s zz k&d e d, z [z >> /'/d > w /^ z d d/d ked/ehkh^ dw>/dh...

15
20/03/2020 1 time Voltage DISCRETE TIME “DISCRETE TIME” “DIGITAL” SAMPLING QUANTIZATION “ANALOGUE” t t CODING “DECIMAL” 5,3,2,2,4,7,9,9,8,6,4,3,5,6,1 CODING “BINARY” 101,11,10,10,100,111,1001,… t “DIGITAL” t DISCRETE TIME CONTINUOUS AMPLITUDE (SAMPLED DATA) DIGITAL ANALOGUE t t CONTINUOUS TIME DISCRETE AMPLITUDE t MOST THEORY IS DEVOTED TO THIS SIGNALS, VERY OFTEN THEY’RE CALLED DIGITAL 1 2

Upload: others

Post on 24-Mar-2021

2 views

Category:

Documents


0 download

TRANSCRIPT

Page 1: s Zz K&d E d, z [Z >> /'/d > W /^ Z d d/D KEd/EhKh^ DW>/dh ...lapi.fi-p.unam.mx/wp-content/uploads/Capitulo1.pdf^ DW>/E' t/d, W Z/K 6 /'/d > ^/'E > T : J 6 ; î X /'/d > ^/'E > ' E

20/03/2020

1

time

Voltage

DIS

CRET

E TI

ME

“DISCRETE TIME”

“DIGITAL”

SAMPLING

QUANTIZATION

“ANALOGUE”

t

t

CODING

“DECIMAL”

5,3,2,2,4,7,9,9,8,6,4,3,5,6,1

CODING

“BINARY”

101,11,10,10,100,111,1001,…

t

“DIGITAL”

tDISCRETE TIME CONTINUOUS AMPLITUDE (SAMPLED DATA)

DIGITAL

ANALOGUEt

tCONTINUOUS TIME DISCRETE AMPLITUDE

t

MOST THEORY IS DEVOTED TO THIS SIGNALS,VERY OFTEN THEY’RE CALLED DIGITAL

1

2

Page 2: s Zz K&d E d, z [Z >> /'/d > W /^ Z d d/D KEd/EhKh^ DW>/dh ...lapi.fi-p.unam.mx/wp-content/uploads/Capitulo1.pdf^ DW>/E' t/d, W Z/K 6 /'/d > ^/'E > T : J 6 ; î X /'/d > ^/'E > ' E

20/03/2020

2

DIGITAL SIGNAL PROCESSING

ADVANTAGES• IC REALIZATION (SMALL,

CHEAP, RELIABLE, COMPLEX SYSTEMS POSSIBLE)

• ACCURACY (AGING, TEMPERATURE)

• PROGRAMABILITY• MULTIPLEXINGDISADVANTAGES

• A/D AND D/A CONVERSION• COMPLEX CIRCUITS• POWER DISSIPATION

REMARKS

• SOFTWARE/HARDWARE REALIZATION

• REALTIME/OFF-LINE SYSTEMS

• POSSIBILITY OF NEW FUNCTIONS– IDEAL INTEGRATOR– PERFECT COMPENSATION

• ANALOG -> DIGITAL SYSTEM CONVERSION– EACH FUNCTION– WHOLE SYSTEM

Example demodulator

A/D X D/A

A/D

II

X

+ D/A

I

X

0o

90o

cos 𝜇𝑡 cos (𝜔𝑡)1

2cos 𝜇𝑡 (1 + cos (2𝜔𝑡))

cos (𝜔𝑡)1

2cos 𝜇𝑡

Solution II is very difficult for analog systems (Accuracy)

cos 𝜇𝑡 cos (𝜔𝑡)

cos 𝜇𝑡 sin (𝜔𝑡)

cos (𝜔𝑡)

sin (𝜔𝑡)

cos 𝜇𝑡

𝑐𝑜𝑠 𝛼 + 𝑠𝑖𝑛 𝛼 = 1

3

4

Page 3: s Zz K&d E d, z [Z >> /'/d > W /^ Z d d/D KEd/EhKh^ DW>/dh ...lapi.fi-p.unam.mx/wp-content/uploads/Capitulo1.pdf^ DW>/E' t/d, W Z/K 6 /'/d > ^/'E > T : J 6 ; î X /'/d > ^/'E > ' E

20/03/2020

3

APPLICATION AREAS

• Space technology• Seismology (finding oil)• Radar / Sonar• Medical Systems (EEG,ECG)• Data transmission (modems, equalization)• Telephony (PCM enconding, vocoders)• Audio (voicer recognition, artificial speech)• Video (image restoration, image recognition)• Toys (speaking dolls, remote controlled)

DIGITAL SIGNALS1. CONTINUOUS SIGNAL 𝑥(𝑡)

SAMPLING WITH PERIOD 𝑇

DIGITAL SIGNAL 𝑥(𝑛𝑇)

