satellite image deconvolution using complex wavelet packets · satellite image deconvolution / cwp...

46
Satellite image deconvolution using complex wavelet packets André Jalobeanu, Laure Blanc-Féraud, Josiane Zerubia ARIANA research group INRIA Sophia Antipolis, France CNRS / INRIA / UNSA www.inria.fr/ariana

Upload: others

Post on 25-Jul-2020

7 views

Category:

Documents


0 download

TRANSCRIPT

Page 1: Satellite image deconvolution using complex wavelet packets · Satellite image deconvolution / CWP 2 • Problem statement • Efficient representations and basis choice • Complex

Satellite image deconvolutionusing complex wavelet packets

André Jalobeanu, Laure Blanc-Féraud, Josiane Zerubia

ARIANA research groupINRIA Sophia Antipolis, France

CNRS / INRIA / UNSA

www.inria.fr/ariana

Page 2: Satellite image deconvolution using complex wavelet packets · Satellite image deconvolution / CWP 2 • Problem statement • Efficient representations and basis choice • Complex

Satellite image deconvolution / CWP 2

• Problem statement• Efficient representations and basis choice• Complex wavelet transform• Complex wavelet packet transform• Transform thresholding

– Different methods– Parameter estimation– Two algorithms : COWPATH 1 and 2– Results

• Conclusion and future work

Page 3: Satellite image deconvolution using complex wavelet packets · Satellite image deconvolution / CWP 2 • Problem statement • Efficient representations and basis choice • Complex

Satellite image deconvolution / CWP 3

Observed images are corrupted :

Y = h * X0 + N Noise :White and Gaussian(known variance)

Observation equation

Convolution kernel(known PSF)

Original imageObserved image

Page 4: Satellite image deconvolution using complex wavelet packets · Satellite image deconvolution / CWP 2 • Problem statement • Efficient representations and basis choice • Complex

Satellite image deconvolution / CWP 4

Problem statement

Ill-posed inverse problem [Hadamard 23]

• existence,• unicity,• stability of the solution ?

Inversion à noise amplification

Small errors of Y à high errors of X

Page 5: Satellite image deconvolution using complex wavelet packets · Satellite image deconvolution / CWP 2 • Problem statement • Efficient representations and basis choice • Complex

Satellite image deconvolution / CWP 5

Introduction

• Monoscale methods [Geman & McClure 85, Charbonnier 97, …]

Regularization + edge preservation

Find X by minimizing U(X) :

U(X) = ||Y-h*X||2 / 2σ2 + Φ(X)

Data term Non-quadraticregularization term

• Multiscale methods [Mallat 89, Bijaoui 94, …]Multiresolution analysis à wavelets• Regularization of classical iterative methods (statistics)

(shift invariant wavelet transform thresholding)

• Multiresolution variational models

Page 6: Satellite image deconvolution using complex wavelet packets · Satellite image deconvolution / CWP 2 • Problem statement • Efficient representations and basis choice • Complex

Satellite image deconvolution / CWP 6

Introduction

• Filtering after inversion [Donoho, Mallat, Kalifa 99]

• Non-regularized inversion (Fourier domain)• Transform (change the basis)• Coefficient thresholding• Inverse transform (return to image space)

Page 7: Satellite image deconvolution using complex wavelet packets · Satellite image deconvolution / CWP 2 • Problem statement • Efficient representations and basis choice • Complex

Satellite image deconvolution / CWP 7

Representationsfor efficient filtering

Efficient separation of the signal and the deconvolved noise :- compact reprensentation of the signal- efficient compression of the noise in high frequencies

Image deconvolvedwithout regularization

Transform

signal

noise

Page 8: Satellite image deconvolution using complex wavelet packets · Satellite image deconvolution / CWP 2 • Problem statement • Efficient representations and basis choice • Complex

Satellite image deconvolution / CWP 8

Filtering the deconvolved noise

• Cancel the coefficients corresponding only to the noise• Thresholding the coefficients corrupted by noise

In the new basis, the coefficients of the noise transformmust be independentà enable separate thresholding

è noise covariance « nearly diagonalized » [Kalifa 99]

The deconvolved noise is colored !!

