European  urban  areas  (see  Figure  4).      

Page 17: ScaleDep! - EMEP · 6 2. D Z } } o } P Ç! 2.1 Simulations! Each mode lling team carried out four model! simulations with different horizontal! resolutions. The simulations were performed

16

   

Figure   4.   Urban   areas   selected   for   the   analysis.   Available  measurements  within   a   radius   of   30   km   around   each   city   area   are   selected   for   urban  background    stations.  For  comparison  with  AIRBASE  rural  background  and  EMEP  stations,  the  selected  radius  around  each  city  is  200  km.  

 Within  a  radius  of  30  km  around  each  city  (regardless  of  the  city  size)  all  AIRBASE  urban  background   measurements   are   used   to   evaluate   the   model   results   and   assess   the  impact  of  increased  resolution.  This  30  km  radius  is  chosen  because  it  leads  to  a  surface  around  each  station  approximately  equal  to  the  area  of  a  50x50  km  EMEP  grid  cell.  The  number  of  stations  available  within  each  city  area  differs  from  city  to  city  as  does  the  split   in   terms  of  station  types   (Rural,  Urban,  EMEP).  An  overview  of   the  stations  used  per  city  for  the  evaluation  is  provided  in  Table  6  and  in  Section  7.6.    Within  a  radius  of  30  km  around  each  city  not  many  rural  stations  are  included  in  the  analysis.   To   provide   some   classical   evaluation   in   terms   of   comparison   with   rural  background   stations   a   larger   radius   of   200   km   has   been   considered,   in   which   all  AIRBASE-­‐rural   and   EMEP   measurement   stations   have   been   used   and   compared   to  model  results.              

Page 18: ScaleDep! - EMEP · 6 2. D Z } } o } P Ç! 2.1 Simulations! Each mode lling team carried out four model! simulations with different horizontal! resolutions. The simulations were performed

17

Table  6.  Overview  of   the  available  measurement  stations  per  city,  pollutants  and  station  type.   For   the   AIRBASE   urban   groups   a   radius   of   30   km   around   each   city   is   assumed  whereas  for  the  AIRBASE  rural  background  and  EMEP  groups,  the  radius  is  200  km.  

 

 

 It   is   important   to   remember   that   the  number  of   stations   included   in  each  of   the   City  groups   is   different.  While   the   total   number  of   rural   stations   (R)   used   to  produce   the  average  for  PM10  is  151  it  reaches  98  for  urban  stations  (see  Table  ).  The  weight  of  the  various  cities  into  this  average  is  also  a  key  element  which  needs  to  be  remembered  for  the   interpretation.   While   for  Warsaw   10   urban   background   stations   are   considered,  other  cities  like  Stockholm  only  have  one.      

The  analysis  is  performed  for      

Daily  mean  PM10  concentrations;  

O3Urban Rural EMEP Urban Rural EMEP Urban Rural EMEP

Amsterdam AMS 2 11 7 12 1 12Athens ATH 2 1 2 1Barcelona BAR 5 4 5 6 4 6Berlin BER 5 10 1 6 9 3 9Bilbao BIL 4 5 1 4 5 1 4 5 1Bruxelles BRU 11 1 16 1 16Bucarest BUC 1 0 1 1 1Budapest BUD 1 2 2 1 2 1 2 2Cologne COL 7 9 9Dublin DUB 2 2 2 2 1 2Hambourg HAM 6 7 1 6 10 2 10Krakow KRA 5 3 3 3 2 3Leeds LEE 1 2 3 2 2 3 3Lisbon LIS 8 4 11 4 10 4London LON 3 3 1 5 5 3 5 5 3Lyon LYO 2 2 3 9 3 9Madrid MAD 5 9 3 7 9 3 7 9 3Marseille MAR 4 1 4 10 1 10Milan MIL 8 7 9 13 9 13Munich MUN 1 5 1 10 1 10Naples NAP 1 2 2Paris PAR 7 6 19 11 12 11Prague PRA 4 20 1 4 14 2 14 1Rome ROM 6 2 1 6 2 6 2Sevilla SEV 2 2 5 3 4 3Sofia SOF 1 1 1Stockholm STO 1 2 1 1 2 1 2 1Valencia VAL 2 3 1 2 5 1 2 5 1Vienna VIE 3 21 1 4 19 3 19Warsaw WAR 10 6 3 3 3 1Total 98 151 14 126 201 10 93 201 16

PM10 NO2

Page 19: ScaleDep! - EMEP · 6 2. D Z } } o } P Ç! 2.1 Simulations! Each mode lling team carried out four model! simulations with different horizontal! resolutions. The simulations were performed

18

Hourly  NO2;     Daily  mean  O3,  and  daily  maximum  of  the  running  8  hourly  mean  O3;    

 

and  mostly  focuses  on  urban  background  station  types  since  the  increased  resolution  is  expected  to  have  its  maximum  gain  at  those  stations.    In  order  to  better  highlight  model  differences  in  terms  of  urban  areas  and  station  types,  groups   of   stations   are   generated   in   which   statistical   performance   indicators   are  averaged.  Finally   it   is   important   to  note  that  differences  between  resolutions  should  be  seen  as  grid  resolution  increments  rather  than  urban  increments.  Indeed,  in  the  case  of  a  very  large   city   area   characterized   by   a   homogeneous   distribution   of   the   emissions,   no  difference  between  resolutions  should  be  expected.    A  list  of  the  various  City  groups  for  the  three  pollutants  PM10,  NO2,  and  O3  is  given  in  Section  7.6.  

Page 20: ScaleDep! - EMEP · 6 2. D Z } } o } P Ç! 2.1 Simulations! Each mode lling team carried out four model! simulations with different horizontal! resolutions. The simulations were performed

19

3.    

3.1    Modelled  concentration  patterns    Figures   5,   6,   7   show   the   annual   mean   concentrations   of   PM10,   NO2,   and   O3   as  calculated   for   the   four   different   horizontal   grid   resolutions.   Figure   5   shows   that   for  PM10   going   from   the   coarse   grid   EC4M1   (56km)   to   the   fine   grid   EC4M4   (7km),   the  concentration   pattern   increasingly   reflects   the   underlying   emission   pattern.   The  calculated   concentrations   increase   in   particular   in   the   high   emission   density   areas.  However  the  increase  is  moderated  because  a  large  part  of  the  total  PM10  is  provided  by   secondary   aerosols   which   are   less   affected   by   the   grid   size   than   de   primary   PM  components.   Also   for   NO2   the   concentration   pattern   reflects   increasingly   the  underlying   emission   pattern   going   to   higher   resolution.   Overall,   the   increase   in  structure  is  tremendous.  Especially  going  from  56  to  14  km  adds  a  lot  of  detail,  whereas  the  step  from  14  km  to  7  km  does  not  show  such  a  large  change  in  the  structure.  The  calculated  concentrations  increase  in  particular  in  the  high  emission  density  areas.  Compared  to  NO2  and  PM10,  the  effect  of  a  decreasing  grid  size  is  small  for  ozone.  In  general,  there  are  only  small  changes  in  rural  areas.   In  urban  areas,  a  decrease  of  the  grid   size   leads   also   to   a   decrease   of   the   calculated  O3   concentrations   as   titration   by  local  NO  sources  is  enhanced.  

Page 21: ScaleDep! - EMEP · 6 2. D Z } } o } P Ç! 2.1 Simulations! Each mode lling team carried out four model! simulations with different horizontal! resolutions. The simulations were performed

20

Figure  5.  Modelled  annual-­‐mean  PM10  fields  (µg/m3)  at  M1  (56km)  and  M4  (7km)  resolution.    

Page 22: ScaleDep! - EMEP · 6 2. D Z } } o } P Ç! 2.1 Simulations! Each mode lling team carried out four model! simulations with different horizontal! resolutions. The simulations were performed

21

Figure  6.  Modelled  annual-­‐mean  NO2  fields  (µg/m3)  at  M1  (56km)  and  M4  (7km)  resolution.    

Page 23: ScaleDep! - EMEP · 6 2. D Z } } o } P Ç! 2.1 Simulations! Each mode lling team carried out four model! simulations with different horizontal! resolutions. The simulations were performed

22

Figure  7.  Modelled  annual-­‐mean  O3  fields  (µg/m3)  at  M1  (56km)  and  M4  (7km)  resolution.    

Page 24: ScaleDep! - EMEP · 6 2. D Z } } o } P Ç! 2.1 Simulations! Each mode lling team carried out four model! simulations with different horizontal! resolutions. The simulations were performed

23

 3.2      Scale  dependency  of  model  performances      3.2.1      PM10    In  Figure  8  the  annual  average  PM10  concentrations  are  grouped  by  station  types  (i.e.  all   stations   belonging   to   a   station   type   are   grouped   together).   For   PM10,   the   grid  resolution   increment   is   very  weak   at   AIRBASE   rural   and   EMEP   stations   in   all  models.  Models  exhibit  a  similar  behaviour  in  terms  of  impact  of  resolution  but  the  magnitude  is  different.   Urban   increments   are   similar   for   the   CHIMERE,   LOTOS-­‐EUROS,   and   RCGC,  whereas  for  EMEP  and  CMAQ  they  are  significantly  lower.  For  EMEP  we  explain  this  by  the  difference   in  the  surface  layer  depth,  being  deeper   in  EMEP.  Note  that  all  models  show  more  or  less  the  same  steps  for  each  increase  in  resolutions.      

   

Figure  8.  Annual  averaged  PM10  concentrations  per  station  type,  from  left  to  right:  EMEP  (E),  Rural  (R),  Urban(U)  for  the  4  spatial  resolution  (light  blue  EC4M4-­‐7km,  orange  EC4M3-­‐14km,  dark  blue  EC4M3-­‐28km,  red  EC4M1-­‐56km).  U  groups  are  based  on  the  30  km  radius;  E  and  R  groups  are  based  on  a  radius  of  200  km.  

 

Page 25: ScaleDep! - EMEP · 6 2. D Z } } o } P Ç! 2.1 Simulations! Each mode lling team carried out four model! simulations with different horizontal! resolutions. The simulations were performed

24

A  significant  part  (~70%)  of  the  concentration  increment  (7-­‐56  km)  can  be  explained  by  the   emission   density   increment   as   demonstrated   by   the   high   values   of   R2   (Figure   9),  with   the   exception   of   CMAQ.   This   is   mostly   seen   for   EMEP,   CHIMERE,   and   RCGC  whereas  some  additional  variance  in  the  concentration  increments  is  seen  for  the  other  models.  Most  of  this  additional  variance  happens  in  stations  belonging  to  countries  like  Italy,   Greece,   Portugal   and   Spain.   CHIMERE   and   RCGC   clearly   show   the  most   intense  response   followed   by   LOTOS-­‐EUROS   whereas   EMEP   and   CMAQ   exhibits   significantly  lower  increments.    The  absolute  grid  effect  for  PM10  is  lower  than  for  NO2  (see  Section  3.2.2),  as  explained  by  the  higher  importance  of  the  rural  background  levels  containing  secondary  material  for   PM10.   On   the   other   hand,   the   slopes   for   PM10   expressing   the   concentration  increase   per   unit   emission   are   steeper   than   for   NO2.   Possible   explanation   for   the  steeper  slopes  and  slightly  different  behaviour  for  PM10  in  comparison  to  NO2  may  lie  in  the  fact  that  NO2  increments  may  be  limited  due  to  the  availability  of  ozone  as  NO2  is  formed  through  titration  of  ozone.    

 Figure   9.   Relation   between   PM10   concentrations   (µg/m3)   and   PPM   emission   deltas   for  EC4M1-­‐56km  and  EC4M4-­‐7km  resolutions.  Stations  are  indicated  per  country.  

Page 26: ScaleDep! - EMEP · 6 2. D Z } } o } P Ç! 2.1 Simulations! Each mode lling team carried out four model! simulations with different horizontal! resolutions. The simulations were performed

25

Figure   10   shows,   for   the   EMEP   model   (similar   LOTOS-­‐EUROS,   RCGC,   CMAQ)   and  CHIMERE   the   annual   mean   PM10   concentrations   at   the   urban   stations   per  agglomeration.   In  this  picture  the  same  reduction   in   the  bias   is  observed  as  given   in  Figure   8.   Here   it   can   be   seen   that   the   response   per   agglomeration   is   variable.   For  EMEP,  the  impact  of  an  increase  in  resolution  is  small,  except  for  the  city  of  Krakow,  where  the  major  impact  is  seen  between  EC4M2-­‐28km  and  EC4M3-­‐14km.    For  CMAQ,  the   impact   of   resolution   is   more   significant.   In   particular   we   notice   the   difference  between   EC4M3-­‐14km  and   EC4M4-­‐7km   for   cities   like,   Krakow,  Munchen,   Paris,   and  Rome.    

Figure  10.  EMEP  (similar  for  LOTOS-­‐EUROS,  RCGC,  CMAQ)  and    CHIMERE  results  for  annual  averaged  PM10  concentrations  per  city  area  for  urban  background  stations  at  the  4  spatial  resolutions   (light   blue   EC4M4-­‐7km,   orange   EC4M3-­‐14km,   dark   blue   EC4M2-­‐28km,   red  EC4M1-­‐56km)      A   summary  of   the   spatial   statistical  analysis   for   daily  PM10   is  given   in   Figure  11.  The  main  findings  are:    

-­‐ Spatial   correlation   is   hardly   affected   by   resolution   change   (with   the   exception   of  CMAQ)  but  the  slope  is  significantly  improved  with  higher  resolution  as  a  result  of  a  lower  bias  at  urban  stations.        

-­‐ At  urban  locations  and  comparing  EC4M1-­‐56km  to  EC4M4-­‐7km,  the  bias  for  PM10  reduced   by   almost   6.5   µg/m3   for   CHIMERE,   by   5.5   µg/m3   for   RCGC   and   LOTOS-­‐EUROS,  whereas   the   EMEP   bias   reduces   about   3.3   µg/m3   and   only   1.2   µg/m3   for  CMAQ.    

 -­‐ Performance  at  rural  sites  is  stable  with  resolution  in  all  models,  except  for  CMAQ  

where  an  increase  is  seen  for  Slopes  and  Correlations.    

Page 27: ScaleDep! - EMEP · 6 2. D Z } } o } P Ç! 2.1 Simulations! Each mode lling team carried out four model! simulations with different horizontal! resolutions. The simulations were performed

26

Figure   11.   Summary   of   statistical   analysis   for   daily   PM10.   Note   the   different   scales  between  the  station  groups  

 3.2.2        NO2   As   seen   in   Figure   12   where   the   annual   average   NO2   concentrations   are   grouped   by  station  types,  the  grid  resolution  increment  is  as  expected  very  weak  at  rural  and  EMEP  stations.   It   is   interesting   to   note   the   small   decrease   of   NO2   modelled   at   the   EMEP  stations.  All  models  agree  with  a  negligible   impact  at   rural  and  EMEP  stations  and  on  the  trends  at  urban  stations.  Although  the  magnitude  differs  between  models,  the  gain  resulting   from  an   increased   resolution   is   significant   for  urban   stations   (from  10   to  20  µg/m3   between   EC4M1-­‐56km   and   EC4M4-­‐7km).   The   largest   increments   are   seen   for  CHIMERE  and  RCGC  and  slightly  lower  responses  for  the  other  models.  For  EMEP,  LOTO  and  CMAQ,  the  largest  gains  seem  to  be  between  M1(56km)  and  M2(28km)  and  from  M2(28km)   to  M3(14km)  with  a  kind  of   saturation   to   the  higher   resolutions.  CHIMERE  and  RCGC  react  more  regularly  to  the  resolution  change  than  the  others.    

