sap 2000 projekti

93
REPUBLIC OF ALBANIA EPOKA UNIVERSITY FACULTY OF ARCHITECTURE AND ENGINEERING DEPARTMENT OF CIVIL ENGINEERING Structural Analysis of 8 story building in Sap 2000 Transportation Systems Engineering CE 282 Transportation Systems Engineering CE 282 Name Surname: Tafjon Morina TIRANA, June 2016

Upload: tafjon-morina

Post on 15-Apr-2017

117 views

Category:

Documents


7 download

TRANSCRIPT

Page 1: SAP 2000 PROJEKTI

REPUBLIC OF ALBANIA

EPOKA UNIVERSITY

FACULTY OF ARCHITECTURE AND ENGINEERING

DEPARTMENT OF CIVIL ENGINEERING

Structural Analysis of 8 story building in

Sap 2000 Transportation Systems Engineering CE 282

Transportation Systems Engineering CE 282

Name Surname: Tafjon Morina

TIRANA, June 2016

Page 2: SAP 2000 PROJEKTI

1

FACULTY OFARCHITECTURE AND ENGINEERING

CIVIL ENGINEERING DEPARTMENT

Structural Analysis of 8 story building in

Sap 2000

-CE 399-

MICROTHESIS

Prepared by: Tafjon Morina

Student ID: 02031305

Bachelor of Science in Civil Engineering

Epoka University

Tirana, June 2016

Page 3: SAP 2000 PROJEKTI

2

ABSTRACT

In this studying is shown structural analysis of an eight floor building in SAP2000 .It is located in

Shkodra ,and will be used as place of residence .The purpose was modelling in SAP2000 verison

18 and testing from external factors (Wind,Earthquakes) and internal factors such as living and

dead loads .Modeling with concrete and steel gives us the result if forces and strains that have

aceted upon it .

Keywords: Sap2000, Wind, Earthquake, Live Load, Dead load, Forces Stresses

Page 4: SAP 2000 PROJEKTI

3

ABSTRAKT

Ne kete Studim eshte prezantuar analiza Strukurore e nje ndertese 8 kateshe ne Sap200 .

Ndertesa ndodhet ne Shkoder , ndertesa do sherbej si objek banimi .Qëllimi ishte Modelimi në

Sap2000 dhe testimi nga faktorë të jashtëm ( Era , Tërmetet ) dhe faktoret e brendshëm si

ngarkesat e gjalla dhe ngarkesës se vdekur . Modelimi me betoni dhe Celik na jep rezultatet si

Forcat dhe Sforcime qe ka vepruar mbi të.

Fjale kyce: Sap2000, Era, Termetet, Ngarkesa e gjalle, Ngarkesa e vdekur, Forcat, Sforcime

Page 5: SAP 2000 PROJEKTI

4

ACKNOWLEDGEMENTS

I would like to thank Epoka Staff that made possible my education in Civil engineering field . I

would also like to thank Dr. Enea Mustafaraj who has helped in thesis project , Structure Analysis.

I would also thank all friends who helped me till now

Tafjon Morina

Page 6: SAP 2000 PROJEKTI

5

DECLARATION

I hereby declare that the project is based on my original work except for quotations and citations

which have been duly acknowledged. I also declare that the topic of this study has been the

genuine idea of my supervisor and may be used by him in the future works. This study has not

been previously or concurrently submitted for any other degree at Epoka University or other

institutions.

Tafjon Morina

Date : 21/06/2016

Page 7: SAP 2000 PROJEKTI

6

CONTENT

ABSTRACT…………………………………………………………………………………………………………………………………… ………….2

ABSTRAKT………………………………………………………………………………………………………………………………………………..3

ACKNOWLEDGEMENTS…………………………………………………………………………………………………………………………… 4

DECLARATION………………………………………………………………………………………………………………………………………….5

LIST OF FIGURE ………………………………………………………………………………………………………………………………….8-10

INTRODUCTION

What is SAP2000………….…………………………………………………………………………………………………………..11 Sap 2000…………………….…………………………………………………………………………………………………………….11

Construct Material

1. Concrete

Avantages……………………………………………………………………………………………………………..……………13

Disavantages………………………………………………………………………………………………………………………13

Propertes if fresh concrete…………………………………………………………………………………………………13

Workability…………………………………………………………………………………………………………………………14

Factors affecting workability…………………………………………………………………………………………..….14

Consistency…………………………………………………………………………………………………………………………14

Segregation…………………………………………………………………………………………………………………………15

Bleeding..……………………………………………………………………………………………………………………………16

Mixing of concrete………………………………………………………………………………………………………………17

Properties of hardened concrete………………………………………………………………………………………..17

Factors affection the strength of concrete………………………………………………………………………….19

Durability……….…………………………………………………………………………………………………………………..19

Corrosion………………………………………..………………………………………………………………………………….19

Abrasion……………………………………………………………………………………………………………………………..19

2. Steel

Mild steel bars ………………………………………………………………………….…........................................20

Deformed steel bars………………………………………………………..……………………………………………….…20

Various Grades of Mild Steel Bars…………………………………….…………………………………………………20

Avantages of Steel………………………………………………………………………………………………………………21

Disavantages………………………………………………………………………………………………………………………21

Physical Requirement…………………………………………………………………………………………………………21

Page 8: SAP 2000 PROJEKTI

7

Standard Steels…………………………………………………………………………………………………………………..22

The typical shapes and their sizes……………………………………………………………………………..…..23-25

3. Columns

Type of column…………………………………………………………………………………………………………………..26

4. Shear walls

Type of Shear Wall………………………………………………………………………………………………………………27

5. Beams

Type of beam……………………………………………………………………………………………………………………..28

6. Slabs

Type of slabs……………………………………………………………………………………………………………………….29

Deformations……………………………………………………………………………………………………………………..29

Conditions…………………………………………………………………………………………………………………………..30

Advantages of ribbed slabs…………………………………………………………………………………………………30

Disadvantage of ribbed slabs……………………………………………………………………………………………...30

7. Foundation

Type of foundation…………………….………………………………………………………………………………………31

8. Plan of the Structure ………………………………………………………………………………………………………………..32

9. Step by step Approach for the selected project

Step 1. File – New model – Select the units to KN,m,C – Grid only……………………………………………………..33

Step 2 .Fill the Quick Grid Lines table, with the data from the selected project ………………………………….33

Step 3. Click the right button of the mouse –Edit Grid Data – Fill in table all the data from the selected project.……………………………………………………………………………………………………………………………………………..34

Step 4. Go to Main Menu – Define –Materials –Add New Material –Concrete……………………………………34

Step 5. Continued .Add New Material – Rebar……………………………………………………………………………………35

Step 6. Go to Main Menu – Define –Sections – Concrete Rectangular Sections – Create Columns …….35

Step 7. Continued .Section – Concrete Rectangular Sections – Create Beam ………………………………………36

Step 8 . Go to Main Menu –Define –Section Properties –Area Section – Add New Section –Select Shell Thin Type ………………………………………………………………………………………………………………………………………….36

Step 9. From the toolbar – Set the plan to XZ – take the Draw Frame Cables – Select Column…………..37

Step 10. From the toolbar – Set the plan to XY – take the Draw Frame Cables – Select Beams…………….37

Step 11. From the toolbar – Set the plan to XY – take the Draw Rectangular Area – Select Slab…………37

Page 9: SAP 2000 PROJEKTI

8

Step 13 . From the toolbar – Set the plan to XY on Z=0 – Select the bases of the columns and go to Assign – Joint – Restraints – Select Fixed condition…………………………………………………………………………….38

Step 14. Go to Main Menu – Select – Select – Properties – Area Section – Slab – and then go to Assign – Area Load – Uniform Shell ………………………………………………………………………………………………………………38

Step 15 . Go to Main Menu – Select – Select – Properties – Area Sections –Slab and then go to Assign – Area Load – Uniform Shell ………………………………………………………………………………………………………………..39

Step 16. Go to Main Menu – Select – Select – Properties – Frame Sections and then go to Assign – Frame Load – Distributed……………………………………………………………………………………………………………………………..39

Step 17 . Go to Main Menu – Define load Patterns ……………………………………………………………………………40

Step 18 . Go to Main Menu – Define – Functions – Response Spectrum – Choose EC8 2004 and Add New Function……………………………………………………………………………………………………………………………………………40

Step 19 . Go to Main Menu – Define – Load Cases – Select EQ Forces and Modify / Show Load Cases .41

Step 20 . Go to Main Menu – Define – Load Combination – Add Default Combos ( According to EN – 1992) –Concrete Frame Design …………………………………………………………………………………………………………42

Step 21 . Select one of the slab – Go to Edit – Edit Areas – Divide Areas Into Number Of Objects ……...42

Step 22 . Go to Main Menu – Analyze – Set Analysis Options – Space Frame ………………………………………43

Step 23 . Go to Main Menu – Define – Mass Source – Modify/Show Mass Source …………………………….43

Step 24. Select Slab of one floor – Go to Assign – Joint – Constrains – Diaphragm …………………………….44

Step 25. Go to Main Menu – Design – Concrete Frame Design – View Revise Preferences – Choose EC2 2004………………………………………………………………………………………………………………………………………………….44

Step 26 .Run analysis ………………………………………………………………………………………………………………….......45

Step 27 . Go to Main Menu – Display – Show Tables – Analysis Result – Stucture Output –Modal Information ………………………………………………………………………………………………………………………………………45

Step 28. Go to Main Menu –Display –Show Tables –Analysis Results –Joint OutPut – Joint Displacement…………………………………………………………………………………………………………………………………….46

Step 29. Go to Main Menu – Design – Concrete Frame Design – Start Design /Check of the Structure..46

Step 30 . Go to Main Menu –Design – Concrete Frame Design – Verify all members passed ……………...46

Step 31 . Go to Main Menu –Run Analysis – Display – Show Forces / Stresses –Joints ……………………….50

Step 32 . Go to Main Menu – Run Analysis – Display Deformed Shape Modal …………………………………….50

Step 33 . Go to Main Menu - Display –Show Table –Analysis Results –Structure Output – Modal Information ……………………………………………………………………………………………………………………………......51-53

Step 34 . Go to Main Menu – Run Analysis--Display– Show Forces/Stresses-Shells……………………………..53

Step 35 . Main Menu – Run Analysis--Display– Show Forces/Stresses--Frames/Cables/Tendons….54-57

Step 36 .Go to Main Menu – Run Analysis--Display– Show Tables ………………………………………………58-66

10. List of figure

Figure 1 Architectual plan of the project structure take in consideration .................................... 32

Figure 2 New Modal ....................................................................................................................... 33

Figure 3 Grid LInes ......................................................................................................................... 33

Figure 4 Edit Grid Data ................................................................................................................... 34

Figure 5 Define Material ................................................................................................................ 34

Figure 6 Add New Material ............................................................................................................ 35

Figure 7 Create Colums .................................................................................................................. 35

Figure 8 Create Beam ..................................................................................................................... 36

Figure 9 Create Slab ....................................................................................................................... 36

Figure 10 Plan XZ – ZY .................................................................................................................... 37

Figure 11 Joint Restaints ................................................................................................................ 38

Page 10: SAP 2000 PROJEKTI

9

Figure 12 Area Load ....................................................................................................................... 38