2. DIGITAL SIGNAL GENERATORS

NOTATION• 𝑥(𝑛𝑇) : A SEQUENCE OF

SAMPLES OCCURING AT REGULAR PERIODS OF TIME

• CONVENIENT: 𝑥(𝑛)

• A DIGITAL SIGNAL 𝑥(𝑛) IS:– DEFINED FOR ALL 𝑛– NOT DEFINED BETWEEN THE

SAMPLES

𝑡

𝑛

-3 -2 -1 0 1 2 3 4 5 6-3T -2T -1T 0T 1T 2T 3T 4T 5T 6T

5

6

Page 4: s Zz K&d E d, z [Z >> /'/d > W /^ Z d d/D KEd/EhKh^ DW>/dh ...lapi.fi-p.unam.mx/wp-content/uploads/Capitulo1.pdf^ DW>/E' t/d, W Z/K 6 /'/d > ^/'E > T : J 6 ; î X /'/d > ^/'E > ' E

20/03/2020

4

n-4 -2 0 2 4 6 8 10 12

6

4

2

𝑥1(𝑛)

Representation in the time domain

Example 1

n-2 0 2 4 6 8 10

1𝑥2(𝑛)Example 2

Finite duration

Infinite duration

𝑥 𝑛 =𝑛 𝑓𝑜𝑟 0 ≤ 𝑛 ≤ 60 𝑒𝑙𝑠𝑒𝑤ℎ𝑒𝑟𝑒

𝑥 𝑛 = 0𝑛 < 𝑁𝑛 > 𝑁

Finite duration if:

𝑥 𝑛 =0.8 𝑓𝑜𝑟 𝑛 ≥ 0

0 𝑓𝑜𝑟 𝑛 < 0

n

1 𝛿(𝑛)

𝛿 𝑛 =1 𝑛 = 00 𝑛 ≠ 0

-4 -2 0 2 4 6 8 10 12

n

1 𝛿(𝑛 − 4)

𝛿 𝑛 − 𝑖 =1 𝑛 = 𝑖0 𝑛 ≠ 𝑖

-4 -2 0 2 4 6 8 10 12

Important signals

1. The unit impulse 𝛿(𝑛)

Shifted version

We can write: 𝑥 𝑛 = ⋯ + 𝑥 −1 𝛿 𝑛 + 1 + 𝑥 0 𝛿 𝑛 + 𝑥 1 𝛿 𝑛 − 1 + ⋯ = 𝑥(𝑘)𝛿(𝑛 − 𝑘)

𝑥(𝑛) ∗ 𝑦 𝑛 = 𝑥 𝑘 𝑦(𝑛 − 𝑘)Special form of convolution:

7

8

Page 5: s Zz K&d E d, z [Z >> /'/d > W /^ Z d d/D KEd/EhKh^ DW>/dh ...lapi.fi-p.unam.mx/wp-content/uploads/Capitulo1.pdf^ DW>/E' t/d, W Z/K 6 /'/d > ^/'E > T : J 6 ; î X /'/d > ^/'E > ' E

20/03/2020

5

n

1𝑢(𝑛)

𝑢 𝑛 =1 𝑛 ≥ 00 𝑛 < 0

-4 -2 0 2 4 6 8 10 12

2. The unit step function 𝑢(𝑛)

𝑢 𝑛 = 𝑢 𝑘 𝛿 𝑛 − 𝑘 = 𝛿 𝑛 − 𝑘

3. The sinusoidal signal𝑥 𝑛 = 𝐴𝑠𝑖𝑛(𝑛𝜃 + 𝜑)

A is amplitude𝜃 is relative frequency𝜑 is phase

Example: A=1; 𝜃 = ⁄ and 𝜑 = 0

𝑥 𝑛 = 𝑠𝑖𝑛(𝑛𝜋4)

𝑛

1 sin (𝜋𝑛/4)

Period

𝑠𝑖𝑛(πn/4) is periodic with period 𝑁=8

𝑠𝑖𝑛 𝑛𝜋4 = 𝑠𝑖𝑛 𝜋(𝑛 + 8)/4 =

sin𝜋𝑛

4+ 2𝜋 = sin (

𝜋𝑛

4)

?

9

10

Page 6: s Zz K&d E d, z [Z >> /'/d > W /^ Z d d/D KEd/EhKh^ DW>/dh ...lapi.fi-p.unam.mx/wp-content/uploads/Capitulo1.pdf^ DW>/E' t/d, W Z/K 6 /'/d > ^/'E > T : J 6 ; î X /'/d > ^/'E > ' E

20/03/2020

6

A digital signal is periodic of some period 𝑁; if 𝑁 is the smallest integer for which

𝑥 𝑛 + 𝑁 = 𝑥 𝑛 for all 𝑛

If x(n) is periodic, it must be of infinite duration (except 𝑥(𝑛) ≡ 0)

Is a sinusoidal signal periodic? 𝐴 𝑠𝑖𝑛 𝑛𝜃 + 𝜑 = 𝐴 𝑠𝑖𝑛 (𝑛 + 𝑁)𝜃 + 𝜑 =A sin 𝑛𝜃 + 𝜑 + 𝑁𝜃

?