Page 28: ScaleDep! - EMEP · 6 2. D Z } } o } P Ç! 2.1 Simulations! Each mode lling team carried out four model! simulations with different horizontal! resolutions. The simulations were performed

27

Figure   12.   Annual   averaged  NO2   concentrations   per   station   type,   from   left   to   right:  EMEP   (E),   Rural   (R),   Urban   (U),   for   the   4   spatial   resolution   (light   blue   EC4M4-­‐7km,  orange  EC4M3-­‐14km,  dark  blue  EC4M3-­‐28km,  red  EC4M1-­‐56km).  U  groups  are  based  on  a  radius  of  30  km,  E  and  R  on  200  km  radius.  

One  of  the  major  causes  of  these  model  resolution  increments  is  the  emissions,  and  in  particular   the   differences   between   emission   densities   at   fine   and   coarse   resolutions.  Figure  13  illustrates  the  relation  between  concentration  deltas  (Concentration  [7km]    Concentration  [56km])  and  emission  deltas  (Emission  [7km]    Emission  [56km]).  As  seen  from  this   figure  most  of   the   concentration   increment   (delta)   can  be  explained  by   the  emission   delta.   The   spread   around   the   trend   line   provides   some   information   on   the  importance  of  other   factors  such  as  the   local  meteorological  or  the  role  of  chemistry.  Most   of   this   additional   spread   happens   in   stations   belonging   to   countries   like   Italy,  Greece,   Portugal   and   Spain.   About   70%   of   the   model   response   to   grid   resolution   is  determined   by   the   difference   in   emission   strength   with   the   exception   of   CMAQ   for  which  this  number  reduces  to  about  50%.    

Page 29: ScaleDep! - EMEP · 6 2. D Z } } o } P Ç! 2.1 Simulations! Each mode lling team carried out four model! simulations with different horizontal! resolutions. The simulations were performed

28

Figure   13.   Relation   between   NO2   concentrations   (µg/m3)   deltas   and   NOx   emission   deltas  between  EC4M1-­‐56km  and  EC4M4-­‐7km  resolutions.  Stations  are  indicated  per  country.  

 Figure   14   shows,   for   the   EMEP   model   (similar   LOTOS-­‐EUROS,   CMAQ)   and   CHIMERE  (similar   RCGC),   the   annual   mean   NO2   concentrations   at   the   urban   stations   per  agglomeration.   In   this   picture   the   same   reduction   in   the   bias   is   observed   as   given   in  Figure   12.   Here   it   can   be   seen   that   the   response   per   agglomeration   is   variable.   For  EMEP,   the   differences   for   Hamburg   and   Prague   are   small,   whereas   the   increase   of  resolution   from  EC4M1-­‐56km  to  EC4M4-­‐7km   for  Barcelona,  Brussels,   London,  Madrid,  and  Paris  are  similar  (no  change  from  EC4M3-­‐14km  to  EC4M4-­‐7  km).  Athens  is  a  special  case  with  regular  large  differences  (13  µg/m3)  between  the  resolutions.  For  CHIMERE  we  notice  small  impact  in  the  City  areas  of  Bilbao,  Marseilles  and  Prague,  while  the  increase  in   resolution   from   EC4M1-­‐56km   to   EC4M4-­‐7km   is   significant   in   contrast   to   the   EMEP  group  results.  

Page 30: ScaleDep! - EMEP · 6 2. D Z } } o } P Ç! 2.1 Simulations! Each mode lling team carried out four model! simulations with different horizontal! resolutions. The simulations were performed

29

Figure   14.   EMEP   (similar   for   LOTOS-­‐EUROS,   CMAQ)   and     CHIMERE   (similar   RCGC)   results   for  annual   averaged   NO2   concentrations   per   city   area   for   urban   background   stations   at   the   4  spatial   resolutions   (light  blue  EC4M4-­‐7km,  orange  EC4M3-­‐14km,  dark  blue  EC4M2-­‐28km,   red  EC4M1-­‐56km)  

The  spatial   variation   is   further   looked  at   in  Figure  15.  These   show   that   the  explained  spatial   variability   improves   as   function   of   resolution.  Moreover,   the   slope   of   the   fits  increase   significantly   indicating   that   the  models   explain   better   the  magnitude   of   the  variability  between  urban  regions.      

 

Page 31: ScaleDep! - EMEP · 6 2. D Z } } o } P Ç! 2.1 Simulations! Each mode lling team carried out four model! simulations with different horizontal! resolutions. The simulations were performed

30

Figure   15.   Comparison   of   observed   and  modelled   annual   average   concentrations   of  NO2   for   the   urban   agglomerations.   For   the   EC4M1-­‐56km   (upper   panel)   and   EC4M4-­‐7km  (lower  panel)  the  fits  parameters  are  shown.  

 A   summary  of   the   spatial   statistical   analysis   for  hourly  NO2   is   given   in   Figure  16.  The  main  findings  are:    

-­‐ As   expected   performance   at   rural   sites   is   stable   with   resolution,   although   a  significant   increase   in   the   slope   is   seen   for   CMAQ,   and   to   a   lesser   extent   for  CHIMERE.  

 

-­‐ For  urban  stations  there  is  a  strong  dependence  on  the  resolutions,  with  an  increase  in  slopes,  and  increase  in  correlations,  and  a  reduction  of  the  bias  for  all  the  models.  The  largest  gaina  appear  to  occur  between  EC4M1-­‐56km  and  EC4M3-­‐14km,  with  a  saturation  between  EC4M3-­‐14km  and  EC4M4-­‐7km.    

Figure   16.   Summary   of   statistical   analysis   for   hourly   NO2.   Note   the   different  scales  between  the  station  groups  

 3.2.3      Ozone    For  ozone  we  focus  our  analysis  on  the  model  performance  for  the  daily  maximum  of  the  running  8  hour  mean.  The  reason  is  that  the  analysis  is  then  focussed  on  the  high  ozone  regime  during  daytime,  and  is  less  sensitive  to  the  impact  of  differences  between  models  on  night  time  mixing  and  titration.  First,   the  annual  average  O3Max8Hr   levels  (Figure  17)  show  a  different  behaviour  compared  to  PM  and  NO2.  Due  to  the  secondary  nature  of  ozone  combined  with  the  titration  impact  of  NOx  emissions  near  sources  the  levels  are   lower   inside  a  city   than  outside.  The  average  pattern  as   function  of  station  

Page 32: ScaleDep! - EMEP · 6 2. D Z } } o } P Ç! 2.1 Simulations! Each mode lling team carried out four model! simulations with different horizontal! resolutions. The simulations were performed

31

type   and   the   response   to   a   resolution   change   between   all   models   is   very   similar.  Average  levels  for  urban  stations  decrease  towards  the  observed  values  for  all  models.    

 

Figure   17.   Annual   averaged   ozone   concentrations   per   station   type,   from   left   to  right:  Urban  (U),  Rural  (R),  EMEP  (E),  for  the  4  spatial  resolution  (light  blue  EC4M4-­‐7km,   orange   EC4M3-­‐14km,   dark   blue   EC4M2-­‐28km,   red   EC4M1-­‐56km).   U   City  groups  are  based  on  the  30  km  radius  ;  E  and  R  groups  are  based  on  a  radius  of  200  km  

The   model   performance   evaluation   shows   that   the   models   do   not   respond   to   the  resolution  change  in  the  rural  areas  (see  Figures  17  and  18).  Statistical  parameters  are  more  or  less  constant.  At  rural  stations  the  impact  of  resolution  is  rather  small,  while  an  increase  in  resolution  has  a  significant  effect  for  the  urban  locations.  At  these  stations  the   slopes   decrease   for   EMEP,   LOTOS-­‐EUROS   and   RCGC,   while   CHIMERE   and   CMAQ  show  a  minimum  at  EC4M2-­‐28km.  Spatial  correlations  decrease  slightly  with  increasing  resolution.  Also  the  urban  bias  improve,  except  for  LOTOS-­‐EUROS.  However,  increasing  resolution  and  adding  more  local  variability  decreases  the  representation  of  the  spatial  contrasts,   although   for   NO2   the   spatial   patterns   become   better   between   cities.   This  may  mean   that   it   is  not   the  variability   in  NOx  emission  source  strengths  between   the  

Page 33: ScaleDep! - EMEP · 6 2. D Z } } o } P Ç! 2.1 Simulations! Each mode lling team carried out four model! simulations with different horizontal! resolutions. The simulations were performed

32

urban  regions  that  is  the  most  important  uncertainty  for  ozone  gradients  during  the  day  at   these   scales.   Instead,   differences   in   mixing   regimes,   chemical   regimes   and  uncertainties  in  NMVOC  speciation  could  be  more  important.  

Figure  18.  Summary  of  statistical  analysis  for  O3Max8hr.  Note  the  different  scales  between  the  station  groups  

3.3        Scale  dependency  in  terms  of  seasonal  variations  

Comparison  between  the  5  model   results  at   two  horizontal   resolutions   (EC4M1-­‐56km  and  EC4M4-­‐7km)  against  observations  was  performed  in  order  to  evaluate  the  impact  of  an  increased  resolution  on  the  representation  of  the  variation  between  summer  and  winter  of   the  PM10,  NO2,  and  O3   concentrations.  The  dynamical  evaluation  approach  was   used   in   order   to   better   apprehend   the   seasonal   variability   of   these   three  pollutants.   Three   types   of   stations  were   studied:   EMEP,   rural   and   urban.   Results   are  shown  in  Figure  19.  The   dynamic   evaluation   of   the   model   performance   shows   that   the   models   do   not  respond   much   to   the   resolution   change   in   all   three   types   of   stations.   For   O3,   slight  improvement  of  the  representation  of  the  seasonal  variability  in  urban  and  rural  areas  can  be  seen  in  Figure  19a  and  Figure  19b  especially  for  CHIMERE  and  RCGC  for  which  the  underestimation  of  the  variation  summer-­‐winter  by  the  models  is  slightly  reduced.  For   NO2,   LOTOS   better   reproduces   the   summer-­‐winter   difference   at   7   km   in   urban  areas,  but  no  remarkable  differences  for  the  other  models  at  the  three  types  of  stations  (Fig.  19c  and  19d)  are  seen.  For  PM10,   increasing   the   resolution   from  56  km  to  7  km  improved  the  results  of  the  5  models  in  urban  areas.  No  significant  changes  were  seen  for  O3  (Fig.  19e  and  19f).  

Page 34: ScaleDep! - EMEP · 6 2. D Z } } o } P Ç! 2.1 Simulations! Each mode lling team carried out four model! simulations with different horizontal! resolutions. The simulations were performed

33

Overall,   the   horizontal   resolution   does   not   seem   to   play   a   major   role   in   the  performance   of   the  models   in   reproducing   the   seasonal   variability   between   summer  and  winter  for  O3,  NO2  and  PM10  concentrations  at  different  type  of  stations.    

Figure   19:   Differences   between   the   O3   concentrations   in   summer   and   in   winter  observed  values  on  the  x-­‐axis  and  modelled  results  on  the  y-­‐axis.  (a)  shows  the  results  for   the   5   models   at   56   km   of   horizontal   resolution   and   (b)   at   7km   of   horizontal  resolution.  (c)  idem  as  (a)  but  for  NO2.  (d)  idem  as  (b)  but  for  NO2.  (e)  idem  as  (a)  but  for  PM10  and  (f)  idem  as  (b)  but  for  PM10.  Stations  are  grouped  as  Urban  (U),  Rural  (R),  and  EMEP  (E).  

Page 35: ScaleDep! - EMEP · 6 2. D Z } } o } P Ç! 2.1 Simulations! Each mode lling team carried out four model! simulations with different horizontal! resolutions. The simulations were performed

34

3.4        Scale  dependency  in  terms  of  PM10  components    A  comparison  between  the  model  results  at  EC4M4-­‐7km  and  EC4M1-­‐56km  in  terms  of  concentrations  of  the  main  PM10  components  (i.e.  PPM10,  NO3

-­‐,  SO42-­‐,  NH4

+,  Dust  and  Sea  Salt)  at   three  different  station  groups   (urban,   rural  and  EMEP)   is   shown   in  Figure  20.  For  PPM10,  the  

-­‐ -­‐  

 

   

 

µg/m3

   

 Figure  20.  Scale  dependency  in  terms  of  PM10  components  for  EC4M1-­‐56km  resolution  compared  to  EC4M4-­‐7km  resolution  indicated  by                

Page 36: ScaleDep! - EMEP · 6 2. D Z } } o } P Ç! 2.1 Simulations! Each mode lling team carried out four model! simulations with different horizontal! resolutions. The simulations were performed

35

Figures  21  and  22  show  the  impact  of  resolution  (EC4M1-­‐56km  vs  EC4M4-­‐7km)  for  the  Sulphate  and  Nitrate  components  of  PM10.  Figure  21  shows  the  annual    mean  value  of  SO4-­‐10  at  three  groups  of   EMEP   stations   (DE,   ES,   IT),  where   sufficient  observational   data  were  available.   The  German   and   the   Italian   group   are   composed   of   only   one   station,   while   the   Spanish   group  contains  5  stations  (see  Table  7)      

Group   EMEP  Station  Codes   Station  Names  DE   DE0044R   Melpitz  ES   ES0008R  

ES0010R  ES0014R  ES0016R  ES0036R  

Niembro  Cabo_de_Creus  Els_Torms  O_Saviñao  Montseny  

IT   IT0001R   Montelibretti    

Table  7.  Groups  of  EMEP  stations  used  for  the  Sulphate  and  Nitrate  analysis.   As   expected,   the   impact   of   resolution   on   SO4-­‐10   is   consistent   with   figure   20   (SO4,  EMEP)   where   a   larger   set   of   EMEP   stations   was   considered   (see   Section   7.6).   A  comparison  with  observations   shows   that   the  model   results   range,   roughly   speaking,  from   50%   of   the   observational   values   to   150%   with   the   remark   that   the   CHIMERE  model  is  overestimating  in  all  cases,  while  EMEP,  LOTO  and  CMAQ  are  underestimating.  RCGC  performs  well  at  the  DE  stations,  but  underestimates  at  ES  and  IT.    

Figure   21.   Impact   of   resolution   (M1   vs   M4)   on   the   annual   mean   value   of   SO4-­‐10   and  comparison   with   observations   at   some   EMEP   stations   in   DE   (Germany),   ES   (Spain),   and   IT  (Italy).

 Similar   remarks   hold   for   NO3-­‐10   in   Figure   22.   Small   impact   of   resolution   on   model  results,  and  in  general  an  underestimation  of  the  observations,  except  for  CMAQ  in  DE  and  ES  (M1).  

 

Page 37: ScaleDep! - EMEP · 6 2. D Z } } o } P Ç! 2.1 Simulations! Each mode lling team carried out four model! simulations with different horizontal! resolutions. The simulations were performed

36

Figure   22.   Impact   of   resolution   (M1   vs   M4)   on   the   annual   mean   value   of   NO3-­‐10   and  comparison   with   observations   at   some   EMEP   stations   in   DE   (Germany),   ES   (Spain),   and   IT  (Italy).

It   should   be   mentioned   here   that   the   MOD-­‐OBS   intercomparison   was   not   the   main  objective   of   this   study   which   was   more   focused   on   the   scale   dependency   of   model  results.   These   two   MOD-­‐OBS   intercomparisons   are   just   two   examples   of   a   (future)  larger   study   on   model   validation   of   PM   components,   for   which   high   quality  observational  data  is  needed.  We  refer  to  ongoing  work  within  the  EuroDelta  project.  

Page 38: ScaleDep! - EMEP · 6 2. D Z } } o } P Ç! 2.1 Simulations! Each mode lling team carried out four model! simulations with different horizontal! resolutions. The simulations were performed

37

4.    