Figure 13 Live Load ........................................................................................................................ 39

Figure 14 Dead Load ...................................................................................................................... 39

Figure 15 Define load Patterns ...................................................................................................... 40

Figure 16 Response Spectrum ....................................................................................................... 40

Figure 17 Response Spectrum EQ-X , EQ-Y .................................................................................... 41

Figure 18 Load Combination .......................................................................................................... 42

Figure 19 Divide Areas ................................................................................................................... 42

Figure 20 Space Frame ................................................................................................................... 43

Figure 21 Mass Source ................................................................................................................... 43

Figure 22 Diaphragm ...................................................................................................................... 44

Figure 23 View Revise Preferences ................................................................................................ 44

Figure 24 Run Analysis ................................................................................................................... 45

Figure 25 Modal Information ......................................................................................................... 45

Figure 26 Check of the Structure ................................................................................................... 46

Figure 27 Verify all member passed .............................................................................................. 46

Figure 28 Rebar Percentage ........................................................................................................... 47

Figure 29 Column Details ............................................................................................................... 48

Figure 30 Beam Details .................................................................................................................. 49

Figure 31 Show Forces ................................................................................................................... 50

Figure 32 Modal ............................................................................................................................. 50

Figure 33 Modal 1 .......................................................................................................................... 51

Figure 34 Modal 2 .......................................................................................................................... 51

Figure 35 Modal 3 .......................................................................................................................... 52

Figure 36 Modal 4 .......................................................................................................................... 52

Figure 37 Modal 5 .......................................................................................................................... 53

Figure 38 Modal Period and Frequencies ...................................................................................... 53

Figure 39 Member Force Diagram ................................................................................................. 54

Figure 40 - S11 ............................................................................................................................... 55

Figure 41 – S22 ............................................................................................................................... 55

Figure 42 - S12 ............................................................................................................................... 55

Figure 43 - SMax ............................................................................................................................ 56

Figure 44 SMin ............................................................................................................................... 56

Figure 45 - SVM .............................................................................................................................. 56

Figure 46 - S13 ............................................................................................................................... 57

Figure 47 - S23 ............................................................................................................................... 57

Figure 48 - Smaxv .......................................................................................................................... 57

Figure 49 Display Forces / Stresses ................................................................................................ 58

Figure 50 Axial Forces .................................................................................................................... 59

Figure 51 Shear 2-2 ........................................................................................................................ 59

Figure 52 Shear 3-3 ........................................................................................................................ 60

Figure 53 Torsion ........................................................................................................................... 60

Figure 54 Moment 2-2 ................................................................................................................... 61

Page 11: SAP 2000 PROJEKTI

10

Figure 55 Moment 3-3 ................................................................................................................... 61

Figure 56 Moment 3-3 ................................................................................................................... 62

Figure 57 - S11 ............................................................................................................................... 63

Figure 58 - S12 ............................................................................................................................... 63

Figure 59 - S13 ............................................................................................................................... 64

Figure 60 S13 .................................................................................................................................. 64

Figure 61 - Smin ............................................................................................................................. 65

Figure 62 – Smax ............................................................................................................................ 65

Figure 63 – SMV ............................................................................................................................. 66

11. Table of Analysis Display

Base Reactions …………………………………..…………………………………………………………………………………...67

Element Forces - Area Shell………………………………………………………………………………………….……...68-69

Element Forces – Frames……………………..………………………………………………………………………………70-71

Element Joint Forces – Area ……………………………………………………………………………………….…..……72-75

Element Joint Forces – Frames …………………………………………………………………………………..………..76-77

Element Stresses – Area Shells ……………………………………………………………………………………………..78-79

Joint Reactions …………………………………………………………………………………………………………………….80-81

Modal Periods And Frequencies ……………………………………………………………………………………………….82

Object And Elements – Area ………………………………………………………………………………………………..83-84

Object And Elements – Frames…………………………………………………………………………………………….85-86

Object And Elements – Jonits ……………………………………………………………………………………………….87-88

Response Spectrum Modal Information ……………………………………………………………………………….89-90

12. Referenca……………..………………………………………………………………………………………………………………….91

Page 12: SAP 2000 PROJEKTI

11

CHAPTER 1

INTRODUCTION

1.1 What is SAP2000 and why is used?

The SAP name has been synonymous with state-of-the-art analytical methods since its introduction

over 30 years ago. SAP2000 follows in the same tradition featuring a very sophisticated, intuitive

and versatile user interface powered by an unmatched analysis engine and design tools for

engineers working on transportation, industrial, public works, sports and other facilities.

From a simple small 2D static frame analysis to a large complex 3D nonlinear dynamic analysis,

Sap200 is the easiest, most productive solution for your structural analysis and design needs.

Problem statement

1.2 SAP2000

SAP2000 is general-purpose civil-engineering software ideal for the analysis and design of any

type of structural system. Basic and advanced systems, ranging from 2D to 3D, of simple geometry

to complex, may be modeled, analyzed, designed, and optimized using a practical and intuitive

object-based modeling environment that simplifies and streamlines the engineering process. The

SAPFire Analysis Engine integral to SAP2000 drives a sophisticated finite-element analysis

procedure. An additional suite of analysis features are available to users engaging state-of-the-art

practice with nonlinear and dynamic consideration. Created by engineers for effective engineering

SAP2000 is the ideal software tool for users of any experience level, designing any structural

system..(CSI America)

Page 13: SAP 2000 PROJEKTI

12

Concrete

Concrete is one of the most commonly used building materials. Concrete is a composite material made from several readily available constituents (aggregates, sand, cement, water). Concrete is a versatile material that can easily be mixed to meet a variety of special needs and formed to virtually any shape.

Advantages Ability to be cast Economical Durable Fire resistant Energy efficient On‐site fabrication

Disavantages

Low tensile strength Low ductility Volume instability Low strength to weight ratio

Propertes of Fresh Concrete

Workability Consistency Segregation Bleeding Setting Time Unit Weight Uniformity

Page 14: SAP 2000 PROJEKTI

13

Workability

Workability is the most important property of freshly mixed concrete. There is no single test method that can simultaneously measure all the properties involved in workability. It is determined to a large extent by measuring the “consistency” of the mix. It is desirable that freshly mixed concrete be relatively easy to transport, place, compact and

finish without harmful segregation.

A concrete mix satisfying these conditions is said to be workable

Factors Affecting workability

Method and duration of transportation Quantity and characteristics of cementing materials Aggregate grading, shape and surface texture Quantity and characteristics of chemical admixtures Amount of water Amount of entrained air Concrete & ambient air temperature

Consistency

Consistency is the fluidity or degree of wetness of concrete. It is generally dependent on the shear resistance of the mass. It is a major factor in indicating the workability of freshly mixed concrete

Test methods for measuring consistency are:

Flow test → measures the amount of flow

Kelly‐Ball test → measures the amount of penetration Slump test (Most widely used test!)

Slump Test is related with the ease with which concrete flows during placement

Page 15: SAP 2000 PROJEKTI

14

The slump cone is filled in 3 layers. Every layer is evenly rodded 25 times

Measure the slump by determining the vertical difference between the top of the mold and the displaced original center of the top surface of the specimen

Segregation

Segregation refers to a separation of the components of fresh concrete, resulting in a non‐uniform mix . The primary causes of segregation are differences in specific gravity and size of constituents of concrete. Moreover, improper mixing, improper placing and improper consolidation also lead to segregation.

Page 16: SAP 2000 PROJEKTI

15

Sp.Gr. Size

Cement 3-3.15 5-80 m

C.Agg. 2.4-2.8 5-40 mm

F.Agg. 2.4-2.8 < 5 mm

Some of the factors affecting segregation

Larger maximum particle size (25mm) and proportion of the larger particles. High specific gravity of coarse aggregate. Decrease in the amount of fine particles. Particle shape and texture. Water/cement ratio.

Bleeding

Bleeding is the tendency of water to rise to the surface of freshly placed concrete.

It is caused by the inability of solid constituents of the mix to hold all of the mixing water as they settle down.

Page 17: SAP 2000 PROJEKTI

16

Mixing of concrete

Ready‐Mix concrete: In this type ingredients are introduced into a mixer truck and mixed during transportation to the site. • Wet – Water added before transportation • Dry – Water added on site Mixing at the site • Handmixed • Mixermixed

Mixing time should be sufficient to produce a uniform concrete. The time of mixing depends on

the type of mixer and also to some properties of fresh concrete.

Undermixing → non‐homogeneity Overmixing → danger of water loss, brekage of aggregate particles

Properties of hardened concrete

The principal properties of hardened concrete which are of practical importance can be listed as:

1. Strength 2. Permeability & durability 3. Shrinkage & creep deformations 4. Response to temperature variations

Of these compressive strength is the most important property of concrete.

Of the abovementioned hardened properties compressive strength is one of the most important property that is often required, simply because 1. Concrete is used for compressive loads 2. Compressive strength is easily obtained 3. It is a good measure of all the other properties

Page 18: SAP 2000 PROJEKTI

17

The strength of a concrete specimen prepared, cured and tested under specified conditions at a given age depends on: 1. w/c ratio 2. Degree of compaction

Compressive Strength is determined by loading properly prepared and cured cubic, cylindrical or prismatic specimens under compression.

Page 19: SAP 2000 PROJEKTI

18

Factors Affection the strength of concrete

– Type of cement – Type of agg. – Degree of compaction – Mix proportions – Type of curing – Type of stress situation

Durability

A durable concrete is the one which will withstand in a satisfactory degree, the effects of service conditions to which it will be subjected. Factors Affecting Durability:

External → Environmental

Internal → Permeability, Characteristics of ingredients, Air‐Void System...

Corrosion

Electrochemical reactions in the steel rebars of a R/C structure results in corrosion products which have larger volumes than original steel

Abrasion

Aggregates have to be hard & resistant to wear. Bleeding & finishing practices are also important

Page 20: SAP 2000 PROJEKTI

19

Steel

Steel is the common name for a large family of iron alloys which are easily malleable after the molten stage. Steels are commonly made from iron ore, coal, and limestone

Mild steel bars

Mild steel bars are used for tensile stress of RCC (Reinforced cement concrete) slab beams etc.

in reinforced cement concrete work. These steel bars are plain in surface and are round sections

of diameter from 6 to 50 mm. These rods are manufactured in long lengths and can be cut quickly

and be bent easily without damage.

Deformed steel bars

As deformed bars are rods of steels provided with lugs, ribs or deformation on the surface of bar,

these bars minimize slippage in concrete and increases the bond between the two materials.

Deformed bars have more tensile stresses than that of mild steel plain bars. These bars can be

used without end hooks. The deformation should be spaced along the bar at substantially

uniform distances.

Various Grades of Mild Steel Bars

Reinforcement bars in accordance with standard IS No. 432 part-I can be classified into

following types.

