sanitas& sustainable&and&integrated&urban

15
Sustainable and Integrated Urban Water System Management Deliverable Nr : 3.1 Deliverable Title : Knowledge bases and performance criteria developed and utilised in the design and management of UWS SANITAS SUSTAINABLE AND INTEGRATED URBAN WATER SYSTEM MANAGEMENT Marie Curie Network for Initial Training Seventh Framework Programme Grant Agreement Nr. 289193 Knowledge bases and performance criteria developed and utilised in the design and management of UWS Deliverable reference 3.1 Partner in charge UNIVERSITAT DE GIRONA Authors A. Hadjimichael, Ll. Corominas, J. Comas Target dissemination PU Coordinator institution UNIVERSITAT DE GIRONA Date of delivery 30/08/2014 The research leading to these results has received funding from the People Program (Marie Curie Actions) of the European Union’s Seventh Framework Programme FP7/20072013, under REA agreement 289193. This publication reflects only the author’s views and the European Union is not liable for any use that may be made of the information contained therein.

Upload: others

Post on 09-Jan-2022

0 views

Category:

Documents


0 download

TRANSCRIPT

Sustainable and Integrated Urban Water System Management

Deliverable Nr : 3.1 Deliverable Title : Knowledge bases and performance

criteria developed and utilised in the design and management of UWS

       

SANITAS    

SUSTAINABLE  AND  INTEGRATED  URBAN  WATER  SYSTEM  MANAGEMENT  Marie  Curie  Network  for  Initial  Training  

Seventh  Framework  Programme  Grant  Agreement  Nr.  289193  

     

Knowledge  bases  and  performance  criteria  developed  and  utilised  in  the  design  and  management  of  UWS  

   

Deliverable  reference   3.1  Partner  in  charge   UNIVERSITAT  DE  GIRONA  Authors   A.  Hadjimichael,  Ll.  Corominas,  J.  Comas  Target  dissemination   PU  Coordinator  institution     UNIVERSITAT  DE  GIRONA  Date  of  delivery   30/08/2014  

       

The  research  leading  to  these  results  has  received  funding  from  the  People  Program  (Marie  Curie  Actions)  of  the  European  Union’s  Seventh  Framework  Programme  FP7/2007-­‐2013,  under  REA  

agreement  289193.  

This  publication  reflects  only  the  author’s  views  and  the  European  Union  is  not  liable  for  any  use  that  may  be  made  of  the  information  contained  therein.  

   

     

 

Sustainable and Integrated Urban Water System Management Deliverable Nr : 3.1

Deliverable Title : Knowledge bases and performance criteria developed and utilised in the design and

management of UWS

1

       

 Index    

 Abstract     2    

 Introduction  and  state  of  the  art         3  

1.  Methodology  for  UWS  management   7  

2.  Conclusions   11  

3.  References     12  

     

                   

     

Sustainable and Integrated Urban Water System Management Deliverable Nr : 3.1

Deliverable Title : Knowledge bases and performance criteria developed and utilised in the design and

management of UWS

2

Abstract      In   view  of   ever-­‐changing   socio-­‐economic,   environmental   and  political   conditions,  Urban  Wastewater   System   (UWS)   managers   face   constant   decision-­‐making   challenges  threatening  the  well  functioning  of  their  systems  creating  the  need  for  a  prospective  view  of   the   system.   Furthermore,   technological   advances   provide   UWS   management   with  more  possibilities  for  improvement  and  tackling  challenges  than  ever  before.  In  order  to  evaluate   how   well   the   system   meets   specific   objectives   influenced   by   current   and  emerging  challenges,  relevant  social,  economic  and  environmental   indicators  need  to  be  employed.   Given   their   often   conflicting   nature   however,   there   is   a   need   for  methodologies  standardising  the  application  and  combination  of  tools  and  indicators.  The  objective   of   this   paper   is   to   describe   knowledge   bases   and   developed   performance  criteria   implemented   into   a   methodology   to   assess   environmental   and   socio-­‐economic  impacts   of   UWS  management   options   under   the   various   present   and   future   challenges  they  face.    

Keywords:    decision  support,  methodology,  social  benefits,  environmental  indicators,  economic  analysis  

 

   

Sustainable and Integrated Urban Water System Management Deliverable Nr : 3.1

Deliverable Title : Knowledge bases and performance criteria developed and utilised in the design and

management of UWS

3

 

Introduction  and  state  of  the  art  

Finding   themselves   in   ever-­‐changing   socio-­‐economic,   environmental   and   political  conditions,   Urban   Wastewater   System   (UWS)   managers   face   constant   decision-­‐making  challenges   threatening   the   well   functioning   of   their   systems.   At   the   same   time,  technological  advances  provide  UWS  management  with  more  possibilities  for  improvement  and  tackling  challenges  than  ever  before.  The  European  Water  Framework  Directive  (WFD),  aiming  for  a  more  sustainable  and  integrated  approach  in  UWS  management,  promotes  the  development  and  use  of  decision-­‐support  tools  to  aid  UWS  decision  makers  (DMs).    