The  ScaleDep  exercise   showed   that   the  model   responses   to  an   increase   in   resolution  show  a  broadly  consistent  picture  among  all  models.      The  analysis  showed  that  the  grid  size  does  not  play  a  major  role  for  air  quality  model  calculations  which  are  targeted  on  the  determination  of  the  background  (non-­‐urban)  air  quality.  Downscaling  model  resolution  does  not  change  concentration  estimations  and  model  performance  at  rural  and  EMEP  sites.    The   grid   resolution   plays   an   important   role   in   agglomerations   characterized   by   high  emission   densities.   The   urban   signal,   i.e.   the   concentration   difference   between   high  emission  areas  and  their  surroundings,  usually  increases  with  decreasing  grid  size.  This  grid   effect   is   more   pronounced   for   NO2   than   for   PM10,   because   a   large   part   of   the  urban  PM10  mass  consists  of  secondary  components.  This  part  of  the  PM10  mass  is  less  affected   by   a   decreasing   grid   size   in   contrast   to   the   locally   emitted   primary  components.      The   grid   effect   differs   between   urban   regions.   The   strength   of   the   urban   signal   is   a  function   of   local   emissions   conditions   (extension   of   the   emission   areas,   emission  density,  emission  gradient,  etc.)  and  meteorological  conditions  determining  ventilation  efficiency.  For  similar  emission  conditions,  regions  with  weak  wind  conditions  will  show  a  stronger  urban  signal  than  well  ventilated  regions.      For   all   models,   increasing   model   resolution   improves   the   model   performance   at  stations  near  large  conglomerations  as  reflected  by  lower  biases  for  PM10,  NO2,  and  O3  and  increased  spatial  correlation  for  NO2.    As  about  70%  of  the  model  response  to  grid  resolution  is  determined  by  the  difference  in   emission   strength,   improved   knowledge   on   spatial   variation   in   emission   at   high  resolution  is  key  for  the  improvement  of  modelled  urban  increments.  For  this  purpose  one   relies   on   the   replacement   of   currently   used   top-­‐down   European  wide   data  with  national  expertise.    It  should  be  mentioned  that  there  are  many  benefits  to  having  emissions  data  collected  at  finer  resolution  than  investigated  here.  One  major  reason  is  that  there  is  a  frequent  need  to  re-­‐project  emissions  data  in  different  coordinate  systems.  In  the  near  future  for  example   there   will   be   a   need   to   run   models   in   either   the   traditional   EMEP   polar-­‐stereographic  projection,  or  longitude-­‐latitude.  Indeed,  even  the  long-­‐lat  projection  of  0.1°  resolution  suggested  for  EMEP  does  not  fit  perfectly  with  the  0.125°  system  used  here.   Further,   there   is   an   increasing   need   to   use   meteorology   from   global   and/or  regional   climate   models,   and   these   can   use   so-­‐called   rotated   longitude-­‐latitude  projections.  With  any  re-­‐mapping,  the  finer  the  resolution  of  the  base  emissions  system  the  more  accurate  any  re-­‐mapped  emission  inventory  can  be.    It  is  difficult  to  define  a  grid  size  that  is  adequate  to  resolve  the  urban  signal  under  all  conditions  occurring  in  a  European-­‐wide  modelling  area.  Ideally,  a  grid  size  in  the  range  

Page 39: ScaleDep! - EMEP · 6 2. D Z } } o } P Ç! 2.1 Simulations! Each mode lling team carried out four model! simulations with different horizontal! resolutions. The simulations were performed

38

of  a  few  km  down  to  1  km  should  be  chosen.  Such  a  small  grid  size   is  not  feasible  for  regional  model  applications  because  the  data  demands  and  operating  requirements  are  far  too  large.      If   the   main   emphasis   of   a   model   application   is   targeted   on   the   determination   of  background  air  quality  for  rural  areas  and  large  agglomerations,  the  grid  scale  EC4M2-­‐28km  (0.5°  Longitude  and  0.25°  Latitude)  or,  if  the  data  and  operational  requirements  can   be   fulfilled,   the   grid   scale   EC4M3-­‐14km   (0.25°   Longitude   and   0.125°   Latitude)  seems   to   be   a   good   compromise   between   a   pure   background   application   and   an  application  which  reproduces  most  of  the  urban  signals  (EC4M4-­‐7km  resolution  or  even  higher  resolution).    It   should   be   noted   that   the   response   is   more   significant   for   CHIMERE   simulations  compared  to  the  other  participating  models.  It  seems  to  be  due  to  a  specific  treatment  of   the   mixing   parameterization   over   urban   areas.   This   point   is   still   investigated   by  INERIS  with  sensitivity  analyses.      The  limited  impact  on  regional  scale  model  performance  shows  that  a  continuing  effort  is   needed   to   better   understand   atmospheric   processes   and   interactions   with   the  surface,  and  to  improve  our  knowledge  on  emissions  (amount,  speciation,  location  and  timing).  

Page 40: ScaleDep! - EMEP · 6 2. D Z } } o } P Ç! 2.1 Simulations! Each mode lling team carried out four model! simulations with different horizontal! resolutions. The simulations were performed

39

5.    

The  modelling   teams   that   provided   input   to   this   exercise  were   funded   through   their  own  channels.    The   EMEP   MSC-­‐W   team   received   funding   through   EMEP   under   UN-­‐ECE,   as   well   as  through  the  EU  ECLAIRE  project.    INERIS  was  funded  by  the  French  Ministry  in  charge  of  Ecology.  The  LOTOS-­‐EUROS  modelling  team  was  funded  by  the  Dutch  Ministry  for  Infrastructure  and  Environment.  The  RCGC  modelling  team  was  funded  by  Umweltbundesamt  Germany,  project  number  21981.  The   CMAQ   model -­‐

-­‐0050)   from   the   Consolider-­‐Ingenio   2010   program   of   the  Spanish  Ministry  of  Economy  and  Competitivity.  

Page 41: ScaleDep! - EMEP · 6 2. D Z } } o } P Ç! 2.1 Simulations! Each mode lling team carried out four model! simulations with different horizontal! resolutions. The simulations were performed

40

6.    

Kuenen,   J.,   H.   Denier   van   der   Gon,   A.   Visschedijk,   H.   van   der   Burgh,   R.   van   Gijlswijk:  MACC  European  emission  inventory  2003-­‐2007,  TNO  report,  TNO-­‐060-­‐UT-­‐2011-­‐00588    Pay  M.T.,  P.  Jiménez-­‐Guerrero,  O.  Jorba,  S.  Basart,  M.  Pandolfi,  X.  Querol,  and  J.M.  Baldasano:  Spatio-­‐temporal   variability   of   levels   and   speciation   of   particulate  matter   across   Spain   in   the  CALIOPE  modelling  system.  Atmos  Environ,  46,  376-­‐396,  2012.    Thunis   P.,   C.   Cuvelier,   P.   Roberts,   L.   White,   L.   Post,   L.   Tarrason,   S.   Tsyro,   R.   Stern,   A.  Keschbaumer,   L.Rouil,   B.   Bessagnet,   R.   Bergstrom,   M.   Schaap,   G.   Boersen,   P.   Builtjes:    EuroDelta-­‐II,  Evaluation  of  a  Sectorial  Approach  to  Integrated  Assessmnet  Modelling   including  the  Mediterranean  Sea.  JRC  Scientific  and  Technical  Reports    EUR  23444  EN  2008.    Thunis  P.,  E.  Georgieva,  A.  Pederzoli,  2011:  The  DELTA  tool  and  Benchmarking  Report  template:  

http://fairmode.ew.eea.europa.eu/    Törseth,   K.;   Aas,  W.;   Breivik,   K   Fjæraa,   A.  M.;   Fiebig,  M.;   Hjellbrekke,   A.   G.;   Lund  Myhre,   C.;  Solberg,  S.  &  Yttri,  K.  E.   Introduction   to   the  European  Monitoring  and   Evaluation  Programme  (EMEP)   and   observed   atmospheric   composition   change   during   1972-­‐-­‐2009   Atmos.   Chem.  Physics,  2012,  12,  5447-­‐5481    Vautard,   R.,   B.   Bessagnet,   M.   Chin,   and   L.   Menut:   On   the   contribution   of   natural   Aeolian  sources   to   particulate  matter   concentrations   in   Europe:   testing   hypotheses  with   a  modelling  approach,  Atmospheric  Environment,  39,  3291 3303,  2005.    Vestreng,   V.   ,   G.  Myhre,  H.   Fagerli,   S.   Reis,   and   L.   Tarrason:   Twenty-­‐five   years   of   continuous  sulphur  dioxide  emission  reduction  in  Europe,  Atmos.  Chem.  Phys.,  7,  3663 3681,  2007    

Page 42: ScaleDep! - EMEP · 6 2. D Z } } o } P Ç! 2.1 Simulations! Each mode lling team carried out four model! simulations with different horizontal! resolutions. The simulations were performed

41

7.    

7.1    EMEP  model  description    The  EMEP  MSC-­‐W  (Meteorological  Synthesizing  Centre  -­‐West)  model  is  a  development  of   the   3-­‐D   chemical   transport   model   of   Berge   and   Jakobsen   (1998),   extended   with  photo-­‐oxidant   and   inorganic   aerosol   chemistry   (Andersson-­‐Sköld   and   Simpson,   1999;  Simpson  et  al.,  2003,  2012),  and  organic  aerosol  modules   (Bergström  et  al.,  2012).   In  this   exercise   we   use   model   version   rv4beta12,   which   is   identical   to   the   rv4   version  documented  in  Simpson  et  al.  (2012)  except  for  some  minor  updates.    

The  model   includes   20   vertical   layers,   using   terrain-­‐following   coordinates;   the   lowest  layer  has  a  thickness  of  about  90m.  The  meteorological  fields  for  2009  are  derived  from  the   European   Centre   for  Medium   Range  Weather   Forecasting   Integrated   Forecasting  System  (ECMWF-­‐IFS)  model  (http://www.ecmwf.int/research/ifsdocs )  /  The  model  uses  essentially  two  modes  for  particles,   fine  and  coarse  aerosol,  although  assigned  sizes   for   some  coarse  aerosol  vary  with  compound.  The  parameterization  of  the  wet  deposition  in  the  model  is  based  on  Berge  and  Jakobsen  (1998)  and  includes  in-­‐cloud   and   sub-­‐cloud   scavenging   of   gases   and   particles.   Further   details,   including  scavenging  ratios  and  collection  efficiencies,  are  given  in  Simpson  et  al.  (2012).      Boundary   concentrations   of  most   long-­‐lived  model   components   are   set   using   simple  functions  of  latitude  and  month  (see  Simpson  et  al.,  2012  for  details).  For  ozone  more  accurate   boundary   concentrations   are   needed   and   these   are   based   on   climatological  ozone-­‐sonde   data-­‐sets,   modified   monthly   against   clean   air   surface   observations   at  Mace  Head  on  the  west  coast  of  Ireland  (Simpson  et  al.,  2012).      REFERENCES  

Andersson-­‐Sköld,  Y.  and  Simpson,  D.:  Comparison  of  the  chemical  schemes  of  the  EMEP  MSC-­‐W  and  the  985  IVL  photochemical  trajectory  models,  Atmos.  Environ.,  33,  1111 1129,  1999.    Berge,  E.  and  Jakobsen,  H.  A.:  A  regional  scale  multi-­‐layer  model  for  the  calculation  of  long-­‐term  transport  and  deposition  of  air  pollution  in  Europe,  Tellus,  50,  205 223,  1998.    Bergström,  R.,  Denier  van  der  Gon,  H.A.C.;  Prévôt,  A.S.H.,  Yttri,  K.E.,  and  Simpson,  D.:  Modelling  of   organic   aerosols   over   Europe   (2002-­‐2007)   using   a   volatility   basis   set   (VBS)   framework:  application   of   different   assumptions   regrading   the   formation   of   secondary   organic   aerosols.  Atmos.  Chem.  Phys.,  12,  5425-­‐5485,  2012.      Bott,   A.   A   positive   definite   advection   scheme  obtained  by   non-­‐linear   re-­‐normalization   of   the  advection  fluxes  Mon.  Weather  Rev.,  1989,  117,  1006-­‐1015Köhler,  I.;  Sausen,  R.  &  Klenner,  G.  NOx  production  from  lightning  1995,  343-­‐345    

Page 43: ScaleDep! - EMEP · 6 2. D Z } } o } P Ç! 2.1 Simulations! Each mode lling team carried out four model! simulations with different horizontal! resolutions. The simulations were performed

42

Koeble,  R.  and  Seufert,  G.,  2002,    Novel  maps  for  forest  trees  in  Europe.  Proceedings  of  the  8th  European  Symposium  on  the  Physico-­‐Chemical  Behaviour  of  Atmospheric  Pollutants.  JRC  Ispra.  Köhler,   I.,   Sausen,   R.   ,   Klenner,   G.   NOx   production   from   lightning   1995,   Report   DLR  Oberpfaffenhofen,  Germany,    p.343-­‐345    Simpson,  D.,   Fagerli,  H.,   Jonson,   J.,   Tsyro,   S.,  Wind,  P.,   and  Tuovinen,   J.-­‐P.:   The  EMEP  Unified  Eulerian   Model.   Model   Description,   EMEP   MSC-­‐W   Report   1/2003,   The   Norwegian  Meteorological  Institute,  Oslo,  Norway,  2003.    Simpson,  D.,  Benedictow,  A.,  Berge,  H.,  Bergström,  R.,  Emberson,  L.  D.,  Fagerli,  H.,  Flechard,  C:  Hayman,  G.  D.,  Gauss,  M.,  Jonson,  J.  E.,  Jenkin,  M.  E.,  Nyíri,  Á.,  Richter,  C.,  Semeena,  V.  S.,  Tsyro,  S.,  Tuovinen,  J.-­‐P.,  Valdebenito,  A.,  and  Wind,  P.:  The  EMEP  MSC-­‐W  chemical  transport  model    technical   description,   Atmos.   Chem.   Phys.   12,   7825-­‐7865,   doi:10.5194/acp-­‐12-­‐7825-­‐2012,  http://www.atmos-­‐chem-­‐phys.net/12/7825/2012/,  2012.    Tsyro,   S.;   Aas,   W.;   Soares,   J.;   Sofiev,   M.;   Berge,   H.   &   Spindler,   G.   Modelling   of   sea   salt  concentrations  over  Europe:  key  uncertainties  and  comparison  with  observations  Atmos.  Chem.  Physics,  2011,  11,  10367-­‐10388    Tuovinen,   J.-­‐P.;   Ashmore,   M.;   Emberson,   L.   &   Simpson,   D.   Testing   and   improving   the   EMEP  ozone  deposition  module  Atmos.  Environ.,  2004,  38,  2373-­‐2385  

Page 44: ScaleDep! - EMEP · 6 2. D Z } } o } P Ç! 2.1 Simulations! Each mode lling team carried out four model! simulations with different horizontal! resolutions. The simulations were performed