Mild Steel Bars: Mild steel bars can be supplied in two grades

Mild steel bars grade-I designated as Fe 410-S or Grade 60

Mild steel bars grade-II designated as Fe-410-o or Grade 40

Medium Tensile Steel Bars designated as Fe- 540-w-ht or Grade 75

Page 21: SAP 2000 PROJEKTI

20

Avantages of Steel

1. Good in Strength in tension

2. Good in strength in compression

3. Good in strength shear

Disavantages

1. It is fair in durability “Corrodes if unprotected”

2. It is poor in resistance to fire “High Temperature”

Physical Requirement

S.No Types of nominal size of

bars

Ultimate Tensile Stress

N/mm2 minimum

Yield Stress

N/mm2

Elongation

Percent minimum

1. Mild Steel Grade I or Grade

60

For bars up to 20mm 410 250 23

For bars above 20mm upto

50 mm 410 240 23

2. Mild Steel Grade-II or Grade

40

For bar up to 20mm 370 225 23

For bars above 20mm upto

50 mm 370 215 23

3. Medium Tensile Steel

Grade-75

Page 22: SAP 2000 PROJEKTI

21

Standard Steels

According to the chemical compositions, standard steels can be classified

into three major groups: carbon steels, alloy steels, and stainless steels

for bars up to 16mm 540 350 20

for bars above 16 mm up to

32 mm 540 340 20

for bars above 32 mm up to

50 mm 510 330 20

Page 23: SAP 2000 PROJEKTI

22

The typical shapes and their sizes

Steels Compositions

Carbon Steels Alloying elements do not exceed these limits: 1% carbon, 0.6% copper, 1.65% manganese, 0.4% phosphorus, 0.6% silicon, and 0.05% sulfur.

Alloy Steels Steels that exceed the element limits for carbon steels. Also includes steels that contain elements not found in carbon steels such as nickel, chromium (up to 3.99%), cobalt, etc.

Stainless Steels

Contains at least 10% chromium, with or without other elements. Based on the structures, stainless steels can be grouped into three grades:

Austenitic:

Typically contains 18% chromium and 8% nickel and is widely known as 18-8. Nonmagnetic in annealed condition, this grade can only be hardened by cold working.

Ferritic: Contains very little nickel and either 17% chromium or 12% chromium with other elements such as aluminum or titanium. Always magnetic, this grade can be hardened only by cold working.

Martensitic: Typically contains 12% chromium and no nickel. This grade is magnetic and can be hardened by heat treatment.

Page 26: SAP 2000 PROJEKTI

25

Columns

The vertical load bearing elements of the structural frame are usually called with their common

name, columns.

Columns are the rectangular elements in which the larger dimension is lesser than 4 times the

smaller dimension e.g.40/40, 40/60, 25/90, etc.

The columns category includes circular sections, too for example D=50 and quadrilateral sections like 50/60 with an inside angle equal to 60˚ .

Type of column

The column are in form “Γ”, “T” or “Z” cross‐sections, in which the dimension ratio of their

orthogonal parts is lesser than 4. e.g.

“Γ” cross‐ section 40/80/25/25, “T”cross‐section 70/50/25/25, “Z” crosssection 60/70/90/25, etc.

Type of form columns

Page 27: SAP 2000 PROJEKTI

26

Shear walls

Shear walls are rectangular elements with a length to thick‐ ness ratio greater or equal to 4

e.g. cross‐sections 100/25,150/30.

Composite elements are comprised by one or more rectangular elements, at least one of which

must be a shear wall

Type of Shear Wall

Page 28: SAP 2000 PROJEKTI

27

Beams

Beams are the vertical or sloping bearing elements of the structural system that connect columns

and support slabs.

When beams support slabs, they work together thus forming a “T” section beam.

The level of the slabs compared to the level of the beams results in the formation of rectangular

beams, inverted beams or “Z” beams

Generally, beams are supported by columns (beam to column connection).

Sometimes one or both beam ends are supported by another beam (beam to beam connection)

and other times only one end is supported by a column or beam while the other end has no

support at all.

The beam supported only in one end is called cantilever.

The beam to column connection is called direct support and the beam to beam connection is

called indirect support.

The most commonly used beam is the one supported by two columns and the most scarcely used

is the cantilever beam.

Type of beam

Page 29: SAP 2000 PROJEKTI

28

Slabs

Slabs are surface plane elements that bear loads transverse to their plain.

`

Type of slabs

One‐way slabs (Simply supported) ‐ supported on two out of four, opposite sides. Two‐way slabs ‐ supported on all four sides. Cantilever slabs ‐ a fixed support on only one out of four sides. Two‐way three support slabs ‐ supported on three out of four sides. Two‐way two support slabs ‐ supported on two adjacent sides, like S6 of the above example.

Deformations, in a large scale but proportionate to one another, for three different types of slab

continuity. It is obvious that continuous slabs suffer lighter deflections thus they have better

elastic stability (stiffness).

Deformation

Page 30: SAP 2000 PROJEKTI

29

Conditions

In common structures, for slab thickness equal to 15cm, the slab’s span may vary between 3.60m and 6.00m and the cantilever spans may be up to 1.50m. For slab thickness equal to 20cm the slab’s span may range from 4.80m to 8.0m and the cantilever spans may be up to 2.0m. The 15cm thick slab has a self weight equal to 0.15m*25 kN/m³=3.75 kN/m² while the live load due to human use, furniture etc that it is called to bear, is equal to 2.0 kN/m² only. If the slab has a thickness equal to 20cm its self weight is 5.0 kN/m², and if it is equal to 30cm its self weight is 7.50 kN/m² whereas the live loads remain the same. Therefore for large spans ribbed slabs (waffle slabs) (Zoellner, sandwich) can be used, like the one shown in the figure below. A ribbed slab with total thickness of 30cm may have a self weight equal to 3.75kN/m², which corresponds to the self weight of a 15cm thick solid slab.=

Advantages of ribbed slabs

‐ their large effective thickness provides them with a high level of elastic stability (stiffness), ‐they have low dead weight consequently they apply relatively light stresses, ‐they do not overload the structural frame and the foundation ‐because of their large effective thickness they comparably need lesser amount of reinforcement

Disadvantage of ribbed slabs

‐Their construction is more challenging and therefore they require highly accurate reinforcement

detailing.

Page 31: SAP 2000 PROJEKTI

30

Foundation

A foundation (or, more commonly, foundations) is the element of an architectural structure which connects it to the ground, and transfers loads from the structure to the ground. Foundations are generally considered either shallow or deep. Foundation engineering is the application of soil mechanics and rock mechanics (Geotechnical engineering) in the design of foundation elements of structures. The same way humans have their feet to transfer their self weight and other loads, softly to the ground, foundations carry with light pressures the structural frame loads to the underlying soil. Foundation generally includes the footings and the pedestals. The simplest type of foundation is the spread foundation (pad foundation) i.e. isolated column footings.

Type of foundation

1.Shallow foundations are also called spread footings or open footings. The 'open' refers to the fact that the foundations are made by first excavating all the earth till the bottom of the footing, and then constructing the footing 2. Individual footings are one of the most simple and common types of foundations. These are used when the load of the building is carried by columns 3. Strip footings are commonly found in load-bearing masonry construction, and act as a long strip that supports the weight of an entire wall. 4. Raft Foundations, also called Mat Foundations, are most often used when basements are to be constructed. In a raft, the entire basement floor slab acts as the foundation; the weight of the building is spread evenly over the entire footprint of the building

Page 32: SAP 2000 PROJEKTI

31

Introduction

The build take in consideration in order to perform the analysis with SAP 2000 version 18, is a reinforced concrete structure . It consists an a moment resisting frame ,with 12 bay in x direction and 7 in the y direction .The maperial properties and dimensions of the structural elements are provided below : Concrete : C20/25, C25/30 Rebar according to EN 1992 Columns : 400*700 mm , 400*600mm, 600*450 mm , 300*600 mm , 400*300mm, 500*500mm ,400*600mm, 600*450mm Beam : 500*400mm Shear Wall : 1600mm*300mm Story height : 3.1 m The Loads transmitted to the considered building are as follows : Live Load : 2 KN/m2

Ceilings : 2.5 KN/m2

Infill walls : 3KN/ml. A dynamic analysis is performed to the considered building .The response Spectrum features are taken according to Albania Sesmic Map ,Shkodra region. This means that the peak ground acceleration (PGA), is taken 0.25g , considering typer 1 of EN 1998 Spectra functions .The behavior factor is taken manually , equal to 3.5 with a low margin of mistakes . Moreover , the soli type is taken as C type , according to Shkodra region.. In order to be as close as possible with the Albania practice of reinforced concreter structures ,it is chosen an un-braced frame .Since most of the structure up to 5 stories do not have lateral resisting system (shear wall/braced structural elements), the simulation aims to understand better the seismic behavior of these typ of reinforced concrete structure .

Page 33: SAP 2000 PROJEKTI

32

Figure 1 Architectual plan of the project structure take in consideration

Page 34: SAP 2000 PROJEKTI

33

Step by step Approach for the selected project

Step 1. File – New model – Select the units to KN,m,C – Grid only

Figure 2 New Modal

Step 2 .Fill the Quick Grid Lines table, with the data from the selected project . Figure 3 Grid LInes

Page 35: SAP 2000 PROJEKTI

34

Step 3. Click the right button of the mouse –Edit Grid Data – Fill in table all the data from the selected project.

Step 4. Go to Main Menu – Define –Materials –Add New Material –Concrete

Figure 5 Define Material

Figure 4 Edit Grid Data

Page 36: SAP 2000 PROJEKTI

35

Step 5. Continued .Add New Material – Rebar

Figure 6 Add New Material

Step 6. Go to Main Menu – Define –Sections – Concrete Rectangular Sections – Create Columns

Figure 7 Create Colums

Page 37: SAP 2000 PROJEKTI

36

Step 7. Continued .Section – Concrete Rectangular Sections – Create Beam

Figure 8 Create Beam

Step 8 . Go to Main Menu –Define –Section Properties –Area Section – Add New Section –Select Shell Thin Type . Continued We can Create Shear Wall With the same way .

Figure 9 Create Slab

Page 38: SAP 2000 PROJEKTI

37

Step 9. From the toolbar – Set the plan to XZ – take the Draw Frame Cables – Select Column. Step 10. From the toolbar – Set the plan to XY – take the Draw Frame Cables – Select Beams. Step 11. From the toolbar – Set the plan to XY – take the Draw Rectangular Area – Select Slab. A 3D view for the above three steps is shown below .

Figure 10 Plan XZ – ZY

Page 39: SAP 2000 PROJEKTI

38

Step 13 . From the toolbar – Set the plan to XY on Z=0 – Select the bases of the columns and go to Assign – Joint – Restraints – Select Fixed condition

Figure 11 Joint Restaints

Step 14. Go to Main Menu – Select – Select – Properties – Area Section – Slab – and then go to Assign – Area Load – Uniform Shell

Figure 12 Area Load

Page 40: SAP 2000 PROJEKTI

39

Step 15 . Go to Main Menu – Select – Select – Properties – Area Sections –Slab and then go to Assign – Area Load – Uniform Shell

Figure 13 Live Load

Step 16. Go to Main Menu – Select – Select – Properties – Frame Sections and then go to Assign – Frame Load – Distributed.

Figure 14 Dead Load

Page 41: SAP 2000 PROJEKTI

40

Step 17 . Go to Main Menu – Define load Patterns

Figure 15 Define load Patterns

Step 18 . Go to Main Menu – Define – Functions – Response Spectrum – Choose EC8 2004 and Add New Function.

