saneri presentation rev 1 - stellenbosch university · • independent sizing of power and energy...

15
1 Alternative energy storage systems Johan Beukes Overview Utility applications Requirements Capacitors Flywheels Compressed air systems Fuel cells Flow batteries Comparisons Application in network Other electrochemical systems

Upload: hanga

Post on 20-Jul-2018

226 views

Category:

Documents


0 download

TRANSCRIPT

1

Alternative energy storage systems

Johan Beukes

Overview• Utility applications• Requirements• Capacitors• Flywheels• Compressed air systems• Fuel cells• Flow batteries• Comparisons• Application in network• Other electrochemical systems

2

Utility applications• Backup power during interruptions (standby)• Match supply and demand (cycling)

– Stress relieve on generators and transmission – Control frequency– Control voltage– Optimize losses– Optimal use of installed assets– Store renewable energy when available

• Improve voltage quality (cycling)

Requirements• Total cost of

ownership• Reliability• Temperature tolerance• Cycle depth• Number of cycles• Specific power• Specific energy• Round trip efficiency• Standby losses• Maintenance• Environmental impact

3

Electrolytic capacitors2

2

0

1 ( ) 1 1( ) ( ) ( )d ( ) ( ) ( )2 2 2

where,

d q tW t q t E t z Cv t v t q tC

ACdε

= − = = =

=

∫• High specific power• Low specific energy• Life: 1 000 000 cycles,

15 years (45 OC)• No maintenance• High eff, no loss

Ultra capacitors

• Activated carbon electrode material causes high energy content of Ultra Caps vs EC • High specific surface area of about 2000 m2/g and• short distance between the opposite charges of the capacitors (2 ... 5 nm)

• High specific power• Specific energy 10 times

EC• Life: 500 000 cycles, 10

years• 45 OC• No maintenance• High eff, no loss

4

Beacon Flywheel• Low specific power• Low specific energy• 20-year Design Life • High Temperature Tolerance• No maintenance• 88% eff, 2% loss

21· ·2kE J ω=

Rotational energy as a function of moment of inertia and angular velocity

Optimise for angular velocity with the square relationship to energyComposite materials, hydrodynamic or magnetic bearings, vacuumed

Beacon Flywheel

5

Urenco Flywheel

CAESS (Pnu Power)

• Low specific power• Low specific energy• 20-year Design Life • High Temperature Tolerance• No maintenance• Low complexity• 80% (11%) eff, no loss

6

Scroll technology

Air pocket expands through sequenceHigh pressure air input

Orbiting scroll

Fixed scroll

1

(ln ln ) ln ln ln

where, and so

constantB B B

A A A

V V V

A B V V V

B A AB A

A B B

B AA A B B

A B

nRTW P dV dV nRT dV

V VV P P

nRT V V nRT nRT PVV P P

V PP V P V

V P

PV nRT

→ = = =

= − = = =

= =

= =

∫ ∫ ∫

Ideal gas law for isothermal process and first law of thermodynamics:

Fixed scroll

Orbiting scrollFast response, only one moving part

Fuel cell(Plug Power 5 kW)

2

2 2

2 2

H 2H 2e

2H ½ O 2e H O H ½ O H O

+ −

+ −

→ +

+ + →+ →

• Independent sizing of power and energy

• No degradation of electrodes

• 45 OC• Low maintenance• 40% (11%) eff, no loss

7

Flow batteries (VRB)

• Low specific power• Low specific energy• Life: unlimited cycles, 15

years (45 OC)• No maintenance• Complex system

• Independent sizing of power and energy

• No degradation of electrodes

• High cycle• 62-80% eff, 2% loss

3.3 kW, 10 kWh

Flow batteries (VRB)