Future  challenges,  such  as  the  impacts  of  climate  change  on  river  systems,  as  well  as  on  the  sewer  system,  have  been  widely  studied  for  many  years.  But  as  Langeveld  et  al.  (2013)  point  out,  not  much  attention  has  been  given  on  the  effects  of  the  possible  combinations  of  climate   change   that   might   occur   on   the   system,   such   as   the   intensification   of   rainfall,  temperature   increase   and   others.   Furthermore,   as   climate   change   can   impact   all   the  components  of   the  UWS   (catchment,   sewer   system,  wastewater   treatment  plant   (WWTP)  and   receiving  water   body),   considering   the  whole   system  when   assessing   these   effects   is  therefore  of  great   importance.  Extremely  relevant  are  also  the  issues  of  wet-­‐weather  flow  management   and   drought,   as   the   intensification   of   rainfall   is   sure   to   cause   significant  disturbances  to  the  system  hindering  the  efficient  operation  of  the  system  or  increasing  the  treatment   needs.   Factors   besides   climate   change,   such   as   population   growth   and  urbanisation  can  have  a  great  impact  on  the  future  of  the  quality  and  quantity  of  water  in  urbanised  catchments  (Fu  et  al.,  2009;  He  et  al.,  2008).  However,  the  combined  or  relative  effects  of  future  changes,  such  as  climate  change,  urbanisation  and  population  growth,  on  the  UWS  have  not  been  given  extensive  research  focus  thus  far  (Astaraie-­‐Imani  et  al.,  2012;  Yang   et   al.,   2012).   In   addition,   the   evolution   of   important   economic   factors   –   principally,  water   and   energy   prices   –   can   potentially   disturb   the   operational   equilibrium   applied   by  UWS   managers.   Therefore,   the   future   growth   of   relevant   environmental,   economic   and  social   conditions  must  not  be  neglected  especially  when  decisions  on  new   investments   in  UWSs  are  being  made.  

Public   acceptance   of   the   sanitation   services   is   also   of   great   importance,   since   it   can  undermine   the   success   of   a   decision-­‐making   process   and   the   resulting   applied   measure  (Nancarrow  et  al.,  2009).  This  is  especially  the  case  in  situations  where  great  alterations  are  taking   place   in   the   system   or   new   technology   is   about   to   be   implemented   (Bdour   et   al.,  2009).  However,  since  social  perception  is  often  very  hard  to  quantify,  studies  often  do  not  usually   address   this   aspect.     In   order   to   comply   with   sustainability   standards,   the  methodology   presented   in   this   study  will   take   into   account   environmental,   economic   but  also  social  objectives.  

Sustainable and Integrated Urban Water System Management Deliverable Nr : 3.1

Deliverable Title : Knowledge bases and performance criteria developed and utilised in the design and

management of UWS

4

To  assess  the  performance  of  the  system  of  interest  in  terms  of  the  specified  objectives,  the  methodology  will  make  use  of  existing   indicators  but  also  new  quantitative   indicators  associated   with   each   defined   objective.   These   indicators   will   be   metrics   of   the  “implications”   in   sustainability   terms   (economic/social/ecological)   of   various   planning   or  operational  measures   considered   by   DMs.   The  methodology  will   assess   the  measures   by  means  of  economic  analyses  (Cost-­‐Benefit  Analysis  and  Financial  Analysis)  and  uncertainty  analyses   as   recommended   by   the   “Guide   to   Cost-­‐Benefit   Analysis   of   investment  projects”(European  Commission,  2008).  

Cost-­‐Benefit   analysis   (CBA)   is   a   rational   and   systematic   approach   used   in   public   or  private  decision-­‐making  to  evaluate  whether  the  long-­‐term  benefits  of  an  action  outweigh  the  costs  in  monetary  terms.  When  applying  a  CBA  to  environmental  issues,  the  idea  of  an  externality   -­‐  a   third  party  detrimental   (or  beneficial)  effect   for  which  no  price   is  exacted   -­‐  becomes   central   (OECD,   2006;   Pearce,   1983).   In   the   context   of   UWSs,   economic  externalities  can  consist  of  positive  externalities  (for  example,  groundwater  recharge  from  irrigation  or  water  reuse)  and  negative  externalities  (for  example,  the  release  of  pollutants  in  a  receiving  water  body)  (OECD,  2010).  Based  on  the  principles  of  CBA,  a  project  should  be  supported  only  if  the  benefits  for  the  gainers  are  sufficiently  greater  than  the  costs  for  the  losers,   so   they   could   -­‐   in   principle   -­‐   compensate   the   losers   and   still   be   better   off   (OECD,  2006).  In  reality,  very  few  CBA  analyses  have  taken  into  account  environmental  externalities  that   are   difficult   to   quantify,   qualify   and   assign   tangible   monetary   values   to   (Fan   et   al.,  2013).  A  promising  approach  to  this  issue  is  through  the  use  of  proxy  or  hypothetical  values,  so-­‐called   shadow   prices.   Shadow   prices   are   constructed   prices   for   externalities   for  which  real  market   prices   do   not   exist,   such   as   emissions,   pollution,   environmental   impacts   and  environmental   quality   (de   Bruyn   et   al.,   2010).   Molinos-­‐Senante   et   al.   (2010)   used   the  valuation  methodology  of  distance  function  to  estimate  the  shadow  prices  of  the  pollutants  released   into   the   receiving  medium  and   therefore   estimate   the   avoided   cost   provided  by  their  removal.    

A  Financial  Analysis  (FA)  is  similar  to  a  CBA,  however  it  is  performed  from  the  point  of  view  of  the  agency  responsible  for  financing  and  activating  a  decision  (Belli,  2001).  It  is  not  therefore   sensible   to   take   into   account   in   a   FA   negative   or   positive   environmental  externalities  (costs  and  benefits)  that  cannot  -­‐or  will  not-­‐  be  realised  by  the  financing  body.  Nevertheless,   given   the   nature   of   an   integrated   urban   wastewater   system,   it   would   be  short-­‐sighted   to   ignore   the   possible   tangible   benefits   arising   from   the   use   of   services  provided  by   the   local   ecosystem  –   typically   a   surface  water  body.   Ecosystem   services   are  defined   as   the   “benefits   people   obtain   from   ecosystems”   (Millennium   Ecosystem  Assessment,  2005).  In  the  case  of  UWSs  ecosystem  services  can  provide  significant  benefits  by:  making  use  of  the  dilution  and  purification  of  discharged  pollutants  in  the  river  -­‐  termed  