43

7.2    CHIMERE  model  description    CHIMERE  is  designed  to  calculate  the  concentrations  of  usual  chemical  species  that  are  involved  in  the  physic-­‐chemistry  of  the  low  troposphere.  CHIMERE  has  been  described  in   detail   several   times:   Schmidt   et   al.   (2001)   for   the   dynamics   and   the   gas   phase  module;  Bessagnet  et  al.  (2004,  2008,  2009)  for  the  aerosol  module.  The  aerosol  model  species   are   sulphates,   nitrates,   ammonium,   secondary  organic   aerosol   (SOA),   sea-­‐salt  and   dust.   The   particles   size   distribution   ranges   from   40   nm   to   10   µm   and   are  distributed  into  8  bins  (0.039,  0.078,  0.156,  0.312,  0.625,  1.25,  2.5,  5,  10  µm).  For  more  detail  on  the  latest  development  one  can  refer  to  the  online  documentation  :  (http://www.lmd.polytechnique.fr/chimere).    A  coarse  domain  encompassing  the  four  nested  domain  has  been  defined  with  a  50  km  resolution.  Boundary  conditions  are  monthly  mean  climatologies  taken  from  the  LMDz-­‐INCA   (Schulz   et   al.   2006)   model   for   gaseous   species   and   from   the   GOCART   model  (Ginoux   et   al.,   2001)   for   aerosols   (desert   dust,   carbonaceous   species   and   sulphate).  Within  EC4MACS,  the  vertical  resolution  has  been  improved  close  to  the  ground  level.  Nine  vertical  levels  are  selected  with  a  first  layer  height  raising  at  20-­‐25  m.    Six  biogenic  species   (isoprene,   -­‐pinene,   -­‐pinene,   limonene,  ocimene,  and  NO)  were  calculated  using  the  MEGAN  model  (Guenther  et  al.,  2006).  We  also  accounted  for  fire  emissions   from   GFED.   The   fire   emissions   GFED   (Global   Fire   Emissions   Database)   are  derived   from   satellite   observations   (Giglio   et   al.,   2010).   These   emission   data   are  monthly   climatologies   available   on   the   1996-­‐2009   period   at   0.5   °   resolution   over  Europe.  Only  fire  emissions  of  CO,  NOx,  SO2  and  PM  components  have  been  considered  in  CHIMERE.    Correction  of  meteorology  on  urban  areas  in  CHIMERE:  In  dispersion  models  at  the  urban  scale,  the  lower  part  of  the  boundary   layer   is  often  represented   using   parameterizations   derived   from   the   theory   of   similarity   of   the  surface   layer.  The  urban  effects  are   then  considered  by  changes   in  surface   roughness  and   heat   flux.   Nevertheless,   these   formulations   should   only   be   used   in   the   inertial  sublayer  (ISL)  which  is  well  above  the  tops  of  the  building.    Indeed,  in  the  sub-­‐rough  layer  (RSL  or  urban  sublayer),  i.e.  in  the  immediate  vicinity  of  the  urban  canopy  elements,   the   flow  has  a  rather  complex  structure  (Raupach,  1980)  and  the  similarity  theory  cannot  be  applied.  Rotach  (1993ab,  1995)  analyzed  mean  flow  and  turbulence  measurements  inside  and  above  an  urban  street  canyon.  He  found  that  one   of   the   characteristic   features   of   the   RSL   is   an   increase   in   the   absolute   value   of  Reynolds  stress,  from  essentially  zero  at  the  average  zero  plane  displacement  height  up  to   a   maximum   value,   which   he   observed   at   about   two   times   the   average   building  height.  The  RSL  extends   from  the  ground   to  a   level  where  horizontal  homogeneity  of  the  flow  is  well  established,  so  about  2  to  5  times  the  average  height  of  the  elements  of  the  canopy  (Raupach  et  al.,  1991)  or  up  to  several  tens  of  meters   in  major  cities.   In  a  first   approach,   the   Schmidt   number   defined   by   the   ratio   of   diffusivity   of  momentum  and  mass  diffusion  coefficient  is  taken  equal  to  1.  Considering  this,  Kz  is  given  by  :    

Page 45: ScaleDep! - EMEP · 6 2. D Z } } o } P Ç! 2.1 Simulations! Each mode lling team carried out four model! simulations with different horizontal! resolutions. The simulations were performed

44

                                                                                                                       

zuwuKz ''                                                                                                            (7.2.1)  

Considering  this,  we  can  assume  at  urban  ground  level  a  negligible  value  of  Kz.  Then  Kz  should   increase   with   the   Reynolds   stress   to   a   maximum   value   at   2   to   5   times   the  average  height  of  the  buildings.    This  first  level  of  CHIMERE  is  currently  20  m.  This  is  clearly  two  times  under  the  average  of   the   buildings   height   in   big   cities.   So   that   we   can   assume   that   the   corresponding  Reynolds   stress   at   this   level   has   not   yet   reach   his   maximum   value   and   the  corresponding   value   of   Kz   is   overestimate   even   if   we   can   also   assume   that   Kz   is  underestimate  at  the  second  level  of  CHIMERE.  At  the  first  level  of  CHIMERE,  Kz  should  be  given  by  :    

                                                                                                        dz

zuwuKz

levelstz

z

1

0

''                                                                                          (7.2.2)  

In  a   first  approach,   if  we  assume   that   the   theory  of   similarity   is  applicable  above   the  first  level,  we  can  take  for  urban  areas  :      

                     2

theroy) similaritythewithcomputedlevelKz (first st level) Kz (z< fir          (7.2.3)  

 This  coefficient  is  applied  to  correct  the  wind  speeds  in  the  first  CHIMERE  layer  so  as  to  limit   the   advection   of   primary   pollutants   close   to   the   ground.   This   coefficient   is   a  compromise  between  several  values  reported  in  the  literature.    REFERENCES    Bessagnet,  B.,  A.  Hodzic,  R.  Vautard,  M.  Beekmann,  S.  Cheinet,  C.  Honoré,  C.  Liousse,   L.  Rouil,  Aerosol  modelling  with  CHIMERE preliminary  evaluation  at  the  continental  scale,  Atmospheric  Environment,   Volume   38,   Issue   18,   June   2004,   Pages   2803-­‐2817,   ISSN   1352-­‐2310,  10.1016/j.atmosenv.2004.02.034,  2004.    Bessagnet   B.,   L.Menut,   G.Curci,   A.Hodzic,   B.Guillaume,   C.Liousse,   S.Moukhtar,   B.Pun,  C.Seigneur,   M.Schulz   Regional   modelling   of   carbonaceous   aerosols   over   Europe   -­‐   Focus   on  Secondary  Organic  Aerosols,  Journal  of  of  Atmospheric  Chemistry,  61,  175-­‐202,  2009.    Bessagnet   B.,   L.Menut,   G.Aymoz,   H.Chepfer   and   R.Vautard,   Modelling   dust   emissions   and  transport   within   Europe:   the   Ukraine   March   2007   event,   Journal   of   Geophysical   Research   -­‐  Atmospheres,  113,  D15202,  doi:10.1029/2007JD009541,  2008.    Emberson,  L.D.,  Ashmore,  M.R.,  Simpson,  D.,  Tuovinen,  J.-­‐P.,  Cambridge,  H.M.,  2000a.  Towards  a   model   of   ozone   deposition   and   stomatal   uptake   over   Europe.   EMEP/MSC-­‐W   6/2000,  Norwegian  Meteorological  Institute,  Oslo,  Norway,  57  pp.    Emberson,   L.D.,   Ashmore,   M.R.,   Simpson,   D.,   Tuovinen,   J.-­‐P.,   Cambridge,   H.M.,   2000b.  Modelling  stomatal  ozone  flux  across  Europe.  Water,  Air  and  Soil  Pollution  109,  403-­‐413.    

Page 46: ScaleDep! - EMEP · 6 2. D Z } } o } P Ç! 2.1 Simulations! Each mode lling team carried out four model! simulations with different horizontal! resolutions. The simulations were performed

45

Giglio,  L.,  Randerson,  J.  T.,  van  der  Werf,  G.  R.,  Kasibhatla,  P.  S.,  Collatz,  G.  J.,  Morton,  D.  C.,  and  DeFries,   R.   S.:   Assessing   variability   and   long-­‐term   trends   in   burned   area   by  merging  multiple  satellite  fire  products,  Biogeosciences,  7,  1171-­‐1186,  doi:10.5194/bg-­‐7-­‐1171-­‐2010,  2010.    Ginoux,  P.,   Chin,  M.,   Tegen,   I.,   Prospero,   J.M.,  Holben,  B.,  Dubovik,  O.,   Lin,   S.-­‐J.,   Sources  and  distributions   of   dust   aerosols   simulated   with   the   GOCART   model.   Journal   of   Geophysical  Research  106,  20,255 20,273,  2001.    Guenther,   A.,   Karl,   T.,   Harley,   P.,   Wiedinmyer,   C.,   Palmer,   P.,   Geron,   C.,   2006.   Estimates   of  global  terrestrial   isoprene  emissions  using  MEGAN  (Model  of  Emissions  of  Gases  and  Aerosols  from  Nature).  Atmos.  Chem.  Phys.  6,  31813210,  2006.    Monahan,   E.C.,   Spiel,   D.E.,   Davidson,   K.L.,   1986.   A   model   of   marine   aerosol   generation   via  whitecaps  and  wave  disruption.  Oceanic  Whitecaps  and  their  role   in  air/sea  exchange,   edited  by  Monahan,  E.C,  and  Mac  Niocaill,  G.,  pp.  167-­‐174    Nenes,   A.,   Pilinis,   C.,   and   Pandis,   S.   N.,   1999,   Continued   development   and   testing   of   a   new  thermodynamic  aerosol  module  for  urban  and  regional  air  quality  models,  Atmos.  Environ.,  33,  1553 1560,  1999.    Schmidt,  H.,  Derognat,  C.,  Vautard,  R.,  Beekmann,  M.  A  comparison  of  simulated  and  observed  ozone  mixing  ratios  for  the  summer  of  1998  in  western  Europe.  Atmospheric  Environment  35,  6277 6297,  2001.    Schulz,  M.,  Textor,  C.,  Kinne,  S.,  Balkanski,  Y.,  Bauer,  S.,  Berntsen,  T.,  Berglen,  T.,  Boucher,  O.,  Dentener,  F.,  Guibert,  S.,  Isaksen,  I.S.A.,  Iversen,  T.,  Koch,  D.,  Kirkevå  g,  A.,  Liu,  X.,  Montanaro,  V.,  Myhre,   G.,   Penner,   J.E.,   Pitari,   G.,   Reddy,   S.,   Seland,  O.,   Stier,   P.,   Takemura,   T.,   Radiative  forcing  by   aerosols   as  derived   from   the  AeroCom  present-­‐day   and  pre-­‐industrial   simulations.  Atmos.  Chem.  Phys.  6,  5225 5246,  2006.    

-­‐Tunnel  Study  of  Turbulent  Flow  Close  to  Regularly  Arrayed  Roughness  elements,  Boundary-­‐Layer  Meteorol.  18,  373 397,  1980.    

-­‐Wall  Turbulent  Boundary  Layers,  Appl.  Mech.  Rev.  44,  1 25,  1991.    

 Reynolds  Stress,  Boundary-­‐Layer  Meteorol.  65,  1 28,  1993a.    

Boundary-­‐Layer  Meteorol.  66,  75 92,  1993b.    Troen,  I.  and  L.  Mahrt,  1986:  A  simple  model  of  the  atmospheric  boundary  layer:  Sensitivity  to  surface  evaporation.  Bound.-­‐Layer  Meteorol.,  37,  129-­‐148.      Vautard,   R.,   B.   Bessagnet,   M.   Chin,   and   L.   Menut:   On   the   contribution   of   natural   Aeolian  sources   to   particulate  matter   concentrations   in   Europe:   testing   hypotheses  with   a  modelling  approach,  Atmospheric  Environment,  39,  3291 3303,  2005.    B.  van  Leer,  Multidimensional  explicit  difference  schemes  for  hyperbolic  conservation   laws,   in  Computing  Methods   in  Applied  Sciences  and  Engineering  VI   ,  edited  by  R.  Growinski  and  J.   L.  Lions  (Elsevier,  Amsterdam,  1984)        

Page 47: ScaleDep! - EMEP · 6 2. D Z } } o } P Ç! 2.1 Simulations! Each mode lling team carried out four model! simulations with different horizontal! resolutions. The simulations were performed

46

7.3    LOTOS-­‐EUROS  model  description    In   this   study   we   used   LOTOS-­‐EUROS   v1.8,   a   3-­‐D   regional   CTM   that   simulates   air  pollution  in  the  lower  troposphere.  Previous  versions  of  the  model  have  been  used  for  the   assessment   of   (particulate)   air   pollution   (e.g.   Schaap   et   al.,   2004a;   2004b;   2009;  Barbu  et  al.,  2009;  Manders  et  al.,  2009;  2010).  For  a  detailed  description  of  the  model  we   refer   to   Schaap   et   al.   (2008),   Wichink   Kruit   et   al.   (2012)   and   abovementioned  studies.   Here,   we   describe   the   most   relevant   model   characteristics   and   the   model  simulation  performed  in  this  study.    The  model  uses  a  normal  longitude latitude  projection  and  allows  to  specify  the  model  resolution   and   domain   within   its   master   domain   encompassing   Europe   and   its  periphery.   The  model   top   is   placed   at   3.5   km   above   sea   level   and   consists   of   three  dynamical   layers:   a   mixing   layer   and   two   reservoir   layers   on   top.   The   height   of   the  mixing   layer  at  each   time  and  position   is  extracted   from  ECMWF  meteorological  data  used   to   drive   the   model.   The   height   of   the   reservoir   layers   is   set   to   the   difference  between  ceiling  (3.5  km)  and  mixing   layer  height.  Both   layers  are  equally  thick  with  a  minimum   of   50  m.   If   the  mixing   layer   is   near   or   above   3500  m   high,   the   top   of   the  model  exceeds  3500  m.  A  surface   layer  with  a   fixed  depth  of  25  m   is   included   in   the  model  to  monitor  ground-­‐level  concentrations.      Advection  in  all  directions  is  handled  with  the  monotonic  advection  scheme  developed  by   Walcek   (2000).   Gas   phase   chemistry   is   described   using   the   TNO   CBM-­‐IV   scheme  (Schaap  et  al.,  2009),  which  is  a  condensed  version  of  the  original  scheme  by  Whitten  et  al.   (1980).     Hydrolysis   of   N2O5   is   described   following   Schaap   et   al.   (2004a).   Aerosol  chemistry   is   represented   with   ISORROPIA2   (Fountoukis   and   Nenes,   2007).   The   pH  dependent  cloud  chemistry  scheme  follows  Banzhaf  et  al.  (2011).  Formation  of  course-­‐mode   nitrate   is   included   in   a   dynamical   approach   (Wichink   Kruit   et   al.,   2012).   Dry  deposition  for  gases   is  modelled  using  the  DEPAC3.11  module,  which   includes  canopy  compensation  points   for  ammonia  deposition  (Van  Zanten  et  al.,  2010).  Deposition  of  particles   is  represented  following  Zhang  et  al.  (2001).  Stomatal  resistance  is  described  by  the  parameterization  of  Emberson  et  al.  (2000a,b)  and  the  aerodynamic  resistance  is  calculated  for  all  land  use  types  separately.  Wet  deposition  of  trace  gases  and  aerosols  are   treated   using   simple   scavenging   coefficients   for   gases   (Schaap   et   al.,   2004b)   and  particles   (Simpson   et   al.,   2003).   The   model   set-­‐up   used   here   does   not   contain  secondary  organic  aerosol   formation  or  a  volatility  basis  set  approach  as  we   feel   that  the   understanding   of   the   processes   as   well   as   the   source   characterization   are   too  limited  for  the  current  application.    REFERENCES    Banzhaf,  S.,  Schaap,  M.,  Kerschbaumer,  A.,  Reimer,  E.,  Stern,  R.,  van  der  Swaluw,  E.,  Builtjes,  P.,  2011.  Implementation  and  evaluation  of  pH-­‐dependent  cloud  chemistry  and  wet  deposition  in  the  chemical  transport  model  REM-­‐Calgrid,  Atmospheric  Environment  49,  378-­‐390    Barbu,  A.L.,  Segers,  A.J.,  Schaap,  M.,  Heemink,  A.W.,  Builtjes,  P.J.H.,  2009.  A  multi-­‐component  data   assimilation   experiment   directed   to   sulphur   dioxide   and   sulphate   over   Europe.  Atmospheric  Environment  43,  1622-­‐1631    