Page 9: Satellite image deconvolution using complex wavelet packets · Satellite image deconvolution / CWP 2 • Problem statement • Efficient representations and basis choice • Complex

Satellite image deconvolution / CWP 9

Choice of the basis

• Compact representation • « nearly diagonal » noise covariance

The thresholding estimator is optimal [Donoho, Johnstone 94]

T-T

x

θT(x) Thresholding function

Coefficientin the new basis

Page 10: Satellite image deconvolution using complex wavelet packets · Satellite image deconvolution / CWP 2 • Problem statement • Efficient representations and basis choice • Complex

Satellite image deconvolution / CWP 10

Algorithm design

Choice of the basis :• compacity

• diagonalization• reconstruction

• invariance properties

Choice of thethresholding function

Optimal threshold value ?

Roughdeconvolution

Directtransform

thresholding Inversetransform

Page 11: Satellite image deconvolution using complex wavelet packets · Satellite image deconvolution / CWP 2 • Problem statement • Efficient representations and basis choice • Complex

Satellite image deconvolution / CWP 11

Complex wavelets

¶ Shift invariance¶ Directional selectivity¶ Perfect reconstruction¶ Fast algorithm O(N)

Properties :

• quad-tree (4 parallel wavelet trees) [Kingsbury 98]

• filters shifted by ½ and ¼ pixel between trees• combination of trees à complex coefficients

• filter bank implementation • biorthogonal wavelets

Properties :

Page 12: Satellite image deconvolution using complex wavelet packets · Satellite image deconvolution / CWP 2 • Problem statement • Efficient representations and basis choice • Complex

Satellite image deconvolution / CWP 12

Quad-tree : 1st level

a0(image)

a1A

d21A

d11A

d31A

a1B

d21B

d11B

d31B

a1C

d21C

d11C

d31C

a1D

d21D

d11D

d31D

a1

d21

d11

d31

Non-decimated transform Parallel trees ABCD

AB

CD

AB

CD

AB

CD

AB

CD

AA A

A

AA A

A

AA A

A

AA A

ABB B

B BB B

B

BB B

B BB B

BCC C

CCC C

C

CC C

CCC C

CDD D

D

DD D

D

DD D

D

DD D

D

Perfect reconstruction :

mean (A+B+C+D)/4

Page 13: Satellite image deconvolution using complex wavelet packets · Satellite image deconvolution / CWP 2 • Problem statement • Efficient representations and basis choice • Complex

Satellite image deconvolution / CWP 13

â2e

â2e

he

ge

aj,A

he

ge

â2e

â2e

he

ge

â2e

â2e

aj+1,A

d1j+1,A

d2j+1,A

d3j+1,A

Quad-tree : level j

different length filters : ho, go, he, ge à shift < pixel

â2e

â2e

he

ge

aj,B

ho

go

â2o

â2o

ho

go

â2o

â2o

aj+1,B

d1j+1,B

d2j+1,B

d3j+1,B

â2o

â2o

ho

go

aj,C

he

ge

â2e

â2e

he

ge

â2e

â2e

aj+1,C

d1j+1,C

d2j+1,C

d3j+1,C

â2o

â2o

ho

go

aj,A

ho

go

â2o

â2o

ho

go

â2o

â2o

aj+1,D

d1j+1,D

d2j+1,D

d3j+1,D

Page 14: Satellite image deconvolution using complex wavelet packets · Satellite image deconvolution / CWP 2 • Problem statement • Efficient representations and basis choice • Complex

Satellite image deconvolution / CWP 14

Complex coefficients

M

dkj,A

dkj,B

dkj,C

dkj,D

4 real subbands

Zkj+

Zkj-

2 symmetricComplex subbands

Z + = (A - D) + i (B + C)Z - = (A + D) + i (B - C)

!The wavelet function is not a complex function.Not exactly ‘complex’ wavelets !