Sustainable and Integrated Urban Water System Management Deliverable Nr : 3.1

Deliverable Title : Knowledge bases and performance criteria developed and utilised in the design and

management of UWS

5

as  “immission-­‐based  management”  by  literature  -­‐  (Corominas  et  al.,  2013);  provide  thermal  water   regulation   to   increase   water   treatment   efficiency   (Honey-­‐Rosés   et   al.,   2013);   and  regulating  water  flow  (Price,  2011).  Attainable  costs  and  benefits  emerging  from  the  use  of  such  services  should  therefore  be  considered  and  accounted  for   in  economic  and  financial  analyses  aiming  to  find  the  most  profitable  out  of  an  array  of  options.  

With   regards   to   uncertainty,   numerous   and   various   definitions   of   the   concepts   of  robustness,   reliability,   resilience,   flexibility,   functionality,   stability,   sensitivity   and  vulnerability   can   be   found   in   literature.   These   definitions   are   not   always   in   agreement,  especially   in   the   literature   between   different   disciplines,   and   are   often   used  interchangeably.   However,   the   general   notion   captured   by   most   of   them   is   the   idea   of  satisficing   (or  not)  over   the  many  plausible   states  a   system  might  be   found   in   (Hall  et  al.,  2012).   Satisficing   or   not   is   hindered   by   uncertainty.   Herder   and   Verwater-­‐Lukszo   (2006)  defined  two  types  of  uncertainty:  context  and  valuation  uncertainty.  Context  uncertainty  is  related   to   the   internal   or   external   to   the   system   factors   that   define   the   context   of   the  system,  whereas  valuation  uncertainty   is   related   to   the   choices  and  methods  we  apply   in  order  to  describe  and  assess  the  system.  

External  context  factors  are  the  relevant  socio-­‐economic,  environmental  and  technical  situations,   such   as   market   prices,   social   perceptions,   climate   and   legislation,   that   affect  UWSs  and  ultimately  shape  their  efficacy  (Zhang  and  Babovic,  2011).  These  factors  are  also  subject   to   both   (future)   long-­‐term   and   short-­‐term   variation   and   whether   or   not   this  variation   is   taken   into  account  usually  depends  on  the  time  window  of   the  evaluation.  An  obvious  example  of  external   variation   in   the  context  of  UWSs,  are   the  climatic   conditions  affecting  the  system.  In  this  case,  climatic  long-­‐term  variability  is  driven  by  climate  change  affecting   river   flows,   catchment   runoff,  mean   annual   temperature,   etc.,  whereas   climatic  short-­‐term   variability   are   individual   storm   events   causing   increased   system   stress   and  overflows.  

Internal   context   factors   lay   within   our   operational   space   and   are   the   functioning  settings  that  the  system  operator  is  able  to  manage  their  system  with  (for  example,  control  set-­‐points   or   use   of   tanks)   and   the   different   values   the   parameters   characterising   the  system  might  take.  In  UWSs,  this  system  variability  is  inherent  and  inevitable  given  the  fact  that  they  describe  physical  and  bio-­‐chemical  processes.  On  the  other  hand,  this  variability  is  also  facilitating  the  ability  for  operational  adaptation  to  ensure  the  most  desirable  outcome.  

Finally,   valuation   uncertainty   emerges   when   we   attempt   to   describe   and   assess   the  system.  For  example,  if  the  system  is  to  be  modelled,  the  modelling  process  itself  involves  a  relative  inaccuracy  in  the  predictions.  This  variance  is  intrinsic  to  the  process  of  modelling,  i.e.  when   interpreting   and   attempting   to   represent   natural   processes   using  mathematical  models.   This   type   of   uncertainty,   though   inherent,   is   often   neglected   in   evaluations   and  

Sustainable and Integrated Urban Water System Management Deliverable Nr : 3.1

Deliverable Title : Knowledge bases and performance criteria developed and utilised in the design and

management of UWS

6

decision-­‐support  tools  based  on  modelling  (Belia  et  al.,  2009).  Other  valuation  uncertainties  arise  with  choices  regarding  assessment,  for  example  which  criteria  are  considered  the  most  appropriate   by   the   decision   makers   and   how   they   influence   the   evaluation   outcome  (Dominguez  et  al.,  2011)  or  values  of  factors  such  as  the  discount  rate  in  a  CBA  (European  Commission,  2008).  

Analyses  aiming  to  thus  evaluate  the  causes  and  the  effects  of  these  current  and  future  uncertainties   are   very   important   in   order   to:   understand   the   system’s   operational   and  economical  sensitivity  to  the  aforementioned  internal  and  external  factors  (Flores-­‐Alsina  et  al.,   2008;   Taleb,   2010);   minimise   possible   unexpected   risks   of   applied   measures,   for  example,   exceeding   a   legal   effluent   standard   (Rousseau   et   al.,   2001);     understand   the  economic  evolution  of   an   investment  project   in   the   future   (European  Commission,  2008);  evaluate   the   transferability   of   measures   and   control   strategies   to   different   plants   or  operating   conditions,   especially   for   benchmarking   purposes   (Vanrolleghem   and   Gillot,  2002);   take   robustness   and  uncertainty  of  measure   into   account  when  providing  decision  support,   as   part   of   good   decision-­‐making   practice   (Benedetti   et   al.,   2012;   Gervásio   and  Simões   da   Silva,   2012);   and   engage   stakeholders   with   different   expectations   of   future  possibilities   into   the   decision-­‐support   process(National   Research   Council,   2009).   Finally,  understanding  the  uncertainty  of  a  system  better  allows  for  flexibility  in  decision-­‐making  for  design,  which   can  ultimately   improve   the   life-­‐cycle  performance  of   a   system   (Deng  et   al.,  2013).  