Page 48: ScaleDep! - EMEP · 6 2. D Z } } o } P Ç! 2.1 Simulations! Each mode lling team carried out four model! simulations with different horizontal! resolutions. The simulations were performed

47

Emberson,  L.D.,  Ashmore,  M.R.,  Simpson,  D.,  Tuovinen,  J.-­‐P.,  Cambridge,  H.M.,  2000a.  Towards  a   model   of   ozone   deposition   and   stomatal   uptake   over   Europe.   EMEP/MSC-­‐W   6/2000,  Norwegian  Meteorological  Institute,  Oslo,  Norway,  57  pp.    Emberson,   L.D.,   Ashmore,   M.R.,   Simpson,   D.,   Tuovinen,   J.-­‐P.,   Cambridge,   H.M.,   2000b.  Modelling  stomatal  ozone  flux  across  Europe.  Water,  Air  and  Soil  Pollution  109,  403-­‐413.  Fountoukis,   C.,   Nenes,   A.,   2007.   ISORROPIA   II:   A   computationally   efficient   thermodynamic  equilibrium   model   for   K+-­‐Ca2+-­‐Mg2+-­‐NH4

+-­‐Na+-­‐SO42-­‐-­‐NO3

-­‐-­‐Cl-­‐-­‐H2O   aerosols.   Atmospheric  Chemistry  and  Physics  7  (17),  4639-­‐4659.    Manders,  A.M.M.,  Schaap,  M.,  Hoogerbrugge,  R.,  2009.  Testing  the  capability  of  the  chemistry  transport   model   LOTOS-­‐EUROS   to   forecast   PM10   levels   in   the   Netherlands.     Atmospheric  Environment  43,  4050-­‐4059,  doi:10.1016/j.atmosenv.2009.05.006.    Manders,  A.M.M.,  Schaap,  M.,  Querol,  X.,  Albert,  M.F.M.A.,  Vercauteren,  J.,  Kuhlbusch,  T.A.J.  &  Hoogerbrugge,  R.,   2010.   Sea   salt   concentrations  across   the  European   continent.  Atmospheric  Environment  44,  2434-­‐2442    Schaap,  M.,  Denier  Van  Der  Gon,  H.A.C.,  Dentener,  F.J.,  Visschedijk,  A.J.H.,  Van  Loon,  M.,  Ten  Brink,  H.M.,  Putaud,  J.-­‐P.,  Guillaume,  B.,  Liousse  C.,  Builtjes,  P.J.H.,  2004a.  Anthropogenic  Black  Carbon   and   Fine   Aerosol   Distribution   over   Europe.   Journal   of   Geophysical   Research   109,  D18201,  doi:  10.1029/2003JD004330    Schaap,  M.,   van   Loon,  M.,   ten   Brink,   H.M.,   Dentener,   F.D.,   Builtjes,   P.J.H.,   2004b.   Secondary  inorganic   aerosol   simulations   for   Europe   with   special   attention   to   nitrate.   Atmospheric  Chemistry  and  Physics  4,  857-­‐874.    Schaap,  M.,  Sauter,  F.,  Timmermans,  R.M.A.,  Roemer,  M.,  Velders,  G.,  Beck,  J.,  Builtjes,  P.J.H.,  2008.  The  LOTOS-­‐EUROS  model:  description,  validation  and  latest  developments,  International  Journal  of  Environment  and  Pollution  32  (2),  270 290    Schaap,  M.,  Manders,  A.A.M.,  Hendriks,  E.C.J.,  Cnossen,  J.M.,  Segers,  A.J.S.,  Denier  van  der  Gon,  H.A.C.,  Jozwicka,  M.,  Sauter,  F.J.,  Velders,  G.J.M.,  Matthijsen,  J.,  Builtjes,  P.J.H.,  2009.  Regional  Modelling   of   Particulate   Matter   for   the   Netherlands.   PBL   report   500099008,   Bilthoven,   The  Netherlands.  (http://www.rivm.nl/bibliotheek/rapporten/500099008.pdf)    Simpson,  D.,   Fagerli,  H.,   Jonson,   J.E.,   Tsyro,   S.,  Wind,   P.,   Tuovinen,   J-­‐P.,   2003.   Transboundary  Acidification,  Eutrophication  and  Ground  Level  Ozone   in  Europe,  Part  1:  Unified  EMEP  Model  Description.  EMEP  Report  1/2003,  Norwegian  Meteorological  Institute,  Oslo,  Norway    Van   Zanten,  M.C.,   Sauter,   F.J.,  Wichink   Kruit,   R.J.,   Van   Jaarsveld,   J.A.,   Van   Pul,  W.A.J.,   2010.  Description   of   the   DEPAC   module:   Dry   deposition   modelling   with   DEPAC_GCN2010.   RIVM  report  680180001/2010,  Bilthoven,  the  Netherlands    Walcek,  C.J.,  2000.  Minor   flux  adjustment  near  mixing  ratio  extremes  for  simplified  yet  highly  accurate   monotonic   calculation   of   tracer   advection.   Journal   of   Geophysical   Research   D:  Atmosphere  105  (D7),  9335-­‐9348    Whitten,  G.,  Hogo,  H.,  Killus,   J.,  1980.  The  Carbon  Bond  Mechanism  for  photochemical   smog,    Environmental  Science  and  Technology  14,  14690-­‐14700.    

Page 49: ScaleDep! - EMEP · 6 2. D Z } } o } P Ç! 2.1 Simulations! Each mode lling team carried out four model! simulations with different horizontal! resolutions. The simulations were performed

48

Wichink  Kruit,  R.,  Schaap,  M.,  Sauter,  F.,  Van  der  Swaluw,  E.,  Weijers,  E.,  2012.   Improving  the  understanding   of   the   secondary   inorganic   aerosol   distribution   over   the   Netherlands.   TNO  report  TNO-­‐060-­‐UT-­‐2012-­‐00334,  Utrecht    Zhang,  L.,  Gong,  S.,  Padro,  J.,  Barrie,  L.,  2001.  A  size-­‐segregated  particle  dry  deposition  scheme  for  an  atmospheric  aerosol  module.  Atmospheric  Environment  35,  549-­‐560  

Page 50: ScaleDep! - EMEP · 6 2. D Z } } o } P Ç! 2.1 Simulations! Each mode lling team carried out four model! simulations with different horizontal! resolutions. The simulations were performed

49

7.4    REM-­‐CALGRID  (RCG)  model  description   Overview:    REM-­‐CALGRID   is   an   urban/regional   scale   chemical   Eulerian   grid  model   development.  Rather   than   creating   a   completely  new  model,   the   urban-­‐scale   photochemical  model  CALGRID  (Yamartino  et  al.,  1992)  and  the  regional  scale  model  REM3  (Stern,  1994;  Hass  et   al.,   1997;   Römer   et   al.,   2003)   were   used   as   the   starting   point   for   the   new   ur-­‐ban/regional  scale  model,  REM-­‐CALGRID  (RCG).  The  premise  was  to  design  an  Eulerian  grid   model   of   medium   complexity   that   fulfills   the   requirements   of   the   European  

on   air   quality  modelling.  The  directive  demands  that  a  model  must  be  capable  of  hourly  predictions  for  periods  of  a  year  or  more.    To  comply  with  these  preconditions,  RCG  can  be  used  on  the   regional  and   the  urban  scale   for   short-­‐term  and   long-­‐term  simulations  of  oxidant  and  aerosol  formation.  The  model  includes  the  following  features:    

A  generalized  horizontal  coordinate  system,  including  latitude-­‐longitude  coordi-­‐nates;  

A   vertical   transport   and   diffusion   scheme   that   correctly   accounts   for   atmos-­‐pheric  density  variations  in  space  and  time,  and  for  all  vertical  flux  components  when  employing  either  dynamic  or  fixed  layers;    

A   new  methodology   to   eliminate   errors   from   operator-­‐split   transport   and   to  ensure  correct  transport  fluxes,  mass  conservation,  and  that  a  constant  mixing  ratio  field  remains  constant;  

Inclusion   of   the   recently   improved   and   highly-­‐accurate,   monotonic   advection  scheme  developed  by  Walcek   (2000).  This   fast  and  accurate   scheme  has  been  further  modified  to  exhibit  even  lower  numerical  diffusion  for  short  wavelength  distributions;  

The  latest  release  of  the  CBM-­‐IV  photochemical  reaction  scheme;   The  ISORROPIA  equilibrium  aerosol  modules,  that  treats  the  thermodynamics  of  

inorganic    aerosols;   An   simplified   version   of   the   SORGAM  equilibrium   aerosol  module,   that   treats  

the  thermodynamics  of  organic    aerosols;   Simple  modules  to  treat  the  emissions  of  sea  salt  aerosols  and  wind-­‐blown  dust  

particles;   A  simple  wet  scavenging  module  based  on  precipitation  rates;   An  emissions  data   interface   for   long   term  applications   that   enables   on-­‐the-­‐fly  

calculations  of  hourly  anthropogenic  and  biogenic  emissions;   One-­‐way-­‐nesting  capabilities.  

 Horizontal  and  vertical  grid  system:    Pollutant  concentrations   in  RCG  are  calculated  at   the  center  of  each  grid  cell  volume,  representing   the   average   concentration   over   the   entire   cell.   Meteorological   fields  provided   externally   by   a  meteorological   driver   are   internally   assigned   to   a   staggered  grid  arrangement.  State  variables  such  as  temperature,  pressure  or  water  vapor  are  as  the  pollutants   located  at  cell  center,  and  represent  grid  cell  average  conditions.  Wind  components   and   diffusion   coefficients   are   defined   at   cell   interfaces   to   describe   the  

Page 51: ScaleDep! - EMEP · 6 2. D Z } } o } P Ç! 2.1 Simulations! Each mode lling team carried out four model! simulations with different horizontal! resolutions. The simulations were performed

50

transfer   of   mass   in   and   out   of   each   cell   face,   thus   allowing   to   solve   the   transport  equations  in  flux  form.      The  RCG  model  uses  a  3-­‐dimensional  system  of  grid  cells.  Two  types  of  horizontal  grids  are  possible  

a   rectangular   grid   (e.g.,   Lambert   Conformal   or   UTM),   where   grid   cells   are  assumed  square  and  always  have  the  same  area,  

a   geographical   grid,   where   longitude   represents   east-­‐west   location,   latitude  represents  north-­‐south  location.    

 In   the   vertical   the   coordinates   are   terrain   following   with   the   top   of   the   modelling  domain  a  fixed  height  above  the  local  terrain.  There  are  two  choices  for  the  vertical  grid  system:  

An  arbitrary,  in  space  and  time  fixed  grid  with  layer  heights,   A   dynamic   grid  with   an   arbitrary   amount   of   layers   varying   in   both   space   and  

time  according  to  the  horizontal  and  vertical  variations  of  the  mixing  height.    In  RCG,  the  1-­‐dimensional,  highly-­‐accurate,  monotonic  advection  scheme  developed  by  Walcek  (2000)  is  used  for  the  horizontal  advection  of  pollutants.  This  algorithm  uses  a  low-­‐spatial-­‐order   accuracy   definition   of   within-­‐cell   concentrations,   coupled   with   a  

  creation  of  small  numerical  diffusion,   good  transport  fidelity  in  terms  of  phase  speed,  group  velocity,  and  low  shape  

distortion,   prohibition  of  negative  concentrations,   ability  to  cope  with  space-­‐time  varying  vertical  level  structures,   mass  conservation,   limitations   on   the   creation   of   new   maximum   or   minimum   concentration  

values,  and,     complete  monotonicity  of  mixing  ratios.  

 Vertical   diffusion   parameters   are   derived   using   the  Monin-­‐Obukhov   similarity   theory  for  the  description  of  the  structure  of  the  diabatic  surface  layer  (K-­‐theory).      Chemistry:    An   updated   version   of   the   lumped   gas   phase   chemistry   scheme   CBM-­‐4   (Gery   et   al.,  

-­‐Product   Isoprene   scheme   (Carter,   1996),   is   used   for   the  simulations.  Homogeneous  and  heterogeneous  conversion  of  NO2  to  HNO3  is  added.  In  addition   to   gaseous   phase,   also   simple   aqueous   phase   conversion   of   SO2   to   H2SO4,  through   oxidation   by   H2O2   and   ozone,   has   been   incorporated.   Equilibrium  concentrations   for   SO2,   H2O2   and   ozone   are   calculated   using   Henry   constants   and  assuming   progressive   cloud   cover   for   relative   humidity   above   80%.   Effective   rate  constants  for  the  aqueous  phase  reactions  SO2+H2O2  and  SO2+O3  have  been  calculated  for  an  average  pH  of  5  using  acid/base  equilibrium  and  kinetic  data  from  Seinfeld  and  Pandis  (1998).      

Page 52: ScaleDep! - EMEP · 6 2. D Z } } o } P Ç! 2.1 Simulations! Each mode lling team carried out four model! simulations with different horizontal! resolutions. The simulations were performed

51

For   numerical   solution   of   the   chemistry   differential   equations   system,   an   Eulerian  backward  iterative  method  with  a  variable  time  step  control  is  used.  Photolysis   rates   are   derived   for   each   grid   cell   assuming   clear   sky   conditions   as   a  function   of   solar   zenith   angle,   altitude   and   total   ozone   column.   The   Tropospheric  Ultraviolet-­‐Visible  Model   (TUV)   radiative   transfer   and  photolysis  model,  developed  at  the  National  Center  of  Atmospheric  Research  (Madronich  and  Flocke,  1998)  is  used  to  provide  the  RCG  model  with  a  multi-­‐dimensional  lookup  table  of  photolytic  rates.      Aerosol  treatment:    A  bulk  approach  is  used  for  the  aerosol  formation,  i.e.  aerosol  growth  is  not  considered  and  the  major  PM  constituents  are  treated  as  a  single  model  species  with  a  given  log-­‐normal   size   distribution.   RCG   treates   two   modes:   a   fine   mode   (PM<2.5   µm)   and   a  coarse  mode  (2.5  µm  <PM<10  µm).    The   equilibrium   between   gaseous   nitric   acid,   ammonia   and   particulate   ammonium  nitrate   and   ammonium   sulphate   and   aerosol  water   is   calculated  with   the   ISORROPIA  thermodynamic  module  (Nenes  et  al.,  1999)  as  a  function  of  temperature  and  humidity.    Production  of   secondary  organic   aerosol   (SOA)   is   treated  with   a   simplified   version  of  the   SORGAM  module   (Schell   et   al.,   2001)   which   calculates   the   partitioning   of   semi-­‐volatile  organic  compounds  produced  during  VOC  oxidation  between   the   gas  and   the  aerosol  phase.  Overall,   in  RCG  the  following  different  chemical  fractions  are  considered  to  contribute  to  PM10,  i.e.  particulate  matter  with  a  dynamical  diameter  up  to  10  µm:        

PM10=PMcoarse+PM2.5prim+EC+OCprim+SOA+SO42-­‐+NO3

-­‐+NH4++Na++Cl-­‐  

 PMcoarse        =    mineral  coarse  particles,  emitted  by  anthropogenic  and  natural  sources  PM2.5prim    =    mineral  fine  particles,  emitted  by    anthropogenic  and  natural  sources  EC                        =  elemental  Carbon,  fine  particles,  emitted  by    anthropogenic  sources  OCprim                  =  organic  Carbon,  fine  particles,  emitted  by    anthropogenic  sources  SO4