Page 15: Satellite image deconvolution using complex wavelet packets · Satellite image deconvolution / CWP 2 • Problem statement • Efficient representations and basis choice • Complex

Satellite image deconvolution / CWP 15

Necessity of the packets

Compact representation

Poor representation of the deconvolved noise

Complexwavelets :

TransformImage deconvolvedwithout regularization High frequencies

not recoverable

Page 16: Satellite image deconvolution using complex wavelet packets · Satellite image deconvolution / CWP 2 • Problem statement • Efficient representations and basis choice • Complex

Satellite image deconvolution / CWP 16

Wavelet packets

j=0

j=1

è decomposethe detail spaces[Coifman et al. 92]

j=2

Page 17: Satellite image deconvolution using complex wavelet packets · Satellite image deconvolution / CWP 2 • Problem statement • Efficient representations and basis choice • Complex

Satellite image deconvolution / CWP 17

Deconvolved noise power spectrum

0 1/2Normalizedfrequency

energy

Choice of the tree

• no unicity of the decomposition tree

• application dependent

• deconvolution : must adapt to the deconvolved noise

wavelets packets Limit thegrowth of the noise variance

Page 18: Satellite image deconvolution using complex wavelet packets · Satellite image deconvolution / CWP 2 • Problem statement • Efficient representations and basis choice • Complex

Satellite image deconvolution / CWP 18

Complex wavelet packets (CWP)

image

φ2φ2φ2φ2

è decompose the detail spaces of thecomplex wavelet transform

for each tree A,B,C,D

TransformOriginal image

Page 19: Satellite image deconvolution using complex wavelet packets · Satellite image deconvolution / CWP 2 • Problem statement • Efficient representations and basis choice • Complex

Satellite image deconvolution / CWP 19

Complex wavelet packets (CWP)

Compact representationComplexWaveletPackets :

TransformImage deconvolvedwithout regularization

High frequenciesrecoverable

Nice representation of the deconvolved noise

Page 20: Satellite image deconvolution using complex wavelet packets · Satellite image deconvolution / CWP 2 • Problem statement • Efficient representations and basis choice • Complex

Satellite image deconvolution / CWP 20

Frequency plane partition

Page 21: Satellite image deconvolution using complex wavelet packets · Satellite image deconvolution / CWP 2 • Problem statement • Efficient representations and basis choice • Complex

Satellite image deconvolution / CWP 21

Directional selectivityimpulse responses – real part

Complex wavelets

Complex wavelet packets

Page 22: Satellite image deconvolution using complex wavelet packets · Satellite image deconvolution / CWP 2 • Problem statement • Efficient representations and basis choice • Complex

Satellite image deconvolution / CWP 22

Directional selectivityimpulse responses – imaginary part

Complex wavelet packets

Complex wavelets

Page 23: Satellite image deconvolution using complex wavelet packets · Satellite image deconvolution / CWP 2 • Problem statement • Efficient representations and basis choice • Complex

Satellite image deconvolution / CWP 23

Comparison with real wavelet packets

No shift invarianceè artefacts (mean over translations)

No rotation invariancePrivileged directions : horizontal / verticalè poor texture representation

variously oriented (diagonals)Impulse

responses

Page 24: Satellite image deconvolution using complex wavelet packets · Satellite image deconvolution / CWP 2 • Problem statement • Efficient representations and basis choice • Complex

Satellite image deconvolution / CWP 24

Example

Test image, 512x512

Page 25: Satellite image deconvolution using complex wavelet packets · Satellite image deconvolution / CWP 2 • Problem statement • Efficient representations and basis choice • Complex

Satellite image deconvolution / CWP 25

Example

Complex wavelet packet transform, level 6

Page 26: Satellite image deconvolution using complex wavelet packets · Satellite image deconvolution / CWP 2 • Problem statement • Efficient representations and basis choice • Complex

Satellite image deconvolution / CWP 26

Transform thresholding

Filter only the magnitudeè enable shift invariance

recall : observed images are corrupted :Y = h * X0 + N

each coefficient of the subband kof the CWP transform is corrupted :

x = ξ + n

Deconvolved noisestandard dev. σk

Original coefficientunknown

(original imageCWP transform)

Observed coefficient(CWP transform of

the deconvolved image)