Figure 16 Response Spectrum

Page 42: SAP 2000 PROJEKTI

41

Step 19 . Go to Main Menu – Define – Load Cases – Select EQ Forces and Modify / Show Load Cases .

Figure 17 Response Spectrum EQ-X , EQ-Y

Page 43: SAP 2000 PROJEKTI

42

Step 20 . Go to Main Menu – Define – Load Combination – Add Default Combos ( According to EN – 1992) –Concrete Frame Design

Figure 18 Load Combination

Step 21 . Select one of the slab – Go to Edit – Edit Areas – Divide Areas Into Number Of Objects . Repeat the same step for all the slabs .

Figure 19 Divide Areas

Page 44: SAP 2000 PROJEKTI

43

Step 22 . Go to Main Menu – Analyze – Set Analysis Options – Space Frame .

Figure 20 Space Frame

Step 23 . Go to Main Menu – Define – Mass Source – Modify/Show Mass Source .

Figure 21 Mass Source

Page 45: SAP 2000 PROJEKTI

44

Step 24. Select Slab of one floor – Go to Assign – Joint – Constrains – Diaphragm . Repeat the same step for all other floors.

Figure 22 Diaphragm

Step 25. Go to Main Menu – Design – Concrete Frame Design – View Revise Preferences – Choose EC2 2004

Figure 23 View Revise Preferences

Page 46: SAP 2000 PROJEKTI

45

Step 26 .Run analysis .

Figure 24 Run Analysis

Step 27 . Go to Main Menu – Display – Show Tables – Analysis Result – Stucture Output –Modal Information

Figure 25 Modal Information

Page 47: SAP 2000 PROJEKTI

46

Step 28. Go to Main Menu –Display –Show Tables –Analysis Results –Joint OutPut – Joint Displacement (IT can be found in Excel Sheets ,soft copy). Step 29. Go to Main Menu – Design – Concrete Frame Design – Start Design /Check of the Structure .

Figure 26 Check of the Structure

Step 30 . Go to Main Menu –Design – Concrete Frame Design – Verify all members passed

Figure 27 Verify all member passed

Page 48: SAP 2000 PROJEKTI

47

Run Analysis—Design-Concrete Frame Design-Start Design/Check Structure-Display Concrete design

Figure 28 Rebar Percentage

Page 49: SAP 2000 PROJEKTI

48

Column Details(example)

Figure 29 Column Details

Page 50: SAP 2000 PROJEKTI

49

Beam Details(Example)

Figure 30 Beam Details

Page 51: SAP 2000 PROJEKTI

50

Step 31 . Go to Main Menu –Run Analysis – Display – Show Forces / Stresses –Joints

Figure 31 Show Forces

Step 32 . Go to Main Menu – Run Analysis – Display Deformed Shape Modal

Figure 32 Modal

Page 52: SAP 2000 PROJEKTI

51

Figure 33 Modal 1

Figure 34 Modal 2

Page 53: SAP 2000 PROJEKTI

52

Figure 35 Modal 3

Figure 36 Modal 4

Page 54: SAP 2000 PROJEKTI

53

Figure 37 Modal 5

Step 33 . Go to Main Menu - Display –Show Table –Analysis Results –Structure Output – Modal Information .

Figure 38 Modal Period and Frequencies

Page 55: SAP 2000 PROJEKTI

54

Step 34 . Go to Main Menu – Run Analysis--Display– Show Forces/Stresses-Shells

o S11: Direct stress (force per unit area) acting on the positive and negative 1 faces in the 1-axis

direction.

o S22: Direct stress (force per unit area) acting on the positive and negative 2 faces in the 2-axis

direction.

o S12: Shearing stress (force per unit area) acting on the positive and negative 1 faces in the 2-

axis direction and acting on the positive and negative 2 faces in the 1-axis direction.

o SMax: Maximum principal stress (force per unit area). Note that by definition principal stresses

are oriented such that the associated shearing stress is zero.

o S Min: Minimum principal stress (force per unit area). Note that by definition principal stresses

are oriented such that the associated shearing stress is zero.

o SVM: Von Mises principal stress (force per unit area).

o S13: Out-of-plane shearing stress (force per unit area) acting on the positive and negative 1

faces in the 3-axis direction.

o S23: Out-of-plane shearing stress (force per unit area) acting on the positive and negative 2

faces in the 3-axis direction.

o SMaxV: Maximum principal shearing stress (force per unit area). Note that by definition

principal shearing stresses are oriented on faces of the element such that the associated

shears per unit length on perpendicular faces are zero.[]

Figure 39 Member Force Diagram

Page 56: SAP 2000 PROJEKTI

55

Figure 40 - S11

Figure 41 – S22

Figure 42 - S12

Page 57: SAP 2000 PROJEKTI

56

Figure 43 - SMax

Figure 44 SMin

Figure 45 - SVM

Page 58: SAP 2000 PROJEKTI

57

Figure 46 - S13

Figure 47 - S23

Figure 48 - Smaxv

Page 59: SAP 2000 PROJEKTI

58

Step 35 . Main Menu – Run Analysis--Display– Show Forces/Stresses--Frames/Cables/Tendons

Stresses: Axial stress S11 is available for all frame and cable sections. The shear stresses S12 and S13 are

available for certain types of frame sections. When shear stresses are available, principal stresses Smax

and SMin and von Mises stress SVM are also available for algebraic (non-envelope) load cases and

combinations.

Figure 49 Display Forces / Stresses

Page 60: SAP 2000 PROJEKTI

59

Figure 50 Axial Forces

Figure 51 Shear 2-2

Page 61: SAP 2000 PROJEKTI

60

Figure 52 Shear 3-3

Figure 53 Torsion

Page 62: SAP 2000 PROJEKTI

61

Figure 54 Moment 2-2

Figure 55 Moment 3-3

Page 63: SAP 2000 PROJEKTI

62

Figure 56 Moment 3-3

Page 64: SAP 2000 PROJEKTI

63

Figure 57 - S11

Figure 58 - S12

Page 65: SAP 2000 PROJEKTI

64

Figure 59 - S13

Figure 60 S13

Page 66: SAP 2000 PROJEKTI

65

Figure 61 - Smin

Figure 62 – Smax

Page 67: SAP 2000 PROJEKTI

66

Figure 63 – SMV

Page 68: SAP 2000 PROJEKTI

67

Step 36 .Go to Main Menu – Run Analysis--Display– Show Tables

TABLE: Base Reactions

OutputCase CaseType StepType StepNum GlobalFX GlobalFY GlobalFZ GlobalMX GlobalMY GlobalMZ

Text Text Text Unitless KN KN KN KN-m KN-m KN-m

DEAD LinStatic 1.465E-10 6.528E-11 34896.067 339862.3046 -481633.86 -8.647E-10

MODAL LinModal Mode 1 993.719 1869.437 -4.046 -33005.7466 17355.9829 38610.0627

MODAL LinModal Mode 2 891.298 -2637.097 7.858 46606.9822 15398.7902 -27793.3571

MODAL LinModal Mode 3 4000.918 135.917 4.035 -2391.5235 71005.9827 -54270.0739

MODAL LinModal Mode 4 -4168.414 -1849.418 -33.495 -2945.7403 15986.7107 -76317.2804

MODAL LinModal Mode 5 1075.163 -

12786.407 -199.832 -26619.7677 1345.5644 -170110.557

MODAL LinModal Mode 6 17338.296 352.937 -97.117 1715.6388 -21961.2327 -231038.246

MODAL LinModal Mode 7 -7163.645 -1558.334 18.806 6614.4805 -38713.5074 -119982.895

MODAL LinModal Mode 8 1045.786 -

28366.458 832.536 146491.6798 -11845.7021 -387599.8

MODAL LinModal Mode 9 -

35722.809 -497.515 -1133.179 -392.3455 -170073.474 477792.2737

MODAL LinModal Mode 10 -

11610.704 -1533.432 -381.706 -3506.9412 97087.4411 -156633.705

MODAL LinModal Mode 11 1058.336 -2750.991 -

209283.883 -2130943.52 2610967.328 -52278.2636

MODAL LinModal Mode 12 814.019 14270.979 -22192.679 711423.7711 -263972.188 176275.977

LIVE LinStatic

-7.148E-11

-9.499E-11 -38538.315 -380567.68 538195.3962 -2.277E-10

EQ-X LinRespSpec Max 40713.23 3262.115 223.27 57272.6638 709376.2651 507700.2268

EQ-Y LinRespSpec Max 3262.116 45084.677 345.197 785639.548 56789.8372 631865.2931

dead 1.35 Combination 1.978E-10 8.813E-11 47109.691 458814.1113 -650205.72 -1.167E-09

Dead 1.35 , Live 1.5 Combination 9.058E-11

-5.435E-11 -10697.782 -112037.403 157087.3767 -1.509E-09

Dead 1, Live 0.3, EQ-x 1 Combination Max 40713.23 3262.115 23557.842 282964.6657 389201.0191 507700.2268

Dead 1, Live 0.3, EQ-x 1 Combination Min -40713.23 -3262.115 23111.303 168419.338 -1029551.51 -507700.23

Dead 1 , Live 0.3, Eq-y 1 Combination Max 3262.116 45084.677 23679.77 1011331.55 -263385.409 631865.2931

Dead 1 , Live 0.3, Eq-y 1 Combination Min -3262.116

-45084.677 22989.376 -559947.55 -376965.08 -631865.29

Dead 1 , Eq X 1 Combination Max 40713.23 3262.115 35119.337 397134.9685 227742.4002 507700.2268

Dead 1 , Eq X 1 Combination Min -40713.23 -3262.115 34672.798 282589.6408 -1191010.13 -507700.23

Dead 1, Eq-y 1 Combination Max 3262.116 45084.677 35241.264 1125501.853 -424844.03 631865.2931