Adaptive   management   is   widely   considered   to   be   the   best   available   approach   for  managing  biological  systems  in  the  presence  of  uncertainty,  based  on  the  premise  that  our  ability   to   predict   key   drivers   affecting   ecosystems   is   inherently   limited   (Pahl-­‐Wostl,   2007;  Westgate  et  al.,  2013).    The  idea  of  adaptive  management  has  already  been  discussed  in  the  field   of   ecosystem  management   for   quite   some   time  now   (for   example,   in  Holling   (1978)  and  Walters   (1986)).  Accordingly,  seeing  the   innate  dependence  of  water  and  wastewater  systems  on  natural  systems,  literature  has  been  suggesting  a  shift  in  management  to  a  more  adaptive  and  flexible  approach  to  ensure  operation  under  fast  changing  socio-­‐economic  and  environmental  conditions  (Meire  et  al.,  2008;  Pahl-­‐Wostl,  2007).  

1. Aim  of  study    

The  objective  of   this  paper   is   to  describe  a  methodology  to  assess   the  environmental  and  socio-­‐economic   impacts   of   UWS   retrofitting   practices   under   different   scenarios.   With   a  specific  objective  defined  by   the  user,   the  proposed  methodology  assesses  and  compares  the  various  measures  that  can  be  taken  towards  that  goal.  

Sustainable and Integrated Urban Water System Management Deliverable Nr : 3.1

Deliverable Title : Knowledge bases and performance criteria developed and utilised in the design and

management of UWS

7

The  ultimate  purpose  of  this  methodology  is  to  be  implemented  into  an  Environmental  Decision  Support  System  (EDSS)  to  aid  in  the  planning  of  retrofitting  measures  to  be  applied  in  UWSs.  The  EDSS  will  aim  to  support  the  assessment  of  upgrading  measures  that  current  and   future   scenarios   demand,   as   well   as   to   serve   as   an   intermediary   tool   between   the  available   and   developing   technology,  models   and   indicators   and   the   potential   end-­‐users,  which   might   include   concerned   researchers,   wastewater   managers   and   policy-­‐makers.  EDSSs  are  intelligent  information  systems,  integrating  mathematical  models  and  automatic  control  with  knowledge-­‐based  systems,  that  can  support  the  decision  making  process  in  an  environmental  domain  by  reducing  the  time  in  which  decisions  are  made  and  improving  the  consistency  and  quality  of  those  decisions  (Poch  et  al.,  2004).  

 

2.  Methodology  for  UWS  management

Problem Statement and proposed measures

Periodic Assessment – Adaptive Management

Long-term Analysis (e.g. Cost-Benefit Analysis)

Robustness Analysis (External context)

General Assessment – Strategic Planning decisions

Optimisation OR Pareto front

Uncertainty Analysis (Valuation)

Optimisation – Technical decisions

Short-term Analysis (e.g.

Financial Analysis) Reliability Analysis (Internal context)

Specific Assessment – Conceptual Design decisions

Sustainable and Integrated Urban Water System Management Deliverable Nr : 3.1

Deliverable Title : Knowledge bases and performance criteria developed and utilised in the design and

management of UWS

8

Problem Statement and proposed measures

Assessment objective

The   purpose   of   the   assessment   is   to   assess   and   compare   the   possible   measures   or  courses  of  action   that   the  DM  might   follow   to   reach  a  predefined  objective.  The  DM  should  thus  first  and  foremost  clearly  define  the  desired  objective.  With  that  in  mind,  the  DM  will  then  need   to   decide   which   criteria/indicators   will   be   used   to   encapsulate   the   economic,  environmental  and  social  implications  of  each  measure.  

Proposed measures under assessment

Measures  to  be  applied  or  managerial  strategies  to  be  followed  with  the  DM’s  objective  as  the  ultimate  goal:  application  of  automatic  control,  control  strategies,  WWTP  upgrades  and  extensions  (e.g.  reactor  extensions,  addition  of  tanks,  addition  of  tertiary  treatment,  wetlands  etc.),  upgrades  in  sewer  system  (e.g.  storage  tanks,  bypasses),  measures  in  the  receiving  water  body  (e.g.  rehabilitation).  

General Assessment – Strategic Planning decisions

The  General   Assessment   step   is   an   assessment   of   the   long-­‐term   performance   of   the  system  in  terms  of  an  economic  indicator  of  choice  (CBA)  and  of  a  Robustness  Analysis  (ROA).  The  purpose  of  this  assessment  stage  is  twofold:  

By  means  of  CBA:  Explore  the  overall  long-­‐term  value  of  an  investment  project  by  contrasting  the   total   capital,   operation   and   maintenance   costs   of   a   measure   with   the   total   benefits  resulting  from  the  investment,  directly  and  in  the  form  of  externalities.  

By  means  of  ROA:  Explore  the  long-­‐term  robustness  of  the  investment  project  under  different  external  context  conditions:  precipitation,  temperature,  population,  energy  and  water  prices,  urbanisation,  industrial  activity  and  legislation.  