( ) ( )xaxxx̂ TT =θ=

Page 27: Satellite image deconvolution using complex wavelet packets · Satellite image deconvolution / CWP 2 • Problem statement • Efficient representations and basis choice • Complex

Satellite image deconvolution / CWP 27

Thresholding functions

Data : image deconvolved without regularization

Fix a thresholdingfunction θT

Optimal threshold computation :minimize the risk

•Minimax risk [Donoho 94]• subband modeling

Bayesian methods :

Coefficient estimation byMAPè function θT

Models for the subbands :• Homogeneous

generalized Gaussian• Inhomogeneous Gaussian

Page 28: Satellite image deconvolution using complex wavelet packets · Satellite image deconvolution / CWP 2 • Problem statement • Efficient representations and basis choice • Complex

Satellite image deconvolution / CWP 28

Deconvolved noise variance

σk

min

max

Estimation of σk :• simulation (CWP transform of a white Gaussian noise)• direct computation, with known h and σ

[ ][ ]

2

j,i ij

ijk

22k hFFT

RFFT∑σ=σ Impulse response

for subband k

Page 29: Satellite image deconvolution using complex wavelet packets · Satellite image deconvolution / CWP 2 • Problem statement • Efficient representations and basis choice • Complex

Satellite image deconvolution / CWP 29

Optimal risk• Impose a thresholding function θT

• Minimize the risk of the thresholding estimator

−=

200 XX̂E)X,X̂(r ( )

ξ−θ= ∑

m

2T xE

• Theoretical results [Donoho, Johnstone 94]not useful in practice (too large threshold) [Kalifa 99]

• Subband modeling (Generalized Gaussian [Mallat 89])à model parameters estimation

Page 30: Satellite image deconvolution using complex wavelet packets · Satellite image deconvolution / CWP 2 • Problem statement • Efficient representations and basis choice • Complex

Satellite image deconvolution / CWP 30

Subband modeling

Generalized Gaussian : ( ) p/

p,eZ

1P αξ−

α=ξ

Experimental study :

ReIm

ReIm

Histograms :original image

CWP transform subbands

α,p modelparameters

Page 31: Satellite image deconvolution using complex wavelet packets · Satellite image deconvolution / CWP 2 • Problem statement • Efficient representations and basis choice • Complex

Satellite image deconvolution / CWP 31

Bayesian methods

• Subband modelingà parameter estimation

• No arbitrary choice of thresholding function

• estimate x by Maximum A Posteriori (MAP)( ) ( ) ( )ξξ=ξ PxPMaxxPMax

( ) p/eP αξ−∝ξ

( ) 22 2/xexP

σξ−−∝ξ

p22 /2/xMinx̂ αξ+σξ−= ξ

( )xx̂ θ=

Estmation of themodel parameters α,p : Maximum Likelihood,…

pk=1 pk=0,2

Classical thresholdingfunctions for particularvalues of pk

Page 32: Satellite image deconvolution using complex wavelet packets · Satellite image deconvolution / CWP 2 • Problem statement • Efficient representations and basis choice • Complex

Satellite image deconvolution / CWP 32

COWPATH 1.0« COmplex Wavelet Packets Automatic Thresholding »

Page 33: Satellite image deconvolution using complex wavelet packets · Satellite image deconvolution / CWP 2 • Problem statement • Efficient representations and basis choice • Complex

Satellite image deconvolution / CWP 33

Inhomogeneous Gaussian ModelInsufficiency of homogeneous models

(constant areas / edges / textures)

( ) 2ij

2ij s2/2ij

ij es21P ξ−

π=ξ

Parameter sij : depends on the location of the coefficient ξij

!Estimation problems for the model parameters sij(not enough data / number of unknown parameters !)