Dead 1, Eq-y 1 Combination Min -3262.116

-45084.677 34550.87 -445777.24 -538423.7 -631865.29

Page 69: SAP 2000 PROJEKTI

68

TABLE: Element Forces - Area Shells

Area Joint OutputCase F11 F22 F12 FMax FMin FAngle

Text Text Text KN/m KN/m KN/m KN/m KN/m Degrees

5 86 DEAD 96.17 87.17 38.78 130.71 52.63 41.687

5 716 DEAD 82.04 16.51 -15.57 85.56 13 -12.71

5 717 DEAD -14.83 -2.86 -37.07 28.7 -46.39 -49.585

5 718 DEAD -0.7 67.79 17.28 71.91 -4.81 76.609

5 86 MODAL -178.55 -140.39 -132.68 -25.43 -293.52 -49.091

5 716 MODAL -141.12 46.75 -29.07 51.15 -145.52 -81.403

5 717 MODAL 16.57 78.29 26.41 88.05 6.81 69.724

5 718 MODAL -20.86 -108.85 -77.21 24.01 -153.72 -30.161

5 86 MODAL -167.19 -431.86 -284.5 14.25 -613.3 -32.527

5 716 MODAL -36.98 219.2 -160.99 296.84 -114.62 -64.254

5 717 MODAL 27.93 232.19 17.79 233.72 26.39 85.06

5 718 MODAL -102.28 -418.88 -105.73 -70.22 -450.94 -16.869

5 86 MODAL 593.36 266.94 327.23 795.83 64.48 31.746

5 716 MODAL 529.24 -53.69 18.79 529.84 -54.29 1.845

5 717 MODAL -44.45 -168.42 -66.03 -15.87 -197 -23.404

5 718 MODAL 19.68 152.21 242.41 337.25 -165.36 52.644

5 86 MODAL 426.83 510.83 434.83 905.69 31.98 47.759

5 716 MODAL 279.22 -227.24 202.37 350.15 -298.17 19.315

5 717 MODAL -68.14 -296.71 -79.04 -43.46 -321.38 -17.334

5 718 MODAL 79.48 441.36 153.42 497.65 23.19 69.853

5 86 MODAL -174.26 -621.8 -407.88 67.2 -863.26 -30.625

5 716 MODAL 20.89 353.93 -265.24 500.59 -125.77 -61.06

5 717 MODAL 42.94 358.34 23.4 360.07 41.21 85.78

5 718 MODAL -152.21 -617.39 -119.24 -123.43 -646.17 -13.571

5 86 MODAL 1294.78 489.31 690.04 1691.02 93.08 29.865

5 716 MODAL 1178.73 -90.97 20.92 1179.07 -91.31 0.944

5 717 MODAL -98.54 -346.42 -182.27 -2.07 -442.9 -27.892

5 718 MODAL 17.51 233.86 486.85 624.41 -373.04 51.263

5 86 MODAL -272.01 -482.18 -257.92 -98.59 -655.6 -33.916

5 716 MODAL -141.51 170.31 2.7 170.33 -141.54 89.504

5 717 MODAL -31.15 192.38 -50.91 203.43 -42.19 -77.755

5 718 MODAL -161.64 -460.1 -311.53 34.55 -656.3 -32.202

5 86 MODAL 83.61 243.39 75.88 273.69 53.32 68.236

5 716 MODAL 33.66 -6.35 34.22 53.3 -25.99 29.843

5 717 MODAL -0.84 -13.25 26.32 19.99 -34.09 38.366

5 718 MODAL 49.11 236.49 67.98 258.55 27.04 72.018

5 86 MODAL 223.07 342.02 173.84 466.27 98.81 54.444

5 716 MODAL 151.45 -16.03 45.32 162.93 -27.51 14.211

Page 70: SAP 2000 PROJEKTI

69

5 717 MODAL -28.07 -51.94 103.65 64.34 -144.34 41.716

5 718 MODAL 43.55 306.12 232.17 441.55 -91.89 59.744

5 86 MODAL -1347.23 -1917.5 -1432.11 -172.15 -3092.58 -39.37

5 716 MODAL -785.36 891.84 -535.61 1048.3 -941.81 -73.717

5 717 MODAL 75.61 1064.04 -35.12 1065.28 74.36 -87.967

5 718 MODAL -486.26 -1745.31 -931.62 8.59 -2240.16 -27.976

5 86 MODAL -863.44 -398.25 -368.61 -194.98 -1066.71 -61.126

5 716 MODAL -802.25 -92.31 102.79 -77.72 -816.84 81.925

5 717 MODAL 83.93 84.93 206.77 291.2 -122.34 45.069

5 718 MODAL 22.74 -221.01 -264.64 192.22 -390.49 -32.636

5 86 MODAL 498.46 102.76 136.84 541.17 60.04 17.335

5 716 MODAL 509.83 159.63 -157.4 570.18 99.28 -20.976

5 717 MODAL -44 48.86 -194.54 202.44 -197.57 -51.712

5 718 MODAL -55.37 -8.01 99.7 70.79 -134.17 51.681

5 86 LIVE -132.31 -105.47 -57.43 -59.92 -177.87 -51.576

5 716 LIVE -115.93 -23.57 22.69 -18.29 -121.2 76.916

5 717 LIVE 21.01 3.82 52.64 65.76 -40.92 40.363

5 718 LIVE 4.63 -78.09 -27.48 12.93 -86.38 -16.799

5 86 EQ-X 5304.56 2788.65 3002.89 0 0 0

5 716 EQ-X 4786.12 988.48 692.83 0 0 0

5 717 EQ-X 399.91 1666.42 592.55 0 0 0

5 718 EQ-X 450.16 2094.67 2162.21 0 0 0

5 86 EQ-Y 728.9 3670.82 2131.82 0 0 0

5 716 EQ-Y 824 2046.94 1542.75 0 0 0

Page 71: SAP 2000 PROJEKTI

70

TABLE: Element Forces - Frames

Frame Station OutputCase P V2 V3 T M2 M3

Text m Text KN KN KN KN-m KN-m KN-m

1 0 DEAD -443.323 0.633 -0.354 -0.0032 -0.2138 0.4738

1 1.425 DEAD -439.05 0.633 -0.354 -0.0032 0.2911 -0.4283

1 2.85 DEAD -434.776 0.633 -0.354 -0.0032 0.796 -1.3304

1 0 MODAL -64.206 -28.458 10.08 -1.3158 16.2676 -53.041

1 1.425 MODAL -64.206 -28.458 10.08 -1.3158 1.9037 -12.4881

1 2.85 MODAL -64.206 -28.458 10.08 -1.3158 -12.4602 28.0648

1 0 MODAL 465.911 -23.073 26.989 -1.0041 44.2953 -42.4609

1 1.425 MODAL 465.911 -23.073 26.989 -1.0041 5.8361 -9.5823

1 2.85 MODAL 465.911 -23.073 26.989 -1.0041 -32.6231 23.2964

1 0 MODAL -325.786 -7.514 -9.776 0.6963 -15.8858 -15.3666

1 1.425 MODAL -325.786 -7.514 -9.776 0.6963 -1.9549 -4.6586

1 2.85 MODAL -325.786 -7.514 -9.776 0.6963 11.9759 6.0494

1 0 MODAL -143.523 116.856 -70.939 4.9964 -111.9618 210.6385

1 1.425 MODAL -143.523 116.856 -70.939 4.9964 -10.8732 44.119

1 2.85 MODAL -143.523 116.856 -70.939 4.9964 90.2155 -122.4005

1 0 MODAL -108.997 -24.306 72.417 -0.9154 114.06 -42.7085

1 1.425 MODAL -108.997 -24.306 72.417 -0.9154 10.8664 -8.0719

1 2.85 MODAL -108.997 -24.306 72.417 -0.9154 -92.3273 26.5648

1 0 MODAL 218.676 -37.783 -33.716 2.2223 -52.8153 -70.4635

1 1.425 MODAL 218.676 -37.783 -33.716 2.2223 -4.7704 -16.6221

1 2.85 MODAL 218.676 -37.783 -33.716 2.2223 43.2745 37.2193

1 0 MODAL -77.966 207.825 -129.419 8.4361 -202.9796 363.7035

1 1.425 MODAL -77.966 207.825 -129.419 8.4361 -18.5572 67.5532

1 2.85 MODAL -77.966 207.825 -129.419 8.4361 165.8653 -228.5971

1 0 MODAL 379.676 -23.526 122.547 -0.8517 192.1008 -39.7243

1 1.425 MODAL 379.676 -23.526 122.547 -0.8517 17.471 -6.1991

1 2.85 MODAL 379.676 -23.526 122.547 -0.8517 -157.1588 27.3261

1 0 MODAL 422.821 76.487 61.446 -3.9568 95.5932 139.4584

1 1.425 MODAL 422.821 76.487 61.446 -3.9568 8.0332 30.4643

1 2.85 MODAL 422.821 76.487 61.446 -3.9568 -79.5268 -78.5297

1 0 MODAL 90.872 311.256 -179.009 11.1832 -277.3863 520.3866

1 1.425 MODAL 90.872 311.256 -179.009 11.1832 -22.298 76.8474

1 2.85 MODAL 90.872 311.256 -179.009 11.1832 232.7904 -366.6919

1 0 MODAL 2421.356 -0.004852

10.505 0.0666 14.5726 -1.4325

1 1.425 MODAL 2421.356 -0.004852

10.505 0.0666 -0.3977 -1.4256

1 2.85 MODAL 2421.356 -0.004852

10.505 0.0666 -15.3681 -1.4186

Page 72: SAP 2000 PROJEKTI

71

1 0 MODAL 3248.939 14.217 -55.465 0.6118 -87.3966 21.4892

1 1.425 MODAL 3248.939 14.217 -55.465 0.6118 -8.3587 1.2296

1 2.85 MODAL 3248.939 14.217 -55.465 0.6118 70.6792 -19.03

1 0 LIVE 402.603 -0.854 0.722 0.0039 0.5338 -0.6999

1 1.425 LIVE 402.603 -0.854 0.722 0.0039 -0.4945 0.5175

1 2.85 LIVE 402.603 -0.854 0.722 0.0039 -1.5227 1.7348

1 0 EQ-X 2899.217 244.681 147.045 10.0409 239.669 460.7164

1 1.425 EQ-X 2899.217 244.681 147.045 10.0409 30.1582 112.4894

1 2.85 EQ-X 2899.217 244.681 147.045 10.0409 179.4172 237.0467

1 0 EQ-Y 5674.238 85.374 220.768 3.8796 364.0263 157.507

1 1.425 EQ-Y 5674.238 85.374 220.768 3.8796 49.5035 36.2296

Page 73: SAP 2000 PROJEKTI

72

TABLE: Element Joint Forces - Areas

Joint OutputCase F1 F2 F3 M1 M2 M3

Text Text KN KN KN KN-m KN-m KN-m

86 DEAD -24.711 -26.505 12.543 4.4977 -4.0212 1.7887

716 DEAD 21.599 -15.646 -0.151 3.6507 -1.3365 -0.6286

717 DEAD 7.549 14.642 -5.577 -0.8952 -0.5181 -0.172

718 DEAD -4.437 27.508 -2.337 0.0227 -2.0911 2.2458

86 MODAL 71.461 49.556 -0.765 -2.3263 4.4803 -2.4537

716 MODAL -16.397 -18.506 -1.657 -0.5653 -0.3724 2.2337

717 MODAL -41.646 -18.195 7.752 0.5462 -0.8537 1.0707

718 MODAL -13.418 -12.856 -5.33 0.6098 2.8408 -3.6129

86 MODAL 100.715 153.447 10.121 -3.7397 2.7405 0.2928

716 MODAL 28.509 -53.61 -9.937 2.9187 0.1219 6.2326

717 MODAL -78.411 -44.927 15.813 0.1092 0.2716 2.6655

718 MODAL -50.813 -54.91 -15.996 0.8436 2.7413 -3.2647

86 MODAL -218.495 -94.6 10.5 5.7677 -15.3513 9.4908

716 MODAL 78.166 45.339 -2.477 3.128 1.6364 -4.166

717 MODAL 118.529 41.288 -16.953 -1.5303 3.3697 -2.5149

718 MODAL 21.8 7.972 8.93 -1.6157 -9.0851 11.1319