During  the  CBA  the  direct  and  indirect  (externalities)  costs  and  benefits  resulting  from  the  application  of  each  measure  are  estimated.  The  main  externality  in  the  context  of  UWSs,  is  the   detrimental   effects   resulting   from   the   release   of   pollutants   in   a   receiving   water   body  (OECD,  2010).  Valuing  environmental  externalities  means  expressing   their  value   to   society   in  monetary   terms.   Because   in   many   cases   the   value   of   environmental   aspects   cannot   be  obtained  directly   (for  example,  via  a  market  price),   it  must  be  estimated   through  calculation  (De  Bruyn  et  al.,  2010).  The  valuation  methodology  of  distance  function  is  therefore  employed  in  this  framework  to  estimate  the  shadow  prices  of  the  pollutants  released  into  the  receiving  medium   (Molinos-­‐Senante   et   al.,   2010).   Shadow   prices   are   constructed   prices   for   goods   or  production  factors  that  are  not  traded   in  actual  markets  and  for  which  real  market  prices  do  

Sustainable and Integrated Urban Water System Management Deliverable Nr : 3.1

Deliverable Title : Knowledge bases and performance criteria developed and utilised in the design and

management of UWS

9

not  exist.  These  prices  can  therefore  provide  an  indication  of  the  positive  or  negative  value  of  an  externality  –  in  this  case  the  discharged  pollutants  –  to  society  (De  Bruyn  et  al.,  2010).  The  overall  benefit  of  the  project  can  then  be  demonstrated  by  the  use  of  CBA  indicators  such  as  Net  Present  Value,  Benefit-­‐Cost  Ratio  and  Pay-­‐back  Period.  

For   the  ROA   scenarios   about   the   future  are  employed   to   investigate  how   the   system  might   respond   to   social,   economic   and   environmental   changes.   Parson   et   al.   (2007)   have  defined  scenarios  as  “descriptions  of  potential  future  conditions  developed  to  inform  decision-­‐making  under  uncertainty”.  DMs  often   face  a  big  variety  of  plausible   futures,  but   they  often  have   limited  cognitive  bandwidth  so  they  need  a  concise  summary  of   the  futures  they  might  face  (Lempert,  2013).  Scenarios  are  thus  very  useful  in  that  respect  as  they  use  a  small  number  of   plausible   values   for   key   planning   variables   (population   and   precipitation,   for   example)   to  create   storylines   for   future   conditions   in   a   system   (Kasprzyk   et   al.,   2013).   To   estimate   the  robustness  of  a  proposed  measure,  said  variables  are  applied  on  the  system  either  by  means  of  modelling   and   simulation   or   simple   feasibility   estimations   based   on   literature   and   expert  knowledge.    

The   objective   of   this   stage   is   to   assess   the   robustness   of   each   proposed   measure  against  expected  changes  in  the  long-­‐term  distant  future.  Specific  perturbation  events  (such  as  storms)  are  practically  impossible  to  predict  at  scales  of  20-­‐30  years  ahead  deducing  dynamic  modelling  of  the  system  possibly  unnecessary  at  this  stage.  In  addition,  the  main  planning  and  design  information  required  at  this  step  can  be  directly  derived  either  from  pre-­‐existing  data,  literature   or   expert   advice.   This   information   can   be   for   example,   average   cost   per   year   of  operation,  average  performance  of  technology  and  conformity  with  legislation,  ability  to  serve  estimated  habitant  equivalents  and  volume  of  inflow,  etc.  

Specific Assessment – Conceptual Design decisions

The   Specific  Assessment   step   is   an   assessment  of   the   short-­‐term  performance  of   the  system   in   terms  of  a   financial   indicator  of  choice   (FA)  and  of  a  Reliability  Analysis   (REA).  The  purpose  of  this  assessment  stage  is  twofold:  

By  means  of  FA:  Estimate  the  short-­‐term  benefit  of  a  measure  by  contrasting  the  total  capital,  operation   and   maintenance   costs   of   a   measure   with   the   total   tangible   benefits   resulting  directly  from  the  investment.  

By   means   of   REA:   Explore   the   short-­‐term   reliability   of   a   measure   under   different   internal  context   conditions:   storm   events,   control   set-­‐points,   sensor   location,   flow   regulation  thresholds,  use  of  storm  tanks  and  others.  

Sustainable and Integrated Urban Water System Management Deliverable Nr : 3.1

Deliverable Title : Knowledge bases and performance criteria developed and utilised in the design and

management of UWS

10

For   the   purposes   of   FA,   tangible   costs   and   benefits   arising   by   the   application   of   a  measure   should   be   calculated   and   accrued.  Most   commonly   used   costs   and   benefits   in   this  type  of  analysis  are  summarised  in  Table  1.  

Table  1.  Summary  of  commonly  used  tangible  costs  and  benefits  

 

In   the   case   of   UWSs   ecosystem   services   can   also   provide   significant   benefits   to   the  operation   mainly   through   supporting   process   efficiency   and   thus   reducing   costs,   and   by  resource   provision   (water).   Possible   attainable   costs   and   benefits   emerging   from   the   use   of  such  services  should  therefore  be  considered  and  accounted  for  in  a  FA.  Based  on  Millennium  Ecosystem  Assessment  (2005),  The  Economics  of  Ecosystems  and  Biodiversity  (2010)  proposed  a   framework   encompassing   a   typology  of   22   ecosystem   services   categorised   in   provisioning,  regulating,  habitat  and  cultural  &  amenity  services.  Studies  have  then  subsequently  presented  a   list   of   ecosystem   services  provided  by   a  water  body   to   various   stakeholders,   including   the  water  supply  and  sanitation  sectors  as  well  as  social  stakeholders.  However,  from  the  point  of  view  of  an  UWS  manager  and  a  financing  body,  the  only  relevant  ecosystem  services  are  those  directly  benefitting  them.  As  such  the  ecosystem  services  taken  into  account  in  a  FA  are  more  easily  quantifiable  through  operational  cost  savings  and  additional  resource  provision.  