2-­‐                        =    sulphate  aerosol,  fine  particles,  formed  in  the  atmosphere  NO3

-­‐                          =  nitrate  aerosol,  fine  particles,  formed  in  the  atmosphere  NH4

+                        =  ammonium  aerosol,  fine  particles,  formed  in  the  atmosphere  

SOA                  =  sum  of  the  secondary  organic  aerosols,  formed  in  the  atmosphere  Na+                      =  sea  salt  sodium,  coarse  particles,  emitted  by  sea  water      Cl-­‐                                      =    sea  salt  chloride,  coarse  particles,  emitted  by  sea  water      Dry  and  wet  deposition:    Dry   deposition   for   gaseous   species   and   particles   is   calculated   using   the   resistance  analogy.   Turbulent   and   laminar   resistance   are   calculated   from   surface   roughness,  Monin-­‐Obukhov   length,   friction   velocity,   molecular   diffusivity.   Surface   resistance   is  computed   following  Erisman  and  Pul   (1994)   for  different   surfaces   taking   into  account  species  dependent  (Henry  constant,  oxidation  power),  micro-­‐meteorological,  and  land-­‐use   information.  For  particles,   surface   resistance   is   zero.  The  atmospheric   resistances  are   large   for   particles   in   the   accumulation  mode   (0.1   m<Ø<1   m),   because   neither  Brownian   motion,   nor   sedimentation   are   effective   pathways;   these   resistances   are  

Page 53: ScaleDep! - EMEP · 6 2. D Z } } o } P Ç! 2.1 Simulations! Each mode lling team carried out four model! simulations with different horizontal! resolutions. The simulations were performed

52

calculated  for  the  different  species  using  the  fixed  size  distributions  given  above.  Wet  deposition   of   gases   due   to   in   and   below   cloud   scavenging   is   parameterised   as   a  function   of   the   species   dependent   Henry   constant   and   the   precipitation   rate.   Wet  deposition  of  particles  is  treated  in  RCG  using  a  simple  scavenging  coefficient  approach  with  identical  coefficients  for  all  particles.      Meteorological  Input:    RCG   requires   meteorological   data   at   hourly   intervals.   They   consist   of   the   following  three-­‐dimensional   fields,   which   must   cover   the   whole   three-­‐dimensional   model  domain:    

U-­‐  and  V-­‐wind  components,  temperature,  water  vapour,  density.    Two-­‐dimensional  fields  are:  

Monin-­‐Obukov-­‐length,   friction   velocity,   precipitation,   cloud   cover,  mixing   layer  height,  surface  temperature,  surface  wind  speed,  snow  cover.      

 For   standard   applications,   all   this   meteorological   data   is   produced   employing   a  diagnostic   meteorological   analysis   system   based   on   an   optimum   interpolation  procedure   on   isentropic   surfaces   developed   at   Freie   Universität   Berlin.   The   system  utilizes   all   available   observed   synoptic   surface   and   upper   air   data   as   well   as  topographical  and  land  use  information  (Reimer  and  Scherer,  1992).  Other  data  sources  can  be  used,  if  available.    Emissions  input:    RCG   model   requires   annual   emissions   of   VOC,   NOx,   CO,   SO2,   CH4,   NH3,   PM10,   and  PM2.5,  split  into  point  and  gridded  area  sources.  Mass-­‐based,  source  group  dependent  NMVOC  profiles  are  used  to  break  down  the  total  VOC  into  the  different  species  classes  of  the  chemical  mechanisms.  Hourly  emissions  are  derived  during  the  model  run  using  sector-­‐dependent,  month,  day-­‐of-­‐week  and  hourly  emissions   factors.  PM10  emissions  are  split   into  a  PM2.5  and  a  coarse  PM  (PM10 PM2.5)  part,  the  PM2.5  part   is  further  split  into  mineral  dust,  EC  and  primary  OC.  EC  fractions  in  PM2.5  emissions  for  different  SNAP  sectors  are  taken  from  Builtjes  et  al.  (2003).  For  primary  OC,  the  following  crude  method   is   applied   to  estimate   these  emissions   in   a  preliminary  way:   In   the  1996  NEI  emission   data   base   (http://www.epa.gov/ttn/chief/),   an   average   OCprim/EC   emission  ratio  for  all  sectors  of  about  two  can  be  derived  for  the  US.  This  ratio  is  then  applied  to  Europe  regardless  of  the  SNAP  sector,  i.e.  the  OC  fractions  are  set  as  the  double  of  the  EC  fractions,  except  if  the  sum  of  the  two  factors  would  be  larger  than  unity.  In  this  case  (fEC>0.33),  fOC  is  set  as:  fOC fEC.      Biogenic  VOC-­‐emissions  are  derived  using  the  emissions  factors  for  isoprene  and  OVOC  (Other  VOCs)  as  described  in  Simpson  et  al.  (1999).  Terpene  emission  factors  are  taken  from  the  CORINAIR  emission  hand-­‐book.  The  biogenic  calculations  of  trees  are  based  on  the   land-­‐use  data   for  115   forest   trees   (Koeble  and  Seufert,  2002).   Light   intensity  and  temperature  dependencies  are  also  considered.  Soil  NO  emissions  are  calculated  as  a  function  of  fertilizer  input  and  temperature  following  Simpson  et  al.  (1999).    

Page 54: ScaleDep! - EMEP · 6 2. D Z } } o } P Ç! 2.1 Simulations! Each mode lling team carried out four model! simulations with different horizontal! resolutions. The simulations were performed

53

Resuspension  of  mineral  aerosol  from  natural  soils   is   included  as  a  function  of  friction  velocity   and   the   nature   of   soil;   both   the   direct   entrainment   of   small   particles  (Loosemore  and  Hunt,   2000)   and   saltation,   i.e.   the   indirect   entrainment  due   to   large  particles  which  fall  back  to  the  soil  and  entrain  smaller  particles  (Claiborn  et  al.,  1998)  is  taken  into  account.    The   sea-­‐(1997)    and  Monahan  et  al.  (1986)  as  a  function  of  size  and  wind  speed.    REFERENCES  

Beekmann   M.,   A.   Kerschbaumer,   R.   Stern,   E.   Reimer,   D.   Möller.,   2007,   PM   measurement  campaign   HOVERT   in   the   Greater   Berlin   area:   model   evaluation   with   chemically   specified  particulate  matter  observations  for  a  one  year  period,  Atmos.  Chem.  Phys.,7,  55-­‐68,  2007    Builtjes,   P.   J.   H.,2003,   Aerosols   over   Europe,   Focus   on   Black   carbon,   TNO   report   R2003/146,  February  2003.    Carter,   W.,1996,   Condensed   atmospheric   photooxidation   mechanisms   for   isoprene,   Atmos.  Environ.,  30,  4275 4290,  1996.    Claiborn,   C.,   Lamb,   B.,  Miller,   A.,   Beseda,   J.,   Clode,   B.,   Vaughan,   J.,   Kang,   L.,   and   Nevine,   C.,  1996,   Regional   measurements   and   modelling   of   windblown   agricultural   dust:   The   Columbia  Plateau  PM10  Program,  J.  Geophys.  Res.,  103(D16),  19  753 19  767,  1998.    Erisman,  J.  and  Van  Pul,  A.,1994,  Parameterization  of  surface  resistance  for  the  quantification  of  atmospheric  deposition  of  acidifying  pollutants  and  ozone,  Atmos.  Environ.,  28,  2595 2607,  1994.    Gery,   M.   W.,   Witten,   G.   Z.,   Killus,   J.   P.,   Dodges,   M.   C.,1989,     A   photochemical   kinetics  mechanism   for   urban   scale   and   regional   scale   computering   modelling,   J.   Geophys.   Res.,  94(D10),  12925 12956,  1989.    Gong,   S.   L.,   Barrie,   L.   A.,   and   Blanchet,   J.-­‐P.,   1997,   Modelling   sea-­‐salt   aerosols   in   the  atmosphere.  1.  Model  development,  J.  Geophys.  Res.,  102,  3805 3818,  1997.    Hass,   H.,   Bultjes,   P.   J.   H.,   Simpson,   D.,   and   Stern,   R.,1997,     Comparison   of   model   results  obtained  with   several   European   regional   air   quality  models,  Atmos.   Environ.,   31,   3259 3279,  1997,      Koeble,  R.  and  Seufert,  G.,  2002,    Novel  maps  for  forest  trees  in  Europe.  Proceedings  of  the  8th  European  Symposium  on  the  Physico-­‐Chemical  Behaviour  of  Atmospheric  Pollutants.  JRC  Ispra.    Loosemore,  G.  A.  and  Hunt,  J.  R.,  2000,  Dust  resuspension  without  saltation,  J.  Geophys.  Res.,  105(D16),  20  663 20  5  671,  2000.    Madronich,   S.   and   S.   Flocke   (1998).   The   role   of   solar   radiation   in   atmospheric   chemistry,   in  Handbook  of   Environmental   Chemistry   (P.   Boule,   ed.),   Springer_Verlag,  Heidelberg,   pp.   1-­‐26,  1998.      Monahan,  E.C,  Speil,  D.,  Speil,  K.  (1986),  Oceanic  whitecaps.  Reidel  1986      

Page 55: ScaleDep! - EMEP · 6 2. D Z } } o } P Ç! 2.1 Simulations! Each mode lling team carried out four model! simulations with different horizontal! resolutions. The simulations were performed

54

Nenes,   A.,   Pilinis,   C.,   and   Pandis,   S.   N.,1999,   Continued   development   and   testing   of   a   new  thermodynamic  aerosol  module  for  urban  and  regional  air  quality  models,  Atmos.  Environ.,  33,  1553 1560,  1999.    Odum,   J.   R.,   Hoffmann,   T.,   Bowman,   F.,   Collins,   D.,   Flagan,   R.   C.,   and   Seinfeld,   J.   H.,1996,  Gas/Particle  partitioning  and  secondary  organic  aerosol  yields,  Environ.  Sci.  Technol.,  30,  25802585,  1996.    Reimer,  E.  und  Scherer,  B.  (1992),    An  operational  meteorological  diagnostic  system  for  regional  air  pollution  analysis  and  long  term  modelling,  in  Air  Pollution  Modelling  and  its  Application  IX,  eds.  H.   v.   Dop  und  G.   Kallos,  NATO  Challenges   of  Modern   Society,   Kluwer   Academic/Plenum  Publisher,  New  York.    Römer,  M.,   Beekmann,  M.,   Bergström,   R.,   Boersen,   G.,   Feldmann,   H.,   Flatøy,   F.,   Honore,   C.,  Langner,  J.,  Jonson,  J.  E.,  Matthijsen,  J.,  Memmesheimer,  M.,  Simpson,  D.,  Smeets,  P.,  Solberg,  S.,   Stern,   R.,   Stevenson,   D.,   Zandveld,   P.,   and   Zlatev,   Z.,2003,  Ozone   trends   according   to   ten  dispersion  models,  EUROTRAC-­‐2  special  report,  GSF,  Munich,  Germany,  2003.    Schell,  B.,  Ackermann,  I.  J.,  Hass,  H.,  Binkowski,  F.,  and  Ebel,  A.,2001,  Modelling  the  formation  of   secondary   organic   aerosol   within   a   comprehensive   air   quality   model   system,   J.   Geophys.  Res.,  106(D22),  28  275 75 28  293,  2001.    Seinfeld,  J.  and  Pandis,  S.  N.:  Atmospheric  Chemistry  and  Physics,  John  Wiley  and  Sons,  1998.      Simpson,  D.,  Winiwarter,  W.,  Börjesson,  G.,  Cinderby,  S.,  Ferreiro,  A.,  Guenther,  A.,  Hewitt,  C.  N.,   Janson,   R.,   Khalil,   M.   A.   K.,   Owen,   S.,   Pierce,   T.   E.,   Puxbaum,   H.,   Shearer,   M.,   Skiba,   U.,  Steinbrecher,  R.,  Tarrason,  L.,  and  Oiquist,  M.  G.,1999:   Inventorying  emissions   from  nature   in  Europe,  J.  Geophys.  Res.,  104(D7),  8113 8152,  1999.    Stern,  R.,  2003,  Entwicklung  und  Anwendung  des  chemischen  Transportmodells  REM-­‐CALGRID.  Abschlussbericht   zum   FuE-­‐Vorhaben   298   41   252   des   Umweltbundes

   Stern,  R.,  Yamartino,  R.,  Graff,  A.  (  2006).  Analyzing  the  response  of  a  chemical  transport  model  to  emissions   reductions  utilizing  various  grid  resolutions.  28th   ITM  on  Air  Pollution  Modelling  and  its  Application.  May  15-­‐19,  2006,  Leipzig,  Germany    Stern,  R.,  Builtjes,  P.,  Schaap,  M.,  Timmermans,  R.,  Vautard,  R.,  Hodzic,  A.,  Memmesheimer,  M.,  Feldmann,  H.,  Renner,  E.,  Wolke,  R.,  Kerschbaumer,  A.  (2008).  A  model  inter-­‐comparison  study  focussing  on  episodes  with  elevated  PM10  concentrations.  Atmospheric  Environment  42  4567-­‐4588.  2008.    Thunis,  P.,  L.  Rouil,  C.  Cuvelier,  R.Stern,  A.  Kerschbaumer,  B.  Bessagnet,  M.  Schaap,  P.  Builtjes,  L.  Tarrason,   J.   Douros,   N.  Moussiopoulos,   G.   Pirovano,  M.   Bedogni   (2007).     Analysis   of    model  responses   to   emission-­‐reduction   scenarios   within   the   CityDelta   project,     Atmospheric  Environment  41  (2007)  208-­‐220    Thunis,  P.,  C.  P.  Roberts,  L.  White,  L.  Post,  L.  Tarrasón,  S.  Tsyro,  R.  Stern,  A.  Kerschbaumer,  L.  Rou l,  B.  Bessagnet,  R.  Bergström,  M.  Schaap,  G.A.C.  Boersen,  P.J.H.  Builtjes  (2008).  Evaluation  of  a  Sectoral  Approach  to   Integrated  Assessment  Modelling   including  the  Mediterranean  Sea.  European  Commission  Joint  Research  Centre.  Institute  for  Environment  and  Sustainability.  EUR  23444  EN    2008.    