86 MODAL -184.711 -181.55 -5.896 6.6502 -10.6145 0.7699

716 MODAL 10.019 74.488 9.591 -1.8315 0.3208 -9.7472

717 MODAL 118.513 55.298 -26.357 -0.8064 1.2585 -3.0783

718 MODAL 56.179 51.764 22.662 -1.364 -7.7304 7.4652

86 MODAL 125.116 219.764 19.007 -4.611 1.966 2.7854

716 MODAL 57.994 -88.037 -16.475 6.1962 0.5329 9.792

717 MODAL -105.05 -56.279 23.172 -0.5103 1.0905 3.7555

718 MODAL -78.06 -75.449 -25.704 0.7397 3.1077 -3.2463

86 MODAL -461.756 -168.581 26.525 12.5167 -35.5087 19.8157

716 MODAL 187.282 97.136 -8.562 7.04 2.9398 -9.7083

717 MODAL 241.371 70.061 -37.606 -3.379 7.4331 -5.0597

718 MODAL 33.104 1.384 19.643 -3.3043 -21.0315 24.4615

86 MODAL 159.051 173.498 2.987 -3.5574 2.6493 -12.3441

716 MODAL 6.216 -28.601 -5.232 -1.3352 -0.4939 0.3209

717 MODAL -114.848 -74.284 8.172 1.2035 -0.4003 4.4997

718 MODAL -50.419 -70.612 -5.927 2.0805 1.1851 -8.0323

86 MODAL -45.222 -95.127 3.294 2.4085 -1.719 1.6102

716 MODAL -6.683 -19.941 -0.598 2.373 0.0006568 -0.3639

717 MODAL 36.342 55.988 -1.796 -1.3357 0.2175 -1.0266

718 MODAL 15.562 59.08 -0.9 -1.5135 -0.893 0.9316

Page 74: SAP 2000 PROJEKTI

73

86 MODAL -125.529 -146.293 -4.396 1.5722 0.1595 7.1698

716 MODAL -20.403 1.25 4.893 0.9812 1.3034 1.2805

717 MODAL 90.278 93.035 -2.558 -0.681 0.4241 -1.9877

718 MODAL 55.654 52.009 2.06 -1.5161 0.4485 3.8373

86 MODAL 700.179 702.223 38.8 -11.79 22.3788 -20.4931

716 MODAL 40.695 -275.49 -29.021 9.1302 -3.5598 21.566

717 MODAL -496.36 -245.066 59.899 2.2703 -4.2653 15.2023

718 MODAL -244.514 -181.667 -69.679 7.3981 16.3247 -26.6787

86 MODAL 266.915 126.145 -47.629 -19.3602 27.3738 -16.3387

716 MODAL -166.205 30.514 7.099 -16.3134 3.1019 4.5037

717 MODAL -113.12 -74.331 36.647 4.9825 -1.6191 2.1552

718 MODAL 12.41 -82.328 3.883 1.6442 14.8895 -18.6786

86 MODAL -123.268 -18.009 35.125 15.1555 -17.3777 11.6727

716 MODAL 135.651 -57.8 0.815 14.5128 -1.6128 -1.3326

717 MODAL 27.197 25.325 -27.451 -3.6976 1.4168 0.128

718 MODAL -39.58 50.484 -8.489 -0.2138 -9.0617 13.1323

86 LIVE 35.177 32.027 -15.859 -5.7083 5.5443 -2.663

716 LIVE -29.373 18.8 -0.93 -5.0829 1.8427 0.9165

717 LIVE -10.509 -18.069 8.272 1.2613 0.7946 0.2188

718 LIVE 4.705 -32.758 0.995 0.1933 2.9219 -3.3625

86 EQ-X 1950.397 988.424 113.821 52.0842 137.8587 86.5329

716 EQ-X 744.974 431.116 55.904 32.9469 15.0005 42.7544

717 EQ-X 1065.374 389.662 157.815 13.7905 30.8825 23.6097

718 EQ-X 268.137 248.003 98.19 14.4765 81.2213 99.5081

86 EQ-Y 596.485 1306.752 116.816 24.0095 15.1018 23.596

716 EQ-Y 442.868 449.241 95.966 36.5259 4.3836 51.4457

717 EQ-Y 553.68 355.729 115.576 3.531 9.9847 21.1971

718 EQ-Y 455.104 502.689 134.967 4.8844 12.122 13.8333

86 dead 1.35 -33.36 -35.782 16.933 6.072 -5.4286 2.4148

716 dead 1.35 29.158 -21.122 -0.204 4.9284 -1.8043 -0.8486

717 dead 1.35 10.192 19.767 -7.528 -1.2085 -0.6995 -0.2322

718 dead 1.35 -5.99 37.136 -3.155 0.0307 -2.823 3.0318

86 Dead 1.35 , Live 1.5 19.406 12.259 -6.856 -2.4905 2.8878 -1.5797

716 Dead 1.35 , Live 1.5 -14.901 7.078 -1.599 -2.6959 0.9597 0.5261

717 Dead 1.35 , Live 1.5 -5.572 -7.337 4.88 0.6835 0.4924 0.0961

718 Dead 1.35 , Live 1.5 1.067 -12.001 -1.663 0.3206 1.5599 -2.0119

86

Dead 1, Live 0.3, EQ-x 1 1936.239 971.527 121.606 54.8694 135.5008 87.5227

Page 75: SAP 2000 PROJEKTI

74

716

Dead 1, Live 0.3, EQ-x 1 757.761 421.11 55.473 35.0727 14.2168 42.4007

717

Dead 1, Live 0.3, EQ-x 1 1069.77 398.883 154.72 13.2737 30.6027 23.5034

718

Dead 1, Live 0.3, EQ-x 1 265.111 265.684 96.152 14.5572 80.0068 100.7451

86

Dead 1, Live 0.3, EQ-x 1 -1964.555 -1005.32 -106.036 -49.2989 -140.2167 -85.5431

716

Dead 1, Live 0.3, EQ-x 1 -732.187 -441.122 -56.334 -30.8211 -15.7842 -43.108

717

Dead 1, Live 0.3, EQ-x 1 -1060.977 -380.44 -160.91 -14.3073 -31.1622 -23.716

718

Dead 1, Live 0.3, EQ-x 1 -271.162 -230.323 -100.229 -14.3958 -82.4359 -98.271

86

Dead 1 , Live 0.3, Eq-y 1 582.327 1289.856 124.601 26.7947 12.7439 24.5859

716

Dead 1 , Live 0.3, Eq-y 1 455.655 439.235 95.536 38.6517 3.5999 51.0921

717

Dead 1 , Live 0.3, Eq-y 1 558.077 364.95 112.481 3.0142 9.7049 21.0907

718

Dead 1 , Live 0.3, Eq-y 1 452.078 520.37 132.928 4.9651 10.9075 15.0703

86

Dead 1 , Live 0.3, Eq-y 1 -610.643 -1323.649 -109.031 -21.2242 -17.4597 -22.6062

716

Dead 1 , Live 0.3, Eq-y 1 -430.081 -459.247 -96.396 -34.4001 -5.1673 -51.7994

717

Dead 1 , Live 0.3, Eq-y 1 -549.283 -346.507 -118.671 -4.0478 -10.2644 -21.3034

718

Dead 1 , Live 0.3, Eq-y 1 -458.129 -485.008 -137.006 -4.8037 -13.3366 -12.5962

86 Dead 1 , Eq X 1 1925.686 961.919 126.364 56.5819 133.8375 88.3216

Page 76: SAP 2000 PROJEKTI

75

716 Dead 1 , Eq X 1 766.573 415.47 55.752 36.5976 13.664 42.1258

717 Dead 1 , Eq X 1 1072.923 404.304 152.238 12.8953 30.3644 23.4377

718 Dead 1 , Eq X 1 263.7 275.512 95.853 14.4992 79.1302 101.7539

86 Dead 1 , Eq X 1 -1975.108 -1014.929 -101.278 -47.5864 -141.88 -84.7442

716 Dead 1 , Eq X 1 -723.375 -446.762 -56.055 -29.2962 -16.337 -43.383

717 Dead 1 , Eq X 1 -1057.824 -375.02 -163.391 -14.6857 -31.4006 -23.7817

718 Dead 1 , Eq X 1 -272.574 -220.495 -100.527 -14.4538 -83.3125 -97.2623

86 Dead 1, Eq-y 1 571.774 1280.248 129.359 28.5072 11.0806 25.3848

Page 77: SAP 2000 PROJEKTI

76

TABLE: Element Joint Forces - Frames

OutputCase F1 F2 F3 M1 M2 M3

Text KN KN KN KN-m KN-m KN-m

DEAD -0.633 0.354 443.323 -0.2138 -0.4738 0.0032

DEAD 0.633 -0.354 -434.026 -0.8846 -1.4887 -0.0032

MODAL 28.458 -10.08 64.206 16.2676 53.041 1.3158

MODAL -28.458 10.08 -64.206 14.9801 35.1794 -1.3158

MODAL 23.073 -26.989 -465.911 44.2953 42.4609 1.0041

MODAL -23.073 26.989 465.911 39.3703 29.0645 -1.0041

MODAL 7.514 9.776 325.786 -15.8858 15.3666 -0.6963

MODAL -7.514 -9.776 -325.786 -14.4199 7.928 0.6963

MODAL -116.856 70.939 143.523 -111.9618 -210.6385 -4.9964

MODAL 116.856 -70.939 -143.523 -107.9503 -151.6144 4.9964

MODAL 24.306 -72.417 108.997 114.06 42.7085 0.9154

MODAL -24.306 72.417 -108.997 110.4314 32.6414 -0.9154

MODAL 37.783 33.716 -218.676 -52.8153 70.4635 -2.2223

MODAL -37.783 -33.716 218.676 -51.7034 46.6652 2.2223

MODAL -207.825 129.419 77.966 -202.9796 -363.7035 -8.4361

MODAL 207.825 -129.419 -77.966 -198.2201 -280.5533 8.4361

MODAL 23.526 -122.547 -379.676 192.1008 39.7243 0.8517

MODAL -23.526 122.547 379.676 187.7956 33.2077 -0.8517

MODAL -76.487 -61.446 -422.821 95.5932 -139.4584 3.9568

MODAL 76.487 61.446 422.821 94.8882 -97.6515 -3.9568

MODAL -311.256 179.009 -90.872 -277.3863 -520.3866 -11.1832

MODAL 311.256 -179.009 90.872 -277.5427 -444.5058 11.1832

MODAL 0.004852 -10.505 -2421.356 14.5726 1.4325 -0.0666

MODAL -0.004852 10.505 2421.356 17.9944 -1.4174 0.0666

MODAL -14.217 55.465 -3248.939 -87.3966 -21.4892 -0.6118

MODAL 14.217 -55.465 3248.939 -84.5455 -22.5843 0.6118

LIVE 0.854 -0.722 -402.603 0.5338 0.6999 -0.0039

LIVE -0.854 0.722 402.603 1.7031 1.9484 0.0039

EQ-X 244.681 147.045 2899.217 239.669 460.7164 10.0409

EQ-X 244.681 147.045 2899.217 216.1775 298.1601 10.0409

EQ-Y 85.374 220.768 5674.238 364.0263 157.507 3.8796

EQ-Y 85.374 220.768 5674.238 320.3785 107.4295 3.8796

dead 1.35 -0.855 0.478 598.487 -0.2886 -0.6396 0.0044

dead 1.35 0.855 -0.478 -585.935 -1.1942 -2.0097 -0.0044

Dead 1.35 , Live 1.5 0.427 -0.604 -5.418 0.512 0.4102 -0.0015

Dead 1.35 , Live 1.5 -0.427 0.604 17.969 1.3605 0.9129 0.0015

Dead 1, Live 0.3, EQ-x 1 244.305 147.182 3221.759 239.6153 460.4525 10.043

Page 78: SAP 2000 PROJEKTI

77

Dead 1, Live 0.3, EQ-x 1 245.058 146.907 2585.972 215.8038 297.2559 10.0389

Dead 1, Live 0.3, EQ-x 1 -245.058 -146.907 -2576.675 -239.7226 -460.9802 -10.0389