The   REA   at   this   stage   is   performed   to   explore   the   short-­‐term   reliability   of   each  proposed  measure  given  variations  within   its   internal  context.  Expected  perturbations   to   the  desirable  operation  (storm  events  and  seasonal  variations,  for  example)  should  be  investigated  taking   into   consideration   all   the   possible   operational   space   of   the   system.   The   operational  space  of  a  system  refers  to  all  the  feasible  combinations  of  operational  decisions  that  can  be  made  in  a  system  (control  set-­‐points,  sensor  location,  flow  regulation  thresholds,  use  of  storm  tanks).   Each  proposed  measure  will   consequently  bring  about  a   reformed  operational   space,  allowing  for  new  operational  combinations  or  restricting  old  ones.    

Costs Benefits Aeration energy Methane production Pumping energy Energy production Mixing energy Chemical recovery Heating energy Reuse water production Sludge treatment/Sludge production Chemical addition Maintenance (buildings & installations) Labour Fine payments Investment Land use

Sustainable and Integrated Urban Water System Management Deliverable Nr : 3.1

Deliverable Title : Knowledge bases and performance criteria developed and utilised in the design and

management of UWS

11

At  this  stage,   the  aim   is   to  assess   the  reliability  of  each  proposed  measure  against  all  expected  perturbations   in   the   short-­‐term  near   future.   For   this   reason,  dynamic  modelling  of  the  system  is  an  indispensable  process  in  order  to  be  able  to  simulate  the  effects  of  individual  perturbation   events   (storm   events,   for   example)   more   realistically.   In   addition,   software  facilitating   efficient   simulation   of   numerous   different   operational   combinations   (such   as   the  Monte  Carlo  procedure)  might  also  be  necessary  at  this  stage.  

Optimisation Assessment – Technical decisions

The   Optimisation   stage   is   a   procedure   aimed   at   establishing   the   combination(s)   of  parameters  generating  the  most  desirable  outcome  or  a  set  of  equally  good  optimal  solutions  (commonly  known  as  a  Pareto  front).    

At   the   Optimisation   stage,   the   Uncertainty   Analysis   explores   uncertainties   stemming  from   modelling   and   valuation   assumptions   –   the   third   type   of   uncertainty   as   previously  elaborated.   These   include   variation   in  modelling   assumptions  made  during   the  procedure  of  modelling,   for  example   selected  biokinetic  model  parameters  or  unexpected   sensor-­‐actuator  settings.   In   addition,   the   uncertainty   in   the   selection   of   valuation   parameters   should   be  explored,  for  example  the  discount  rate  chosen  for  the  CBA  and  the  FA  and  values  assumed  for  the  estimation  of  shadow  prices  among  others.  

The   purpose   of   the   Uncertainty   analysis   in   this   stage   is   to   assess   the   uncertainty   of  achieving  the  outcome  deemed  as  optimal  or  the  Pareto  front.  

Periodic Assessment – Adaptive Management

The  Periodic  Assessment  stage  is  to  be  repeated  periodically  for  each  of  the  previous  stages  (General   Assessment,   Specific   Assessment,   Optimisation   Assessment).   This   is   to   ensure  coherence  with  the  principles  of  adaptive  management  and  guarantee  effective  operation  and  continuous  improvement  under  the  ever-­‐changing  conditions  of  the  system  (Pahl-­‐Wostl,  2007).  This   stage   therefore   consists   of   two   procedures:   i)   examining   whether   the   (internal   and  external)  context  and  valuation  conditions  occurring  at  the  time  when  the  assessments  were  performed  still  hold;  and  if  not  ii)  re-­‐perform  the  assessment  stage  to  adapt  the  decision  taken  accordingly.   Considering   that   these   assessment   steps   might   be   time-­‐consuming,   it   is  recommended   that   the   Periodic   Assessment   stage   is   repeated   at   least   at   the   timeframe  resolution  chosen  at  each  step.  

 

3.  Conclusions    

  There  is  a  justified  need  for  decision-­‐support  tools  taking  into  account  multiple  criteria  and  challenges  to  aid  managers  of  UWS.  This  report  thus  aimed  to  present  a  methodology  to  support  decision  making  in  UWS  by  considering  issues  of  future  changes,  uncertainty  and  

Sustainable and Integrated Urban Water System Management Deliverable Nr : 3.1

Deliverable Title : Knowledge bases and performance criteria developed and utilised in the design and

management of UWS

12

socio-­‐economic  and  environmental  impacts.  The  knowledge  bases  and  performance  criteria  and   indicators   developed   to   support   the   application   of   this  methodology   have   also   been  described.    

To   demonstrate   the   usefulness   and   applicability   of   the   presented   methodology,   its  application  on  a  real  UWS  case  study  is  to  follow.  The  studied  UWS  in  northeast  Spain  had  to  make  some  important  retrofitting  decisions.  The  methodology  is  thus  going  to  be  applied  by   the  means  of  modelling   and   simulation   to   investigate  whether   the  decision   taken  was  indeed  the  most  viable  out  of  the  possible  options.    

The  methodology  is  ultimately  aimed  to  be  applied  in  an  EDSS  to  support  decision  making  in  integrated  urban  wastewater  systems.  