Page 56: ScaleDep! - EMEP · 6 2. D Z } } o } P Ç! 2.1 Simulations! Each mode lling team carried out four model! simulations with different horizontal! resolutions. The simulations were performed

55

Van   Loon,   M.,   Roemer,   M.   G.   M.,   Builtjes,   P.   J.   H.,   Bessagnet,   B.,   Rouil,   L.,   Christensen,   J.,  Brandt,  J.,  Fagerli,  H.,  Tarrason,  L.,  Rodgers,  I.,  Teasdale,  I.,  Stern,  R.,  Bergström,  R.,  Langner,  J.,  and  Foltescu,  V.,  2004,  Model   intercomparison   in  the   framework  of  the  review  of  the  Unified  EMEP  model.  TNO-­‐report  R2004/282,  53  pp.  Available  at  http://www.mep.tno.nl,  2004    Van   Loon,   L.,   Vautard,R.,   Schaap,   M.,   Bergström,   R.,   Bessagnet,   B.,   Brandt,   J.,   Builtjes,   P.,  Christensen,   J.,  Cuvelier,  K.,   Jonson,  J.,  Langner,   J.,  Roberts,  L.,  Rouil,  L.,  Stern,  R.,  Tarrasón,  L.  Thunis,   P.,   Vignati,   P.,  White,   L.,Wind,   P.   (2007).     Evaluation   of   long-­‐term   ozone   simulations  from  seven  regional  air  quality  models  and  their  ensemble  average.  Atmospheric  Environment  41,  2083-­‐2097    Vautard,   R.,   Builtjes,   P.   H.   J.,   Thunis,   P.,   Cuvelier,   K.,   Bedogni,  M.     Bessagnet,   B.,   Honoré,   C.,  Moussiopoulos,  N.,  Pirovano,  G.,  Schaap,  M.    Stern,  R.    Tarrason,  L.,  Wind,  P.,  2007,  Evaluation  and   intercomparison   of   Ozone   and   PM10   simulations   by   several   chemistry-­‐transport  models  over  4  european  cities  within  the  City-­‐Delta  project.  Atmospheric  Environment  41  (2007)  173-­‐188    Wesely,  M.  1989.  Parameterization  of  surface  resistance  to  gaseous  dry  deposition  in  regional  scale  numerical  models.  Atmos.  Environ.,  23,  1293-­‐1304.    Walcek,  C.  J.,  2000,  Minor  flux  adjustment  near  mixing  ratio  extremes  for  simplified  yet  highly  accurate   monotonic   calculation   of   tracer   advection,   J.   Geophys.   Res.,   105(D7),   9335 9348,  2000.    Yamartino,   R.J.,   J.   Scire,   G.R.   Carmichael,   and   Y.S.   Chang   (1992).   The   CALGRID   mesoscale  photochemical  grid  model-­‐I.  Model  formulation,  Atmos.  Environ.,  26A  (1992),  1493-­‐1512.    Yamartino,  R.J.,  2003,  Refined  3-­‐d  Transport  and  Horizontal  Diffusion  for  the  REM/CALGRID  Air  Quality  Model.  Bericht  zum  Forschungs-­‐  und  Entwicklungsvorhaben  298  41  252    auf  dem  Gebiet  

rung   der  Meteorologie.  

 Yamartino,   R,     Flemming,   J.   Stern,   R.,   2004,   ADAPTATION   OF   ANA   LYTIC   DIFFUSIVITY  FORMULATIONS   TO   EULERIAN   GRID   MODEL   LAYERS   OF   FINITE   THICKNESS.   27th   ITM   on   Air  Pollution  Modelling  and  its  Application.  October  25-­‐29,  2004,  Banff,  Canada.    

Page 57: ScaleDep! - EMEP · 6 2. D Z } } o } P Ç! 2.1 Simulations! Each mode lling team carried out four model! simulations with different horizontal! resolutions. The simulations were performed

56

7.5    CMAQv5.0  model  description    CALIOPE  is  an  air  quality  modelling  system  developed  at  the  Barcelona  Supercomputing  Center   which   currently   forecasts   air   quality   for   Europe   and   Spain   (Baldasano   et   al.  2011).  The  system   integrates  a  meteorological  model   (WRF-­‐ARW),  an  emission  model  (HERMES),   a   chemical   transport   model   (CMAQ)   and   a   mineral   dust   model   (BSC-­‐DREAM8b).    CMAQ  has  been  developed  under  the  leadership  of  the  Atmospheric  Modelling  Division  of  the  Environmental  Protection  Agency  (EPA)  National  Exposure  Research  Laboratory  in   Research   Triangle   Park,   North   Carolina   USA.   The  modelling   system   and   its   source  codes  are  freely  available  for  use  by  air  quality  regulators,  policy  makers,  industry,  and  scientists   to   address   multiscale,   multi-­‐pollutant   air   quality   concerns.   It   includes   a  chemistry   transport  model   that   currently   allows   for   the   simulation   of   concentrations  and  deposition  of  the  major  air  pollutants.  Because  of  its  generalized  coordinate  system  and   its   advanced   nesting   features   CMAQ   can   be   used   to   study   the   behaviour   of   air  pollutant   form   local   to   regional   scales.  A   detailed  description  of   the  model   system   is  given  by  Byun  and  Schere  (2006).    There   are   several   comprehensive   evaluations   of   CMAQ   which   establish   model  credibility  for  a  wide  range  of  application  in  USA  (e.g.  Mebust  et  al.,  2003;  Eder  and  Yu,  2006;  Appel  et  al.,  2007,  2008;  Simon  et  al,  2012)  and  Europe  (e.g.  Matthias,  2008;  Pay  et  al.,  2010;  Basart  et  al.,  2012).    The  last  version  of  CMAQ  modelling  system  (version  5.0)  used  in  this  exercise  integrates  the  last  scientific  upgrades.  The  gas-­‐phase  oxidations  in  the  atmosphere  are  described  in  the  CB-­‐05  chemical  mechanism  (Yarwood  et  al.,  2005).    Aerosols   are   represented   by   the   modal   aerosol   module   AERO5.   Three   log-­‐normal  modes   spanning   three   size   categories   Aitken,   accumulation   and   coarse.   CMAQv5.0  allows   semi-­‐volatile   aerosol   components   to   condense  and  evaporate   from   the  coarse  mode   and   non-­‐volatile   sulphate   to   condense   on   the   coarse   mode.   Dynamic   mass  transfer   is   simulated   for   the   coarse  mode,   whereas   the   fine  modes   are   equilibrated  instantaneously  with   the  gas  phase.  CMAQv5.0   simulates  oxidative  aging   reaction   for  primary  organic  aerosol  as  a  second  order  reaction  between  reduced  primary  organic  carbon  and  OH  radicals  (Simon  and  Bhave,  2012).  Additional  biogenic  precursors  such  as   isoprene   and   sesquiterpenes   were   incorporated   in   version   4.7.   New   secondary  organic  aerosol  treatment,  explained  in  Carlton  et  al.  (2010),  allows  three  biogenic  and  four   anthropogenic   VOC   classes   to   form   a   variety   of   semivolatile   and   nonvolatile  products   after   reacting  with   gas-­‐phase  oxidants.   In   addition,   non-­‐volatile   SOA   can  be  formed  via  aqueous-­‐phase  oxidation  of  glyoxal  and  methylglyoxal  or  oligomerization  of  semivolatile   SOA.   In   total,   19   separate   SOA   types   are   formed   and   tracked.     The  production  of  sea  salt  emission  is  implemented  as  a  function  of  wind  speed  and  relative  humidity  (Gong,  2003;  Zhang  et  al.,  2005)  form  open  ocean  and  surf  zone  (Clarke  et  al.,  2006).   Thermodynamic   equilibrium   between   gas   and   inorganic   fine   aerosols   is  determined  by  the  ISORROPIAv2,  is  included  in  CMAQ5.0.    

Page 58: ScaleDep! - EMEP · 6 2. D Z } } o } P Ç! 2.1 Simulations! Each mode lling team carried out four model! simulations with different horizontal! resolutions. The simulations were performed

57

Meteorological   input   data   for   the   CMAQ   model   are   processed   using   the   WRF-­‐ARW  model  version  v3.3.1.    Concerning   natural   emissions,   MEGAN   v2.0   is   used   to   simulate   biogenic   emission.  Furthermore,  the  long-­‐range  transport  of  mineral  dust  from  Sahara  desert  is  modelled  by  BSC-­‐DREAM8b.    The   CMAQ   horizontal   grid   resolution   corresponds   to   that   of   WRF-­‐ARW.   Its   vertical  structures  was  obtained  by  a   collapse   from   the  38  WRF   layers   to  a   total  of  15   layers  steadily   increasing   form   the   surface   up   to   50   hPa  with   a   stronger   density  within   the  PBL.  The  mean  altitude  of  the  lowest  layer  of  CMAQ  in  CALIOPE  system  is  of  19.5  ±  0.5  m  above  ground  level.     REFERENCES    Appel,   K.   W.,   Bhave,   P.   V.,   Gilliland,   A.   B.,   Sarwar,   G.,   and   Roselle,   S.   J.:   Evaluation   of   the  Community   Multiscale   Air   Quality   (CMAQ)   model   version   4.5:   Sensitivities   impacting   model  performance;  Part  II    particulate  matter,  Atmos.  Environ.,  42,  6057 6066,  2008.    Appel,   K.   W.,   Gilliand,   A.   B.,   Sarwar,   G.,   and   Gilliam,   R.   C.:   Evaluation   of   the   Community  Multiscale  Air  Quality   (CMAQ)  model   version  4.5:   Sensitivities   impacting  model  performance,  Atmos.  Environ.,  41,  9603 9615,  2007.    Baldasano  JM,  Pay  MT,  Jorba  O,  Gassó  S,  Jiménez-­‐Guerrero  P,  2011.  An  annual  assessment  of  air  quality  with   the  CALIOPE  modelling   system  over   Spain.   Sci   Total   Environ,  409,  2163-­‐2178.  doi:10.1016/j.scitotenv.2011.01.041.    Basart  S,  Pay  MT,  Jorba  O,  Pérez  C,  Jiménez-­‐Guerrero  P,  Schulz  M,  Baldasano  JM,  2012.  Aerosol  in  the  CALIOPE  air  quality  modelling  system:  validation  and  analysis  of  PM  levels,  optical  depths  and  chemical  composition  over  Europe.  Atmos  Chem  Phys,  12,  3363-­‐3392.  doi:  10.5194/acp-­‐12-­‐3363-­‐2012.      Byun,  D.  and  Schere,  K.  L.:  Review  of  the  Governing  Equations,  Computational  Algorithms,  and  Other   Components   of   the   Models-­‐3   Community   Multiscale   Air   Quality   (CMAQ)   Modelling  System,  Appl.  Mech.  Rev.,  59,  51 77,  2006.    Carlton,  A.  G.,  Bhave,  P.  V.,  Napelenok,  S.  L.,  Edney,  E.  O.,  Sarwar,  G.,  Pinder,  R.  W.,  Pouliot,  G.  A.,  and  Houyoux,  M.:  Model  representation  of  secondary  organic  aerosol  in  CMAQv4.7,  Environ.  Sci.  Technol.,  44,  8553 8560,  2010.    Chang,   J.S.,   brost,   R.A.,   isaksen,   I.S.A.,  Madronich,   S.,  Middleton,   P.,   Stockwell,  W.R.,  Walcek,  C.J.,   1987.   A   three-­‐dimensional   Eulerian   acid   deposition   model:   physical   concepts   and  formulation.  J.  Geophy.  Res.,  92,  14681-­‐14700.    Clarke,   A.D.,   S.R.   Owens,   and   J.   Zhou,   2006.   An   ultrafine   sea-­‐salt   flux   from   breaking   waves:  Implications  for  cloud  condensation  nuclei  in  the  remote  marine  atmosphere.    J.  Geophys.  Res.  111  (D06202).    Colella,   P.,   Woodward,   1984.   The   piecewise   parabolic   method   (PPM)   for   gas-­‐dynamical  simulation.  J.  Comput.  Phys.,  54,  174-­‐201.    

Page 59: ScaleDep! - EMEP · 6 2. D Z } } o } P Ç! 2.1 Simulations! Each mode lling team carried out four model! simulations with different horizontal! resolutions. The simulations were performed

58

Eder,  B.  and  Yu,  S.:  A  performance  evaluation  of  the  2004  release  of  Models-­‐3  CMAQ,  Atmos.  Environ.,  40,  4811 4824,  2006.    Gong,   S.L.,   2003.   A   parameterization   of   sea-­‐salt   aerosol   source   function   for   sub-­‐   and   super-­‐micron  particles.  J.  Geophys.  Res.  17,  1097.  doi:10.1029/2003GB002079.    Matthias,  V.,  2008.  The  aerosol  distribution   in  Europe  derived  with  the  community  multiscale  air   quality   (CMAQ)   model:   comparison   to   near   surface   in   situ   and   sunphotometer  measurements.  Atmos.  Chem.  Phys.  8,  5077-­‐5097    Mebust,  M.  R.,  Eder,  B.  K.,  Binkowski,  F.  S.,  and  Roselle,  S.  J.:  Models-­‐3  Community  Multiscale  Air   Quality   (CMAQ)   model   aerosol   component,   J.   Geophys.   Res.,   108(D6),   4184,  doi:10.1029/2001JD001410,  2003.    Pay,   M.T.,   Piot,   M.,   Jorba,   O.,   Gassó,   S.,   Gonçalves,   M.,   Basart,   S.,   Dabdub,   D.,   Jiménez-­‐Guerrero,   P.,   Baldasano,   J.M.,   2010a.   A   full   year   evaluation   of   the   CALIOPE-­‐EU   air   quality  modelling  system  over  Europe  for  2004.  Atmos.  Environ.  44,  3322-­‐3342.    Pleim,   J.,   2007.   A   combined   local   and   nonlocal   closure  model   for   the   atmospheric   boundary  layer.  Part  I:  model  description  and  testing.  J.  Appl.  Met.  Climatology,  46,  1383-­‐1395.    Schell,  B.,  Ackermann,  I.J.,  Hass,  H.,  Binkowski,  F.S.,  Ebel,  A.,  2001.  Modelling  the  formation  of  secondary   organic   within   a   comprehensive   air   quality   model   system.   J.   Geophys.   Res.,   106,  28275-­‐28293.      Simon  H.,   K.   R.   Baker   and   S.   Phillips,   2012.   Compilation   and   interpretation   of   photochemical  model  performance  statistics  published  between  2006  and  2012.  Atmos.  Environ.  61,  124-­‐139.    Venkatram,   A.,   Pleim,   J.,   1999.   The   electrical   analogy   does   not   apply   to   modelling   dry  deposition  of  particles.  Atmos.  Environ.,  33,  3075-­‐3076.    Walcek,  C.J.  and  Taylor,  G.R,  1986.  A  theoretical  method  for  computing  vertical  distribution  of  acidity  and  sulphate  production  within  cumulus  clouds.  J.  Atmos.  Sci.  43,  339-­‐355.    Wesely,  M.  1989.  Parameterization  of  surface  resistance  to  gaseous  dry  deposition  in  regional  scale  numerical  models.  Atmos.  Environ.,  23,  1293-­‐1304.    Yarwood,  G.,  Rao,  S.,  Yocke,  M.,  and  Whitten,  G.,  2005.  Updates  to  the  Carbon  Bond  chemical  mechanism:   CB05.   Final   report   to   the   US   EPA,   RT-­‐0400675.   [Available   at  http://www.camx.com/publ/pdfs/cb05_final_report_120805.aspx,    access  25  January  2013].    Zhang,   Y.,   Liu,   P.,   Pun,   B.,   Seigneur,   C.,   2006.   A   comprehensive   performance   evaluation   of  MM5-­‐CMAQ   for   the   summer   1999   southern   oxidants   study   episode,   part   iii:   diagnostic   and  mechanistic  evaluations.  Atmos.  Environ.  40,  4856-­‐4873.  doi:10.1016/j.atmosenv.2005.12.046.  