Hybrid method : parameter estimationfrom a ‘good’ approximation of the original image

Complete Data Maximum Likelihood

Page 34: Satellite image deconvolution using complex wavelet packets · Satellite image deconvolution / CWP 2 • Problem statement • Efficient representations and basis choice • Complex

Satellite image deconvolution / CWP 34

Roughdeconvolution

YDeconvolution(Non-quadratic ϕvariational model)

COWPATH 2.0

CWP

CWPParameterestimation

(ML)

thresholding(MAP)

Noisevariances

computation

X̂CWP-1

Computation time3,5s on PII 400(quadratic ϕ)

Page 35: Satellite image deconvolution using complex wavelet packets · Satellite image deconvolution / CWP 2 • Problem statement • Efficient representations and basis choice • Complex

Satellite image deconvolution / CWP 35Nîmes, original image 512 x 512 © French Space Agency (CNES)

Page 36: Satellite image deconvolution using complex wavelet packets · Satellite image deconvolution / CWP 2 • Problem statement • Efficient representations and basis choice • Complex

Satellite image deconvolution / CWP 36Nîmes, blurred and noisy image (σ~1.4)

Page 37: Satellite image deconvolution using complex wavelet packets · Satellite image deconvolution / CWP 2 • Problem statement • Efficient representations and basis choice • Complex

Satellite image deconvolution / CWP 37Nîmes, COWPATH 1 result

Page 38: Satellite image deconvolution using complex wavelet packets · Satellite image deconvolution / CWP 2 • Problem statement • Efficient representations and basis choice • Complex

Satellite image deconvolution / CWP 38Nîmes, COWPATH 2 result

Page 39: Satellite image deconvolution using complex wavelet packets · Satellite image deconvolution / CWP 2 • Problem statement • Efficient representations and basis choice • Complex

Satellite image deconvolution / CWP 39Nîmes, COWPATH 2 result - enlarged

smoothhomogeneous

areas

sharptextures

sharp andregular

diagonal edges

Page 40: Satellite image deconvolution using complex wavelet packets · Satellite image deconvolution / CWP 2 • Problem statement • Efficient representations and basis choice • Complex

Satellite image deconvolution / CWP 40Nîmes, deconvolution using real wavelet packets [Kalifa, Mallat 99]

Page 41: Satellite image deconvolution using complex wavelet packets · Satellite image deconvolution / CWP 2 • Problem statement • Efficient representations and basis choice • Complex

Satellite image deconvolution / CWP 41Nîmes, deconvolution using RHEA (non-quadratic ϕ function regularization [Jalobeanu 98])

Page 42: Satellite image deconvolution using complex wavelet packets · Satellite image deconvolution / CWP 2 • Problem statement • Efficient representations and basis choice • Complex

Satellite image deconvolution / CWP 42Nîmes, deconvolution using a quadratic regularization (~Wiener)

Page 43: Satellite image deconvolution using complex wavelet packets · Satellite image deconvolution / CWP 2 • Problem statement • Efficient representations and basis choice • Complex

Satellite image deconvolution / CWP 43Result comparison

X0 Y ϕ func

COWPATH 1 COWPATH 2 WienerReal packets

Page 44: Satellite image deconvolution using complex wavelet packets · Satellite image deconvolution / CWP 2 • Problem statement • Efficient representations and basis choice • Complex

Satellite image deconvolution / CWP 44

Results / Astronomy (Hubble PSF)

Deconvolutionusing quadraticregularization

(~Wiener)

Deconvolution using CWP

X0

Y

Page 45: Satellite image deconvolution using complex wavelet packets · Satellite image deconvolution / CWP 2 • Problem statement • Efficient representations and basis choice • Complex

Satellite image deconvolution / CWP 45

Y

X0

Wiener

COWPATH 2

Page 46: Satellite image deconvolution using complex wavelet packets · Satellite image deconvolution / CWP 2 • Problem statement • Efficient representations and basis choice • Complex

Satellite image deconvolution / CWP 46

Conclusion and future work

Providing better results by

ð Adapting the structure of the tree to the problemà taking into account images and PSFs

ð Better subband modelingà inhomogeneous Generalized Gaussian model ?

ðMore accurate data termà noise transform coefficients not fully independent

ð Taking into account the interactions between scalesà Hidden Markov Trees [Nowak et al. 98]

Hybrid method : DEPA [Jalobeanu et al. 00]

Result of COWPATH à estimation of the parametersof an adaptive regularizing model