Dead 1, Live 0.3, EQ-x 1 -244.305 -147.182 -3212.462 -216.5511 -299.0642 -10.043

Dead 1 , Live 0.3, Eq-y 1 84.997 220.906 5996.78 363.9726 157.2431 3.8817

Dead 1 , Live 0.3, Eq-y 1 85.751 220.63 5360.993 320.0048 106.5254 3.8775

Dead 1 , Live 0.3, Eq-y 1 -85.751 -220.63 -5351.695 -364.08 -157.7708 -3.8775

Dead 1 , Live 0.3, Eq-y 1 -84.997 -220.906 -5987.483 -320.7522 -108.3337 -3.8817

Dead 1 , Eq X 1 244.048 147.399 3342.54 239.4552 460.2425 10.0442

Dead 1 , Eq X 1 245.314 146.69 2465.191 215.2929 296.6714 10.0377

Dead 1 , Eq X 1 -245.314 -146.69 -2455.894 -239.8828 -461.1902 -10.0377

Page 79: SAP 2000 PROJEKTI

78

TABLE: Element Stresses - Area Shells

Area ShellType Joint S11Top S22Top S12Top SMaxTop SMinTop SAngleTop SVMTop

Text Text Text KN/m2 KN/m2 KN/m2 KN/m2 KN/m2 Degrees KN/m2

5 Shell-Thin 86 1910.33 1395.48 187.25 1971.23 1334.58 18.016 1742.44

5 Shell-Thin 716 -317.9 583.72 -128.72 601.74 -335.91 -82.032 822.84

5 Shell-Thin 717 89.88 316.05 -157.17 396.59 9.34 -62.867 392.01

5 Shell-Thin 718 109.11 111.17 158.79 268.93 -48.66 45.186 296.27

5 Shell-Thin 86 -2256.95 -1314.4 -920.04 -751.95 -2819.4 -58.562 2528.71

5 Shell-Thin 716 -438.55 384.66 -366.89 524.44 -578.33 -69.144 955.41

5 Shell-Thin 717 -388.14 188.59 -55.91 193.96 -393.51 -84.514 518.45

5 Shell-Thin 718 -502.06 -532.78 -609.06 91.83 -1126.68 -44.278 1175.28

5 Shell-Thin 86 -1388.77 -3550.1 -2207.71 -11.42 -4927.45 -31.959 4921.74

5 Shell-Thin 716 -141.39 2541.84 -1693.64 3360.86 -960.41 -64.192 3930.08

5 Shell-Thin 717 210.62 874.99 -493.53 1137.72 -52.11 -61.972 1164.65

5 Shell-Thin 718 -1157.72 -1804.7 -1007.6 -422.95 -2539.47 -36.1 2356.63

5 Shell-Thin 86 7781.71 2658.72 2048.46 8500.08 1940.36 19.325 7715.12

5 Shell-Thin 716 1707.74 -97.71 265.42 1745.96 -135.92 8.192 1817.73

5 Shell-Thin 717 1572.57 -372.96 -138.86 1582.43 -382.82 -4.062 1804.56

5 Shell-Thin 718 1217.13 912.14 1644.18 2715.87 -586.61 42.351 3051.76

5 Shell-Thin 86 5159.91 4758.8 3252.8 8218.33 1700.38 43.236 7513.85

5 Shell-Thin 716 787.83 -2699.23 2088.19 1764.68 -3676.08 25.07 4807.78

5 Shell-Thin 717 479.59 -949.2 432.67 600.4 -1070.01 15.6 1465.55

5 Shell-Thin 718 1780.06 1944.54 1597.28 3461.69 262.91 46.474 3338.01

5 Shell-Thin 86 -962.62 -5157.23 -3296.01 846.79 -6966.64 -28.765 7426.33

5 Shell-Thin 716 32.17 4390.13 -2789.63 5750.92 -1328.62 -63.997 6517.6

5 Shell-Thin 717 658.05 1481.11 -825.06 1991.58 147.58 -58.255 1922.05

5 Shell-Thin 718 -1702.54 -2561.33 -1331.45 -732.96 -3530.91 -36.063 3227.47

5 Shell-Thin 86 17727.54 5383.88 4310.8 19083.96 4027.46 17.466 17422.92

5 Shell-Thin 716 3455.56 -35.61 425.8 3506.74 -86.79 6.854 3550.93

5 Shell-Thin 717 3644.13 -694.48 -465.41 3693.5 -743.85 -6.054 4116.14

5 Shell-Thin 718 2669.15 1527.43 3419.59 5565.2 -1368.63 40.261 6360.91

5 Shell-Thin 86 -2056.81 -2966.65 -1573.03 -874.23 -4149.23 -36.935 3788.53

5 Shell-Thin 716 -590.18 779.81 -339.53 859.34 -669.71 -76.817 1327.59

5 Shell-Thin 717 -340.04 635.12 -353.79 749.95 -454.88 -72.017 1053.8

5 Shell-Thin 718 -705.08 -2336.52 -1587.3 263.84 -3305.44 -31.401 3444.94

5 Shell-Thin 86 969.77 1443.04 320.87 1605.09 807.72 63.204 1390.06

5 Shell-Thin 716 30.23 423.16 87.54 441.78 11.61 77.992 436.09

5 Shell-Thin 717 159.5 169.07 56.6 221.08 107.49 47.415 191.49

5 Shell-Thin 718 260.89 1270.92 289.92 1348.22 183.59 75.07 1266.45

5 Shell-Thin 86 823.35 1741.69 972.35 2357.84 207.21 57.639 2261.36

5 Shell-Thin 716 1086.95 52.53 309.79 1172.63 -33.15 15.46 1189.56

Page 80: SAP 2000 PROJEKTI

79

5 Shell-Thin 717 -130.6 -195.62 426.71 264.83 -591.06 42.821 758.96

5 Shell-Thin 718 80.2 1634.18 1089.27 2195.18 -480.8 62.75 2470.92

5 Shell-Thin 86 -12494.83

-13362.07

-9975.75 -2943.28 -22913.62

-43.756 21592.96

5 Shell-Thin 716 -3394.65 8748.74 -5656.64 10975.42 -5621.33 -68.513 14620.39

5 Shell-Thin 717 -1540.77 4216.48 -2012.93 4850.45 -2174.75 -72.518 6229.36

5 Shell-Thin 718 -5208.08 -8797.91 -6332.04 -421.47 -13584.52

-37.087 13378.77

5 Shell-Thin 86 -13558.28

-6005.83 -2094.38 -5463.92 -14100.19

-75.493 12313.71

5 Shell-Thin 716 -539.43 -2805.7 613.65 -383.94 -2961.2 14.219 2789.12

5 Shell-Thin 717 -1936.62 -1147.16 720.62 -720.24 -2363.54 59.356 2098.27

Page 81: SAP 2000 PROJEKTI

80

TABLE: Joint Reactions

Joint OutputCase F1 F2 F3 M1 M2 M3

Text Text KN KN KN KN-m KN-m KN-m

1 DEAD -0.633 0.354 443.323 -0.2138 -0.4738 0.0032

1 MODAL 28.458 -10.08 64.206 16.2676 53.041 1.3158

1 MODAL 23.073 -26.989 -465.911 44.2953 42.4609 1.0041

1 MODAL 7.514 9.776 325.786 -15.8858 15.3666 -0.6963

1 MODAL -116.856 70.939 143.523 -111.9618 -210.6385 -4.9964

1 MODAL 24.306 -72.417 108.997 114.06 42.7085 0.9154

1 MODAL 37.783 33.716 -218.676 -52.8153 70.4635 -2.2223

1 MODAL -207.825 129.419 77.966 -202.9796 -363.7035 -8.4361

1 MODAL 23.526 -122.547 -379.676 192.1008 39.7243 0.8517

1 MODAL -76.487 -61.446 -422.821 95.5932 -139.4584 3.9568

1 MODAL -311.256 179.009 -90.872 -277.3863 -520.3866 -11.1832

1 MODAL 0.004852 -10.505 -2421.356 14.5726 1.4325 -0.0666

1 MODAL -14.217 55.465 -3248.939 -87.3966 -21.4892 -0.6118

1 LIVE 0.854 -0.722 -402.603 0.5338 0.6999 -0.0039

1 EQ-X 244.681 147.045 2899.217 239.669 460.7164 10.0409

1 EQ-Y 85.374 220.768 5674.238 364.0263 157.507 3.8796

1 dead 1.35 -0.855 0.478 598.487 -0.2886 -0.6396 0.0044

1 Dead 1.35 , Live 1.5 0.427 -0.604 -5.418 0.512 0.4102 -0.0015

1 Dead 1, Live 0.3, EQ-x 1 244.305 147.182 3221.759 239.6153 460.4525 10.043

1 Dead 1, Live 0.3, EQ-x 1 -245.058 -146.907 -2576.675 -239.7226 -460.9802 -10.0389

1 Dead 1 , Live 0.3, Eq-y 1 84.997 220.906 5996.78 363.9726 157.2431 3.8817

1 Dead 1 , Live 0.3, Eq-y 1 -85.751 -220.63 -5351.695 -364.08 -157.7708 -3.8775

1 Dead 1 , Eq X 1 244.048 147.399 3342.54 239.4552 460.2425 10.0442

1 Dead 1 , Eq X 1 -245.314 -146.69 -2455.894 -239.8828 -461.1902 -10.0377

1 Dead 1, Eq-y 1 84.741 221.122 6117.561 363.8125 157.0332 3.8829

1 Dead 1, Eq-y 1 -86.007 -220.414 -5230.914 -364.2401 -157.9808 -3.8764

3 DEAD 0.761 0.652 479.862 -0.5356 0.9282 0.0011

3 MODAL 36.678 -3.558 -41.023 5.5591 61.2778 1.3054

3 MODAL 29.773 -21.762 -417.708 35.8384 49.1908 1.0262

3 MODAL 10.837 6.314 87.846 -10.4532 18.6997 -0.7158

3 MODAL -145.925 42.972 -165.695 -68.0063 -239.7505 -5.0007

3 MODAL 29.163 -64.66 251.473 103.2696 47.5959 0.984

3 MODAL 50.813 21.3 -65.568 -34.1597 83.5035 -2.2791

3 MODAL -254.09 80.775 141.992 -127.6065 -409.961 -8.4312

3 MODAL 27.414 -113.585 -330.244 180.3599 43.6188 0.9615

3 MODAL -101.343 -39.214 -167.538 62.0426 -164.2364 4.0508

3 MODAL -364.485 113.51 -618.024 -176.8496 -573.3648 -11.1301

Page 82: SAP 2000 PROJEKTI

81

3 MODAL 1.961 -12.904 -3175.391 17.273 3.4557 -0.0332

3 MODAL -13.444 48.027 -4260.324 -77.9359 -20.5965 -0.6291

3 LIVE -0.929 -1.12 -444.465 0.9616 -1.0945 -

0.0007132

3 EQ-X 321.192 96.87 1665.921 158.4935 537.5791 10.1335

3 EQ-Y 109.994 213.776 4268.095 354.1738 182.198 3.9039

3 dead 1.35 1.028 0.88 647.814 -0.7231 1.2531 0.0015

3 Dead 1.35 , Live 1.5 -0.365 -0.8 -18.884 0.7194 -0.3886 0.000459

3 Dead 1, Live 0.3, EQ-x 1 321.675 97.186 2012.444 158.2463 538.179 10.1344

3 Dead 1, Live 0.3, EQ-x 1 -320.709 -96.554 -1319.399 -158.7406 -536.9793 -10.1326