Page 60: ScaleDep! - EMEP · 6 2. D Z } } o } P Ç! 2.1 Simulations! Each mode lling team carried out four model! simulations with different horizontal! resolutions. The simulations were performed

59

7.6    The  SCALEDEP  DataBase    All  data  used  in  the  ScaleDep  analysis  are  available  on  request.    The  ScaleDep  DataBase  consists  of:    

Directory:   SD_DATABASE   containing   all   the   reported   model   output   for   the   4  resolutions  M1,  M2,  M3,  M4 Meteorological  variables:  Kz  (vertical  diffusion  coefficient  [m2/sec]),  PBL  (Planetary  boundary   layer   [m],   RAIN   (Precipitation   [mm/hr]),   T2M   (Temperature   at   2m   [K]),  USTAR  (ustar  [m/sec]),  U10  (Wind  speed  at  10  m  height  [m/sec]).  Gas   variables: O3, NO2, NO, APINEN, H2O2, HCHO, HNO3, NH3, SO2, PAN, VOC, ISOP in units [µg/m3]. Particulate  Matter: PM, PPM, NO3, SO4, NH4, ASOA, BSOA, DUST, SS at 2.5µ fraction and at  10µ  fraction.  Units  [µg/m3].  Deposition:  Dry  NHx,  NOx,  SOx,  and  Wet  NHx,  NOx,  SOx.  Units  [mg/m2]  The  reported  model  results  have  the  following  structure  (netCDF  file):    

                                                           SD_MODEL_EC4Mx_Variable_Freq_20090101.nc                                        (7.6.1)    

with     MODEL  =  [EMEP,  CHIM,  LOTO,  RCGC,CMAQ]     Mx  =  [M1,  M2,  M3,M4]     Variable  =  see  above     Freq  =  [HL,  DL],  ie  hourly  values  (8760  hours),  or  daily  values  (365  days)    

The  netCDF  variables  inside  (7.6.1)  have  3  dimensions  (nlon,nlat,  freq):  nlon  number  of   grid   cells   in   longitude   direction,   nlat   number   of   grid   cells   in   latitude   direction,  Frequency.  Longitude  and  Latitude  arrays  are   included  as  1  dimensional  (nx  or  ny)  or  2  dimensional  (nx,ny).    

Directory:   TIME_FILES_SD   containing   all   processed  model   results   for   input   to   the  DeltaTool.   The   processing   has   been   performed   using   the  DeltaTool   PreProcessing  utility   with   variables   and   station   metadata   from   the   startup.ini   file   and   the  observational   data   from   the   directory  monitoring.     For   details   on   the   use   of   the  DeltaTool  and  its  PreProcessor  we  refer  to  the  literature  in  Section  6.    The  netCDF  variables   correspond   to   the   stations   in   the   startup.ini   file   and  have  2  dimensions:  The  time  frequency  (always  8760)  and  the  number  of  variables  which  corresponds  to  the  string  format  of  the  global  att    

Directory:  monitoring  containing  csv  files  with  observational  data  at  the  stations.    The  next  Table  7  gives  for  each  of  the  pollutants  PM10,  NO2,  and  O3  the  composition  of  the  City  groups  Urban30,  Rural200,  Emep200.              

Page 61: ScaleDep! - EMEP · 6 2. D Z } } o } P Ç! 2.1 Simulations! Each mode lling team carried out four model! simulations with different horizontal! resolutions. The simulations were performed

60

Table   7.   Overview   of   City   groups   per   pollutant   (PM10,   NO2,   O3),   per   station   type  (Urban,  Rural,  EMEP),  and  per  radius  (30  km,  200  km)  

 

Pollutant   URE  group   Station  Codes  (see  startup.ini)  PM10   Urban30  

(116  stations)  AT30601*AT31901*AT9STAD*CZ0ARIE*CZ0ASTO*CZ0SKLM*CZ0SKLS*  DEBB021*DEBE010*DEBE018*DEBE034*DEBE068*DEBY039*DEHH008*  DEHH015*DEHH033*DEHH059*DEHH074*DEHH076*ES0126A*ES0567A*  ES1231A*ES1351A*ES1532A*S1568A*ES1578A*ES1598A*ES1619A*  ES1638A*ES1640A*ES1713A*ES1752A*ES1856A*ES1872A*ES1885A*  ES1890A*S1900A*FR02031*FR03014*FR03029*FR03047*FR04001*  FR04002*FR04004*FR04024*FR04055*FR04098*FR04099*FR20061*  FR20062*GB0566A*GB0584A*GB0620A*GB0950A*HU0042A*IE0028A*  IE0135A*IT0524A*IT0706A*IT0770A*IT0953A*IT0956A*IT1010A*IT1035A*IT1176A*IT1650A*IT1692A*IT1743A*IT1835A*IT1836A*IT1906A*  NL00014*NL00701*PL0010A*PL0038A*PL0039A*PL0120A*PL0125A*  PL0132A*PL0133A*PL0134A*PL0141A*PL0143A*PL0216A*PL0273A*  PL0274A*PL0399A*PL0404A*PT03071*PT03083*PT03084*PT03085*  PT03087*PT03089*PT03093*PT03101*RO0065A*SE0022A  

  Rural200  (98  stations)  

AT0ILL1*AT0PIL1*AT0ZIL1*AT30202*AT30302*AT30403*AT30407*  AT30502*AT30603*AT30701*AT31703*AT31902*AT31903*AT31904*  AT31905*AT60156*AT72538*BETN012*BETN016*BETN054*BETN063*  BETN066*BETN073*BETN085*BETN093*BETN100*BETN113*BETR833*  BG0070A*CH0033A*CH0051A*CZ0BKUC*CZ0BLOC*CZ0BMIS*CZ0JDUK*  CZ0JKOS*CZ0LFRU*CZ0LJIZ*CZ0LRAD*CZ0LSOU*CZ0PKUJ*CZ0SROZ*  CZ0TBKR*CZ0TNUJ*CZ0UDOK*CZ0UKRU*CZ0ULOM*CZ0UMED*CZ0URVH*CZ0USJT*CZ0USMO*CZ0USNZ*CZ0UTUS*CZ0UVAL*DEBB053*DEBB065*  DEBB066*DEBB075*DEBE032*DEBE056*DEBY013*DEBY049*DEBY109*  DEMV017*DENI059*DENI060*DENI063*DENW064*DENW065*DENW068*DERP015*DERP016*DESH008*DESN074*DEUB005*DEUB030*ES1222A*  ES1488A*ES1489A*ES1491A*ES1554A*ES1599A*ES1654A*ES1670A*  ES1671A*ES1802A*ES1805A*ES1806A*ES1808A*ES1810A*ES1811A*  ES1851A*ES1878A*ES1887A*FR02005*FR04066*FR04158*FR04322*  FR04328*FR18019*FR20045*FR25049*GB0617A*GB0953A*HU0040A*  IE0090A*IE0126A*IT0989A*IT0992A*IT1418A*IT1464A*IT1646A*IT1904A*IT1911A*IT1948A*NL00131*NL00230*NL00235*NL00246*NL00318*  NL00437*NL00444*NL00538*NL00631*NL00633*NL00738*NL00818*  NL00918*PL0028A*PL0182A*PL0243A*PL0470A*PT03096*PT03099*  PT03102*PT04002*SE0066A  

  EMEP200  (14  stations)  

AT0002R*CZ0003R*DE0002R*DE0007R*ES0001R*ES0008R*ES0009R*  ES0012R*ES0013R*GB0036R*HU0002R*IT0001R*SE0012R*SK0007R  

NO2   Urban30  (126  stations)  

AT30601*AT31901*AT9STAD*AT9STEF*BETB006*CZ0ARIE*CZ0ASTO*  CZ0SKLM*CZ0SKLS*DEBB021*DEBE010*DEBE018*DEBE034*DEBE066*  DEBE068*DEBY039*DEHH008*DEHH015*DEHH033*DEHH059*DEHH074*  DEHH076*ES0124A*ES0126A*ES1231A*ES1351A*ES1422A*ES1425A*  ES1532A*ES1551A*ES1568A*ES1578A*ES1598A*ES1619A*ES1638A*  ES1640A*ES1644A*ES1653A*ES1679A*ES1713A*ES1752A*ES1816A*  ES1856A*ES1885A*ES1890A*FR02031*FR03014*FR03029*FR03047*  FR04001*FR04002*FR04004*FR04008*FR04014*FR04017*FR04018*  FR04024*FR04037*FR04055*FR04059*FR04060*FR04098*FR04099*  FR04100*FR04101*FR04105*FR04146*FR04160*FR20004*FR20061*  FR20062*GB0566A*GB0584A*GB0620A*GB0638A*GB0644A*GB0681A*  GB0743A*GR0028A*GR0031A*HU0042A*IE0028A*IE0135A*IT0524A*  IT0706A*IT0770A*IT0912A*IT0953A*IT0956A*IT1010A*IT1035A*IT1176A*

Page 62: ScaleDep! - EMEP · 6 2. D Z } } o } P Ç! 2.1 Simulations! Each mode lling team carried out four model! simulations with different horizontal! resolutions. The simulations were performed

61

IT1650A*IT1692A*IT1743A*IT1835A*IT1836A*IT1906A*NL00003*  NL00014*NL00019*NL00021*NL00022*NL00520*NL00701*PL0010A*  PL0033A*PL0034A*PL0038A*PL0039A*PL0134A*PL0141A*PL0143A*  PL0273A*PT03010*PT03070*PT03071*PT03082*PT03083*PT03084*  PT03085*PT03087*PT03089*PT03093*PT03101*SE0022A  

  Rural200  (156  stations)  

AT0ILL1*AT0PIL1*AT0ZIL1*AT30202*AT30302*AT30403*AT30407*  AT30502*AT31502*AT31701*AT31703*AT31902*AT31903*AT31904*  AT31905*AT31906*AT60156*AT72123*AT72538*BETN012*BETN016*  BETN027*BETN040*BETN046*BETN054*BETN063*BETN066*BETN073*  BETN085*BETN093*BETN100*BETN113*BG0070A*CH0033A*CH0051A*  CZ0BMIS*CZ0JKOS*CZ0LFRU*CZ0LSOU*CZ0SONR*CZ0TBKR*CZ0UKRU*  CZ0ULOM*CZ0UMED*CZ0URVH*CZ0USNZ*CZ0UTUS*CZ0UVAL*DEBB053*DEBB065*DEBB066*DEBB075*DEBE032*DEBE056*DEBE062*DEBY013*  DEBY049*DEBY081*DEBY109*DEMV017*DENI059*DENI060*DENI063*  DENW064*DENW065*DENW068*DERP015*DERP016*DERP028*DESH008*DESN052*DESN074*DEST069*DEUB005*DEUB030*ES1488A*ES1489A*  ES1491A*ES1599A*ES1654A*ES1670A*ES1671A*ES1689A*ES1690A*  ES1778A*ES1793A*ES1802A*ES1805A*ES1806A*ES1808A*ES1810A*  ES1811A*ES1851A*ES1878A*ES1917A*FR02005*FR02012*FR04038*  FR04328*FR11026*FR15001*FR18019*FR20045*FR20049*FR27005*  GB0617A*GB0754A*GR0110R*HU0040A*IE0090A*IT0741A*IT0842A*  IT0952A*IT0989A*IT0992A*IT1174A*IT1288A*IT1418A*IT1464A*IT1646A*IT1736A*IT1806A*IT1812A*IT1904A*IT1911A*IT1924A*IT1948A*  NL00107*NL00131*NL00227*NL00230*NL00235*NL00301*NL00318*  NL00437*NL00444*NL00538*NL00620*NL00631*NL00633*NL00738*  NL00818*NL00918*PL0014A*PL0028A*PL0058A*PL0128A*PL0182A*  PL0243A*PL0314A*PT03096*PT03099*PT03102*PT04002*RO0072A*  SE0066A  

  EMEP200  (10  stations)  

ES0001R*ES0008R*ES0009R*ES0012R*ES0013R*GB0034R*GB0036R*  GB0037R*GB0038R*GB0045R  

O3   Urban30  (93  stations)  

AT30601*AT31901*AT9STEF*BETB006*CZ0ASTO*CZ0SKLM*DEBB021*  DEBE010*DEBE034*DEBY039*DEHH008*DEHH033*ES0124A*ES0126A*  ES1231A*ES1351A*ES1422A*ES1532A*ES1568A*ES1578A*ES1598A*  ES1619A*ES1638A*ES1640A*ES1644A*ES1653A*ES1679A*ES1713A*  ES1752A*ES1816A*ES1856A*ES1885A*ES1890A*FR03029*FR04002*  FR04004*FR04008*FR04017*FR04018*FR04037*FR04049*FR04055*  FR04098*FR04100*FR04101*FR04160*FR20004*FR20061*FR20062*  GB0566A*GB0584A*GB0620A*GB0638A*GB0644A*GB0681A*GB0743A*  GR0028A*GR0031A*HU0042A*IE0028A*IT0524A*IT0706A*IT0770A*  IT0912A*IT0953A*IT0956A*IT1010A*IT1035A*IT1176A*IT1650A*IT1692A*IT1743A*IT1835A*IT1836A*IT1906A*NL00520*PL0010A*PL0038A*  PL0044A*PL0141A*PL0487A*PT03070*PT03071*PT03082*PT03083*  PT03084*PT03085*PT03087*PT03089*PT03093*PT03101*RO0065A*  SE0022A  

  Rural200  (185  stations)  

AT0ILL1*AT0PIL1*AT0ZIL1*AT30202*AT30302*AT30403*AT30502*  AT30603*AT30701*AT30801*AT31102*AT31502*AT31701*AT31904*  AT32101*AT56071*AT60150*AT60156*AT72123*AT72218*AT72538*  AT72705*BETN012*BETN016*BETN027*BETN040*BETN046*BETN051*  BETN054*BETN063*BETN066*BETN073*BETN085*BETN093*BETN100*  BETN113*BG0070A*CH0033A*CH0051A*CZ0BKUC*CZ0BMIS*CZ0CKOC*  CZ0JKOS*CZ0LSOU*CZ0SONR*CZ0TBKR*CZ0ULOM*CZ0URVH*CZ0USNZ*  CZ0UTUS*CZ0UVAL*DEBB053*DEBB065*DEBB066*DEBB075*DEBE032*  

Page 63: ScaleDep! - EMEP · 6 2. D Z } } o } P Ç! 2.1 Simulations! Each mode lling team carried out four model! simulations with different horizontal! resolutions. The simulations were performed

62

DEBE056*DEBE062*DEBY013*DEBY049*DEBY081*DEBY109*DEMV017*  DENI059*DENI060*DENI063*DENW064*DENW065*DENW068*DERP015*  DERP016*DERP028*DESH001*DESH008*DESH013*DESH014*DESN052*  DESN074*DEST069*DEUB005*DEUB030*ES1222A*ES1311A*ES1347A*  ES1488A*ES1489A*ES1491A*ES1588A*ES1599A*ES1654A*ES1670A*  ES1671A*ES1689A*ES1690A*ES1778A*ES1793A*ES1802A*ES1805A*  ES1806A*ES1808A*ES1810A*ES1811A*ES1851A*ES1878A*FR02004*  FR02012*FR02023*FR02024*FR03027*FR03031*FR03048*FR03067*  FR03083*FR04038*FR04066*FR04142*FR04158*FR04322*FR07029*  FR08617*FR11026*FR15001*FR18010*FR18019*FR18036*FR18045*  FR20045*FR20049*FR20204*FR25049*FR27005*FR27006*FR32008*  FR34043*GB0617A*GB0754A*GR0110R*HU0040A*IE0090A*IE0111A*  IT0741A*IT0842A*IT0952A*IT0989A*IT0992A*IT1174A*IT1288A*IT1418A*IT1464A*IT1736A*IT1806A*IT1812A*IT1904A*IT1911A*IT1924A*IT1948A*NL00107*NL00131*NL00227*NL00230*NL00235*NL00301*NL00318*  NL00437*NL00444*NL00538*NL00620*NL00631*NL00633*NL00738*  NL00818*NL00918*PL0014A*PL0028A*PL0058A*PL0121A*PL0128A*  PL0182A*PL0243A*PT03096*PT03099*PT03102*PT04002*RO0072A*  SE0066A  

  EMEP200  (16  stations)  

ES0001R*ES0008R*ES0009R*ES0012R*ES0013R*GB0034R*GB0035R*  GB0036R*GB0037R*GB0038R*GB0045R*HU0002R*PL0002R*PL0003R*  SE0012R*SK0007R