4.  References    

Astaraie-­‐Imani,  M.,  Kapelan,  Z.,  Fu,  G.,  Butler,  D.,  2012.  Assessing  the  combined  effects  of  urbanisation  and  climate  change  on  the  river  water  quality  in  an  integrated  urban  wastewater  system  in  the  UK.  J.  Environ.  Manage.  112,  1–9.  doi:10.1016/j.jenvman.2012.06.039  

Bdour,  A.N.,  Hamdi,  M.R.,  Tarawneh,  Z.,  2009.  Perspectives  on  sustainable  wastewater  treatment  technologies  and  reuse  options  in  the  urban  areas  of  the  Mediterranean  region.  Desalination  237,  162–174.  doi:10.1016/j.desal.2007.12.030  

Belia,  E.,  Amerlinck,  Y.,  Benedetti,  L.,  Johnson,  B.,  Sin,  G.,  Vanrolleghem,  P.A.,  Gernaey,  K.V.,  Gillot,  S.,  Neumann,  M.B.,  Rieger,  L.,  Shaw,  A.,  Villez,  K.,  2009.  Wastewater  treatment  modelling:  dealing  with  uncertainties.  Water  Sci.  Technol.  60,  1929.  doi:10.2166/wst.2009.225  

Belli,  P.,  2001.  Economic  analysis  of  investment  operations:  analytical  tools  and  practical  applications.  World  Bank  Publications.  

Benedetti,  L.,  Batstone,  D.J.,  De  Baets,  B.,  Nopens,  I.,  Vanrolleghem,  P.A.,  2012.  Uncertainty  analysis  of  WWTP  control  strategies  made  feasible.  Water  Qual.  Res.  J.  Can.  47,  14–29.  

Corominas,  L.,  Acuña,  V.,  Ginebreda,  A.,  Poch,  M.,  2013.  Integration  of  freshwater  environmental  policies  and  wastewater  treatment  plant  management.  Sci.  Total  Environ.  445–446,  185–191.  doi:10.1016/j.scitotenv.2012.12.055  

De  Bruyn,  S.,  Korteland,  M.,  Markowska,  A.,  Davidson,  M.,  de  Jong,  F.,  Bles,  M.,  Sevenster,  M.,  2010.  Shadow  Prices  Handbook:  Valuation  and  weighting  of  emissions  and  environmental  impacts.  Delft,  CE  Delft,  Delft,  the  Netherlands.  

Deng,  Y.,  Cardin,  M.-­‐A.,  Babovic,  V.,  Santhanakrishnan,  D.,  Schmitter,  P.,  Meshgi,  A.,  2013.  Valuing  flexibilities  in  the  design  of  urban  water  management  systems.  Water  Res.  doi:10.1016/j.watres.2013.09.064  

Dominguez,  D.,  Truffer,  B.,  Gujer,  W.,  2011.  Tackling  uncertainties  in  infrastructure  sectors  through  strategic  planning:  the  contribution  of  discursive  approaches  in  the  urban  water  sector.  Water  Policy  13,  299–316.  

European  Commission,  2008.  Guide  to  cost-­‐benefit  analysis  of  investment  projects.  Struct.  Funds  Cohes.  Fund  Instrum.  Pre-­‐Access.  Bruss.  

Sustainable and Integrated Urban Water System Management Deliverable Nr : 3.1

Deliverable Title : Knowledge bases and performance criteria developed and utilised in the design and

management of UWS

13

Fan,  Y.,  Chen,  W.,  Jiao,  W.,  Chang,  A.C.,  2013.  Cost-­‐benefit  analysis  of  reclaimed  wastewater  reuses  in  Beijing.  Desalination  Water  Treat.  0,  1–10.  doi:10.1080/19443994.2013.859102  

Flores-­‐Alsina,  X.,  Rodríguez-­‐Roda,  I.,  Sin,  G.,  Gernaey,  K.V.,  2008.  Multi-­‐criteria  evaluation  of  wastewater  treatment  plant  control  strategies  under  uncertainty.  Water  Res.  42,  4485–4497.  doi:10.1016/j.watres.2008.05.029  

Gervásio,  H.,  Simões  da  Silva,  L.,  2012.  A  probabilistic  decision-­‐making  approach  for  the  sustainable  assessment  of  infrastructures.  Expert  Syst.  Appl.  39,  7121–7131.  doi:10.1016/j.eswa.2012.01.032  

Hall,  J.W.,  Lempert,  R.J.,  Keller,  K.,  Hackbarth,  A.,  Mijere,  C.,  McInerney,  D.J.,  2012.  Robust  Climate  Policies  Under  Uncertainty:  A  Comparison  of  Robust  Decision  Making  and  Info-­‐Gap  Methods.  Risk  Anal.  32,  1657–1672.  doi:10.1111/j.1539-­‐6924.2012.01802.x  

Herder,  P.M.,  Verwater-­‐Lukszo,  Z.,  2006.  Towards  next  generation  infrastructures:  an  introduction  to  the  contributions  in  this  issue.  Int.  J.  Crit.  Infrastruct.  2,  113–120.  

Holling,  C.S.  (Ed.),  1978.  Adaptive  environmental  assessment  and  management.,  International  Series  on  Applied  Systems  Analysis.  John  Wiley  &  Sons,  Chichester-­‐New  York-­‐Brisbane-­‐Toronto.  

Honey-­‐Rosés,  J.,  Acuña,  V.,  Bardina,  M.,  Brozović,  N.,  Marcé,  R.,  Munné,  A.,  Sabater,  S.,  Termes,  M.,  Valero,  F.,  Vega,  À.,  Schneider,  D.W.,  2013.  Examining  the  Demand  for  Ecosystem  Services:  The  Value  of  Stream  Restoration  for  Drinking  Water  Treatment  Managers  in  the  Llobregat  River,  Spain.  Ecol.  Econ.  90,  196–205.  doi:10.1016/j.ecolecon.2013.03.019  

Kasprzyk,  J.R.,  Nataraj,  S.,  Reed,  P.M.,  Lempert,  R.J.,  2013.  Many  objective  robust  decision  making  for  complex  environmental  systems  undergoing  change.  Environ.  Model.  Softw.  doi:10.1016/j.envsoft.2012.12.007  