Vanadium(II) sulphate = violetvanadium(III) sulphate = aqua green

vanadium(IV) sulphate = bluevanadium (V) sulphate = yellow

22 2 02 1.004 VVO H O VO H e E+ + + −+ + + = 3 2

0 0.255 VV e V E+ − ++ = −

e−

2H +

oxidationreduction

reductionoxidation

+ -

8

Battery assembly

n×n×

Electrical systemAnode Cathode

N2 N2

P=<140 kPa P=<140 kPaVolume control

+ -

H2O

King Island installation

200 kW, 800 kWh

9

Overview 1 Wh = 3.6 kJ

LIB (Thunder Sky)

NCB (Alcad Vantage)

VLAB (Delco)

VRB (VRB Power)

EC

UC (EPCOS)CAES @ 300 bar (Pnupower)

Diesel (Wiki)

Carbohydrates (Wiki)

Hydrogen @ 200 bar (Wiki)

VRB (Wiki)

CAES @ 300 bar (Wiki)

VLAB (FN)

FW (Beacon)

FC @ 200 bar (Plug Power)

Hydrogen @ 1 bar (Wiki)

0.1

1

10

100

1000

10000

100000

1000000

1 10 100 1000 10000 100000

Specific Power [W/kg]

Spec

ific

Ener

gy [k

J/kg

]

Overview

LIB (Thunder Sky)

FC @ 200 bar (Plug Power)

EC

UC (EPCOS)

Diesel (Wiki)Carbohydrates (Wiki)

FW (Beacon)

NCB (Alcad Vantage) VLAB (Delco)

VRB (VRB Power)

CAES @ 300 bar (Pnupower)

Hydrogen @ 200 bar (Wiki)

Hydrogen @ 1 bar (Wiki)

VRB (Wiki) CAES @ 300 bar (Wiki)

VLAB (FN)

0.01

0.1

1

10

100

1000

10000

100000

0.1 1 10 100 1000 10000 100000 1000000

Specific Energy [kJ/kg]

Ene

rgy

Den

sity

[kJ/

l]

10

Overview of cost

LIB (Thunder Sky)NCB (Alcad Vantage)

VLAB (Delco)

EC

UC (EPCOS)

FW (Beacon)

FC @ 200 bar (Plug Power)

VRB (VRB Power)

CAES @ 300 bar (Pnupower)

VLAB (FN)

0.01

0.1

1

10

100

1000

1 10 100 1000 10000 100000

Cost/Power [$/kW]

Cos

t/Ene

rgy

[$/k

J]

Overview of cost

R 0

R 50

R 100

R 150

R 200

R 250

R 300

R 350

R 400

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

000's

Years

Annual cash flows (VLAB) Annual cash flows (FCC)

Discounted aggregated cash flow (CAES) Discounted aggregated cash flow (CAES)

LCC comparisons between a 2 kW Pnu Power CAES system and a 288 Ah VLAB system

11

Castle Valley Installation

Castle Valley Installation

12

King Island installation

System overview

13

System overview

250 kW, absorbing 50 kVAR

850 kW, 0.98 lead to 0.95 lag

1250 kW, 800 kVAR

Matching load to generation

0

500

1000

1500

2000

2500

3000

3500

4000

4500

00:0

0:13

00:4

6:18

01:3

6:27

02:2

6:36

03:1

6:46

04:0

6:55

04:5

7:05

05:4

7:14

06:3

7:24

07:2

7:33

08:1

7:42

09:0

7:56

09:5

8:14

10:4

8:29

11:3

8:46

12:2

9:03

13:1

9:20

14:0

9:38

14:5

9:57

15:5

0:14

16:4

0:32

17:3

0:51

18:2

1:07

19:1

1:25

20:0

1:41

20:5

1:59

21:4

2:17

22:3

2:35

23:2

2:53

P [kW]Q [kVAR]

500 kW wind, 1 MW diesel, variations ESS

14

Matching load and generation

Time [s]

Frequency control

Time [s]

15

Voltage control

Time [s]

Voltage and frequency control

Time [s]