3 Dead 1 , Live 0.3, Eq-y 1 110.477 214.092 4614.617 353.9267 182.7978 3.9048

Page 83: SAP 2000 PROJEKTI

82

TABLE: Modal Periods And Frequencies

OutputCase StepType StepNum Period Frequency CircFreq Eigenvalue

Text Text Unitless Sec Cyc/sec rad/sec rad2/sec2

MODAL Mode 1 0.924609 1.081537789 6.795502342 46.17885208

MODAL Mode 2 0.901943 1.108717337 6.966276481 48.52900802

MODAL Mode 3 0.779214 1.283344833 8.063493397 65.01992577

MODAL Mode 4 0.300944 3.32287609 20.87824623 435.9011656

MODAL Mode 5 0.282348 3.541727339 22.25332918 495.2106595

MODAL Mode 6 0.240496 4.158079647 26.12598494 682.5670892

MODAL Mode 7 0.174232 5.739486249 36.06225567 1300.486284

MODAL Mode 8 0.151979 6.579877485 41.34258954 1709.20971

MODAL Mode 9 0.13041 7.668109424 48.18015247 2321.327092

MODAL Mode 10 0.121433 8.234977489 51.74188956 2677.223136

MODAL Mode 11 0.110894 9.017606954 56.65929552 3210.275769

MODAL Mode 12 0.108252 9.23770203 58.04219367 3368.896246

Page 84: SAP 2000 PROJEKTI

83

TABLE: Objects And Elements - Areas

AreaElem AreaObject ElemJt1 ElemJt2 ElemJt3 ElemJt4

Text Text Text Text Text Text

40 40 42 103 106 107

41 41 107 106 108 111

42 42 111 108 112 78

43 43 103 117 118 106

44 44 106 118 119 108

45 45 108 119 120 112

46 46 117 121 122 118

47 47 118 122 123 119

48 48 119 123 124 120

49 49 121 44 125 122

50 50 122 125 126 123

51 51 123 126 79 124

52 52 32 127 128 129

53 53 129 128 130 131

54 54 131 130 132 133

55 55 133 132 134 135

56 56 135 134 103 42

57 57 127 136 137 128

58 58 128 137 138 130

59 59 130 138 139 132

60 60 132 139 140 134

61 61 134 140 117 103

62 62 136 141 142 137

63 63 137 142 143 138

64 64 138 143 144 139

65 65 139 144 145 140

66 66 140 145 121 117

67 67 141 34 146 142

68 68 142 146 147 143

69 69 143 147 148 144

70 70 144 148 149 145

71 71 145 149 44 121

72 72 34 150 151 146

73 73 146 151 152 147

74 74 147 152 153 148

75 75 148 153 154 149

76 76 149 154 155 44

77 77 150 156 157 151

Page 85: SAP 2000 PROJEKTI

84

78 78 151 157 158 152

79 79 152 158 159 153

80 80 153 159 160 154

81 81 154 160 161 155

82 82 156 162 163 157

83 83 157 163 164 158

84 84 158 164 165 159

85 85 159 165 166 160

86 86 160 166 167 161

Page 86: SAP 2000 PROJEKTI

85

TABLE: Objects And Elements - Frames

FrameElem FrameObject ElemJtI ElemJtJ

Text Text Text Text

1-1 1 1 2

2-1 2 3 4

3-1 3 5 6

4-1 4 7 8

5-1 5 9 10

6-1 6 11 12

7-1 7 13 14

8-1 8 49 48

10-1 10 19 20

11-1 11 21 22

12-1 12 23 24

13-1 13 25 26

14-1 14 27 47

17-1 17 33 34

18-1 18 35 36

19-1 19 37 38

22-1 22 43 44

23-1 23 45 46

26-1 26 51 52

27-1 27 53 54

38-1 38 6 585

38-2 38 585 586

38-3 38 586 12

43-1 43 20 539

43-2 43 539 533

43-3 43 533 72

44-1 44 8 534

44-2 44 534 524

44-3 44 524 73

46-1 46 10 572

46-2 46 572 571

46-3 46 571 4

50-1 50 54 238

50-2 50 238 237

50-3 50 237 236

50-4 50 236 235

50-5 50 235 74

56-1 56 42 107

Page 87: SAP 2000 PROJEKTI

86

56-2 56 107 111

56-3 56 111 78

57-1 57 44 125

57-2 57 125 93

57-3 57 93 126

57-4 57 126 79

58-1 58 46 80

59-1 59 52 81

61-1 61 56 627

Page 88: SAP 2000 PROJEKTI

87

TABLE: Objects And Elements - Joints

JointElem JointObject GlobalX GlobalY GlobalZ

Text Text m m m

1 1 2.15 0 0

2 2 2.15 0 3.1

3 3 6.15 0 0

4 4 6.15 0 3.1

5 5 11.15 0 0

6 6 11.15 0 3.1

7 7 2.15 2.3 0

8 8 2.15 2.3 3.1

9 9 6.15 2.3 0

10 10 6.15 2.3 3.1

11 11 11.15 2.3 0

12 12 11.15 2.3 3.1

13 13 16.95 2.3 0

14 14 16.95 2.3 3.1

18 18 25.95 2.3 3.1

19 19 2.15 7.3 0

20 20 2.15 7.3 3.1

21 21 6.15 7.3 0

22 22 6.15 7.3 3.1

23 23 11.15 7.3 0

24 24 11.15 7.3 3.1

25 25 16.95 7.3 0

26 26 16.95 7.3 3.1

27 27 21.95 7.3 0

30 30 25.95 7.3 3.1

32 32 2.15 12.45 3.1

33 33 6.15 12.45 0

34 34 6.15 12.45 3.1

35 35 11.15 12.45 0

36 36 11.15 12.45 3.1

37 37 16.95 12.45 0

38 38 16.95 12.45 3.1

40 40 25.95 12.45 3.1

42 42 2.15 17.45 3.1

43 43 6.15 17.45 0

44 44 6.15 17.45 3.1

45 45 11.15 17.45 0

46 46 11.15 17.45 3.1

Page 89: SAP 2000 PROJEKTI

88

51 51 16.95 17.45 0

52 52 16.95 17.45 3.1

53 53 21.95 17.45 0

54 54 21.95 17.45 3.1

56 56 25.95 17.45 3.1

62 62 12.825 12.45 3.1

64 64 15.175 12.45 3.1

66 66 12.825 10.475 3.1

68 68 15.175 10.475 3.1

Page 90: SAP 2000 PROJEKTI

89

TABLE: Response Spectrum Modal Information

OutputCase

ModalCase

StepType

StepNum Period

DampRatio U1Acc U2Acc U3Acc

Text Text Text Unitless Sec Unitless m/sec2 m/sec2 m/sec2

EQ-X MODAL Mode 1 0.92460

9 0.05 9.81 0 0

EQ-X MODAL Mode 2 0.90194

3 0.05 9.81 0 0

EQ-X MODAL Mode 3 0.77921

4 0.05 9.81 0 0

EQ-X MODAL Mode 4 0.30094

4 0.05 9.81 0 0

EQ-X MODAL Mode 5 0.28234

8 0.05 9.81 0 0

EQ-X MODAL Mode 6 0.24049

6 0.05 9.81 0 0

EQ-X MODAL Mode 7 0.17423

2 0.05 9.81 0 0

EQ-X MODAL Mode 8 0.15197

9 0.05 9.81 0 0

EQ-X MODAL Mode 9 0.13041 0.05 9.81 0 0

EQ-X MODAL Mode 10 0.12143

3 0.05 9.81 0 0

EQ-X MODAL Mode 11 0.11089

4 0.05 9.81 0 0

EQ-X MODAL Mode 12 0.10825

2 0.05 9.81 0 0

EQ-Y MODAL Mode 1 0.92460

9 0.05 0 9.81 0

EQ-Y MODAL Mode 2 0.90194

3 0.05 0 9.81 0

EQ-Y MODAL Mode 3 0.77921

4 0.05 0 9.81 0

EQ-Y MODAL Mode 4 0.30094

4 0.05 0 9.81 0

EQ-Y MODAL Mode 5 0.28234

8 0.05 0 9.81 0

EQ-Y MODAL Mode 6 0.24049

6 0.05 0 9.81 0

EQ-Y MODAL Mode 7 0.17423

2 0.05 0 9.81 0

EQ-Y MODAL Mode 8 0.15197

9 0.05 0 9.81 0

EQ-Y MODAL Mode 9 0.13041 0.05 0 9.81 0

EQ-Y MODAL Mode 10 0.12143

3 0.05 0 9.81 0

Page 91: SAP 2000 PROJEKTI

90

EQ-Y MODAL Mode 11 0.11089

4 0.05 0 9.81 0

EQ-Y MODAL Mode 12 0.10825

2 0.05 0 9.81 0

Page 92: SAP 2000 PROJEKTI

91

Conclusion

A seismic analysis was performed to an – braced , 8 story reinforced concrete building. Considering the output taken the modal analyses table , it can be seen that the value of the frist fundamental period is 0.924 sec .The generated value is higher than the expected one , which rangs from 0.5 to 0.6 sec .This difference is dedicated to the mass source chosen , where the live load was reducted by 70% , which accounts for less mass and hight fundamental period . After generating the design check with SAP 2000 , it was noticed that the level of risk failure for the structure is considerably hight .This is also confirmed by the fact that four member of the considered building failed in shear stress capacity . It is necessary to emphasize that these types of structures suffer on dynamic loading conditions, that’s why it is crucial to better research this topic in order to have a better seismic performance

Page 93: SAP 2000 PROJEKTI

92

References

Advanced Materials and Techniques for Reinforced Concrete Structures

Mohamed Abdallah El-Reedy, Ph.D, Mohamed El-Reedy Reference - 327 Pages

The Roman Pantheon: The Triumph of Concrete. Romanconcrete.com. Retrieved on 2013-02-19.

Lancaster, Lynne (2005). Concrete Vaulted Construction in Imperial Rome. Innovations in Context. Cambridge University Press. ISBN 978-0-511-16068-4.

Ashby, Michael F. & Jones, David R. H. (1992) [1986].Engineering Materials 2 (with corrections ed.). Oxford: Pergamon Press. ISBN 0-08-032532-7.

Duncan, Chester I. Soils and Foundations for Architects and Engineers. New York: Van Nostrand Reinhold, 1992.

"Column - Definition and More from the Free Merriam-Webster Dictionary". Merriam-webster.com. 2012-08-31. Retrieved 2013-07-04.