Langeveld,  J.G.,  Schilperoort,  R.P.S.,  Weijers,  S.R.,  2013.  Climate  change  and  urban  wastewater  infrastructure:  There  is  more  to  explore.  J.  Hydrol.  476,  112–119.  doi:10.1016/j.jhydrol.2012.10.021  

Lempert,  R.,  2013.  Scenarios  that  illuminate  vulnerabilities  and  robust  responses.  Clim.  Change  117,  627–646.  doi:10.1007/s10584-­‐012-­‐0574-­‐6  

Meire,  P.,  Coenen,  M.,  Lombardo,  C.,  Robba,  M.,  Sacile,  R.  (Eds.),  2008.  Integrated  Water  Management  -­‐  Practical  Experiences  and  Case  Studies,  Earth  and  Environmental  Sciences.  Springer  &  NATO  Public  Diplomacy  Division,  Dordrecht,  The  Netherlands.  

Millennium  Ecosystem  Assessment,  2005.  Ecosystems  and  Human  Well-­‐Being:  Synthesis.  Island  Press,  Washington,  DC.  

Molinos-­‐Senante,  M.,  Hernández-­‐Sancho,  F.,  Sala-­‐Garrido,  R.,  2010.  Economic  feasibility  study  for  wastewater  treatment:  A  cost–benefit  analysis.  Sci.  Total  Environ.  408,  4396–4402.  doi:10.1016/j.scitotenv.2010.07.014  

Nancarrow,  B.E.,  Leviston,  Z.,  Tucker,  D.I.,  2009.  Measuring  the  predictors  of  communities’  behavioural  decisions  for  potable  reuse  of  wastewater.  Water  Sci.  Technol.  60,  3199.  doi:10.2166/wst.2009.759  

National  Research  Council,  2009.  Informing  Decisions  in  a  Changing  Climate.  Washington,  DC:  The  National  Academies  Press.  

OECD,  2006.  Cost-­‐Benefit  Analysis  and  the  Environment.  Organisation  for  Economic  Co-­‐operation  and  Development,  Paris.  

Sustainable and Integrated Urban Water System Management Deliverable Nr : 3.1

Deliverable Title : Knowledge bases and performance criteria developed and utilised in the design and

management of UWS

14

OECD,  2010.  Pricing  Water  Resources  and  Water  and  Sanitation  Services.  Organisation  for  Economic  Co-­‐operation  and  Development,  Paris.  

Pahl-­‐Wostl,  C.,  2007.  Transitions  towards  adaptive  management  of  water  facing  climate  and  global  change.  Water  Resour.  Manag.  21,  49–62.  doi:10.1007/s11269-­‐006-­‐9040-­‐4  

Parson,  E.,  Burkett,  V.,  Fisher-­‐Vanden,  K.,  Keith,  D.,  Mearns,  L.,  Pitcher,  H.,  Rosenzweig,  C.,  Webster,  M.,  2007.  Global-­‐change  scenarios:  their  development  and  use.  US  Dep.  Energy  Publ.  7.  

Pearce,  D.W.,  1983.  Cost  Benefit  Analysis.  Macmillan  Press  Limited.  Poch,  M.,  Comas,  J.,  Rodríguez-­‐Roda,  I.,  Sànchez-­‐Marrè,  M.,  Cortés,  U.,  2004.  Designing  and  

building  real  environmental  decision  support  systems.  Environ.  Model.  Softw.  19,  857–873.  doi:10.1016/j.envsoft.2003.03.007  

Price,  K.,  2011.  Effects  of  watershed  topography,  soils,  land  use,  and  climate  on  baseflow  hydrology  in  humid  regions:  A  review.  Prog.  Phys.  Geogr.  35,  465–492.  doi:10.1177/0309133311402714  

Rousseau,  D.,  Verdonck,  F.,  Moerman,  O.,  Carrette,  R.,  Thoeye,  C.,  Meirlaen,  J.,  Vanrolleghem,  P.A.,  2001.  Development  of  a  risk  assessment  based  technique  for  design/retrofitting  of  WWTPs.  Water  Sci.  Technol.  43,  287–294.  

Taleb,  N.N.,  2010.  The  Black  Swan:  The  Impact  of  the  Highly  Improbable  Fragility,  2nd  ed.  Random  House  LLC.  

The  Economics  of  Ecosystems  and  Biodiversity,  2010.  The  Economics  of  Ecosystems  and  Biodiversity:  Ecological  and  Economic  Foundations.  UNEP/Earthprint.  

Vanrolleghem,  P.A.,  Gillot,  S.,  2002.  Robustness  and  economic  measures  as  control  benchmark  performance  criteria.  Water  Sci.  Technol.  45,  117–126.  

Walters,  C.J.,  1986.  Adaptive  management  of  renewable  resources.  Macmillan,  New  York.  Westgate,  M.J.,  Likens,  G.E.,  Lindenmayer,  D.B.,  2013.  Adaptive  management  of  biological  

systems:  A  review.  Biol.  Conserv.  158,  128–139.  doi:10.1016/j.biocon.2012.08.016  Yang,  J.S.,  Chung,  E.S.,  Kim,  S.U.,  Kim,  T.W.,  2012.  Prioritization  of  water  management  under  

climate  change  and  urbanization  using  multi-­‐criteria  decision  making  methods.  Hydrol.  Earth  Syst.  Sci.  16,  801–814.  

Zhang,  S.X.,  Babovic,  V.,  2011.  An  evolutionary  real  options  framework  for  the  design  and  management  of  projects  and  systems  with  complex  real  options  and  exercising  conditions.  Decis.  Support  Syst.  51,  119–129.  doi:10.1016/j.dss.2010.12.001