sbn progress – october 2019 sowjanya gollapinni, en-chuan

6
SBN Progress – October 2019 Sowjanya Gollapinni, En-Chuan Huang, William Louis, Keith Rielage, Tyler Thornton, & Richard Van de Water I. Altered Dispersion Relations Fit to LSND & MiniBooNE We have fit the LSND and MiniBooNE neutrino oscillation data with a model of altered dispersion relations, as discussed in arXiv:1808.07460 by theorists Dominik Doering, Heinrich Paes, Philipp Sicking, & Thomas J. Weiler. As shown in Figure 1, this model fits the data well with a best fit at approximately 1.75 eV2, which agrees with the best fit from the NEOS reactor neutrino experiment (PRL 118, 121802). Furthermore, the probability of the best fit is ~67%, and the model naturally explains well the world neutrino data and why short-baseline neutrino oscillations have not been observed above 1 GeV. MiniBooNE completed data taking in July with a total of ~3E21 protons on target (POT), and will plan to present final results at the Neutrino 2020 conference in June.

Upload: others

Post on 25-Dec-2021

1 views

Category:

Documents


0 download

TRANSCRIPT

SBNProgress–October2019SowjanyaGollapinni,En-ChuanHuang,WilliamLouis,KeithRielage,TylerThornton,&RichardVandeWaterI.AlteredDispersionRelationsFittoLSND&MiniBooNEWehavefittheLSNDandMiniBooNEneutrinooscillationdatawithamodelofaltereddispersionrelations,asdiscussedinarXiv:1808.07460bytheoristsDominikDoering,HeinrichPaes,PhilippSicking,&ThomasJ.Weiler.AsshowninFigure1,thismodelfitsthedatawellwithabestfitatapproximately1.75eV2,whichagreeswiththebestfitfromtheNEOSreactorneutrinoexperiment(PRL118,121802).Furthermore,theprobabilityofthebestfitis~67%,andthemodelnaturallyexplainswelltheworldneutrinodataandwhyshort-baselineneutrinooscillationshavenotbeenobservedabove1GeV.MiniBooNEcompleteddatatakinginJulywithatotalof~3E21protonsontarget(POT),andwillplantopresentfinalresultsattheNeutrino2020conferenceinJune.

Figure1:ThebestfittotheLSNDandMiniBooNEneutrino

oscillationdatawiththealtereddispersionrelationsmodel.2.MeasurementoftheNeutronFluxatLujan&PDSTest

3−10 2−10 1−10 1θ22sin

2−10

1−10

1

10

210)2 (e

V2

m∆

68%90%95%99%σ3σ4σ5σ6

)2 = (0.0564,1.752 eVBF

)2m∆, θ22(sin

= 330.26BF2χ

= 373.79Null2χ

TheCAPTAINcryostatisfilledwith10-tonsofLArandismakingmoretestsoftheSBNDPhotonDetectionSystem(PDS)intheLujanneutronbeamatLANL.Figure2showsaphotographofthedetectorwithconcreteshieldingaddedtothefrontandsidesofthedetector.Inaddition,sheetsofborated-polyhavebeenmountedontheoutsideoftheconcreteshieldingtoabsorbthermalneutrons.Figure3showsthenumberofphotoelectronsobservedbyCAPTAINasafunctionoftimearoundtheLujan295nsbeamspill.Byaddingshielding,thebeamneutronshavebeenbothreducedanddelayedby~150nsrelativetothestartofthebeamspill. Withthisreductionofneutrondepositedenergy,thereisanopportunitytosearchforneutrinocoherentscatteringoffargonbeforethePDSisshippedtoFermilab.

Figure2:AphotographoftheCAPTAINcryostatwithconcreteshieldingaddedtothefrontandsidesofthedetector.

Figure3:ThenumberofphotoelectronsobservedbyCAPTAINasafunctionoftimearoundtheLujan295nsbeamspill.Byaddingshielding,thebeamneutronshavebeenbothreducedanddelayedrelativetothestartofthebeamspill. 4.Single-photonLowEnergyExcessandDetectorPhysicsanalysesinMicroBooNEGollapinni and her team are co-leading the effort to producefirst results for the single-photon interpretation of the

MiniBooNELowEnergyExcessAnalysis inMicroBooNE.MostrecentresultsfromtheanalysiswerepresentedattheNuFact2019 conference. The primary effort from the LANL teaminvolves selecting neutral current neutral pion background(which forms the biggest background to single photonselection)andusingthattodevelopadata-drivenconstraintforthe analysis. In addition, the LANL team is also leading thesystematicsevaluation for theanalysis.Figure4belowshowsthe reconstructed mass of neutral pions using a two-photonselectionforbothdataandMonteCarlo.AneventdisplayfromMicroBooNEdatathatpassesthetwo-showerselectionisalsoshown.ThegoalfortheteamistoproducethefirstresultsforNeutrino2020.

Figure 4: (left) Reconstructed neutral pion mass peak afterenergydependentcorrection.(right)Adataeventthatpassestheneutralpionselectionthroughtwophotonshowers5.SlowControlsSystematSBND(andICARUS)LANLteamisleadingthedesignanddevelopmentoftheSlowControlssystemfortheSBNDexperiment.Theteamhasalreadydeveloped controls and monitoring for various sub-systems.Figure5showsanexampleofthedisplaydevelopedforgroundmonitoringforSBNDthatwasimplementedinICARUS.

Figure 5: Slow Controls web display of the ICARUS groundmonitoring,initiallydevelopedforSBNDbytheLANLteam.6.Calibration,CryogenicInstrumentation,&SlowControlsatDUNEThe LANL team has leadership in cryogenic instrumentation,slowcontrolsandcalibration.TheprimaryeffortoverthepastfewweeksistofinalizetheDUNEtechnicaldesignreport(TDR)forchaptersontheabovethreetopics.Apenultimatedraftofthe TDR has been submitted to Long Baseline NeutrinoCommittee(LBNC)onJuly26th.Wehavealsobeenworkingondeveloping an engineering design for the laser calibrationsystem for the DUNE far detector. Plans for cryogenicinstrumentation, calibration and slow controls for theProtoDUNERun2hasalsobeenactivelyunderway.