Only if: 𝑁𝜃 = 𝑘2𝜋 or 𝜃 = 2𝜋

Previous example: 𝜃 = = 2𝜋𝑁

Example: 𝑥(𝑛) = sin (𝑛) 𝑛

1𝑥(𝑛)

Consider three sinusoidal signals: 𝜃 = 𝜃 𝜃 = 2𝜋 − 𝜃 𝜃 = 𝜃 + 2𝜋

With 0 ≤ 𝜃 ≤ 𝜋

𝑥 𝑛 = 𝐴 sin 𝑛𝜃 = 𝐴 sin (𝑛𝜃)

𝑥 𝑛 = 𝐴 sin 𝑛𝜃 = 𝐴 sin 𝑛 2𝜋 − 𝜃 = 𝐴 sin 𝑛2𝜋 − 𝑛𝜃 = 𝐴 sin (−𝑛𝜃)= −𝐴 sin (𝑛𝜃)

𝑥 𝑛 = 𝐴 sin 𝑛𝜃 = 𝐴 sin 𝑛 2𝜋 + 𝜃 = 𝐴 sin 𝑛2𝜋 + 𝑛𝜃 = 𝐴 sin (𝑛𝜃)

We see: 𝑥 𝑛 =−𝑥 𝑛 =𝑥 𝑛 (They are indistinguishable)

For every 𝜃 outside the interval [0, 𝜋] there corresponds a 𝜃 inside [0, π] which gives the same time function.

The relative frequency 𝜃 is always in the interval 0 ≤ 𝜃 ≤ 𝜋

11

12

Page 7: s Zz K&d E d, z [Z >> /'/d > W /^ Z d d/D KEd/EhKh^ DW>/dh ...lapi.fi-p.unam.mx/wp-content/uploads/Capitulo1.pdf^ DW>/E' t/d, W Z/K 6 /'/d > ^/'E > T : J 6 ; î X /'/d > ^/'E > ' E

20/03/2020

7

Frequency description

Survey signal analysis page 1.6:

𝜃 is the normalized frequencyThe Fourier transformation for a discrete signal is:

𝑋 𝜃 = 𝑥(𝑛)𝑒 (DFT)

𝑥 𝑛 =1

2𝜋𝑋(𝜃)𝑒 𝑑𝜃 (IFTD)

Remarks:

1. Alternatives: 𝑋(𝑒 ); 𝑋(𝑒 ); 𝑋∗(𝑗𝜔)

2. 𝑋(𝜃) is a complex function:

𝑋 = 𝑅 + 𝑗𝐼 = 𝐴𝑒 𝑅, 𝐼, 𝐴 and Ψ are functions of 𝜃3. 𝜃 is a relative frequency 𝜃 = 𝜔𝑇

4. DFT exists if 𝑥(𝑛) < ∞

5. 𝑋(𝜃) is periodic with period 𝜃 = 2𝜋

Proof𝑋 𝜃 = 𝑥(𝑛)𝑒

𝑋 𝜃 + 2𝜋𝑘 = 𝑥 𝑛 𝑒 = 𝑥 𝑛 𝑒 𝑒 = 𝑥 𝑛 𝑒 = 𝑋(𝜃)

Therefore: 𝑋 𝜃 =𝑋 𝜃 + 2𝜋𝑘

We have seen: sin (𝑛 𝜃) assume 0 ≤ 𝜃 ≤ 𝜋

But: sin 𝑛𝜃 = Therefore: for 𝑒 assume −𝜋 ≤ 𝜃 ≤ 𝜋

𝑛

𝑥(𝑛) 𝑋(𝜃)

𝜃2π

Fundamentalinterval

13

14

Page 8: s Zz K&d E d, z [Z >> /'/d > W /^ Z d d/D KEd/EhKh^ DW>/dh ...lapi.fi-p.unam.mx/wp-content/uploads/Capitulo1.pdf^ DW>/E' t/d, W Z/K 6 /'/d > ^/'E > T : J 6 ; î X /'/d > ^/'E > ' E

20/03/2020

8

Examples

1. 𝑥(𝑛) = 𝛿(𝑛)𝑋 𝜃 = 𝛿 𝑛 𝑒 = 𝑒 = 1

2. 𝑥(𝑛) = 𝛿(𝑛 − 𝑖)

𝑋 𝜃 = 𝛿 𝑛 − 𝑖 𝑒 = 𝑒

n

1 𝛿(𝑛 − 4)

-4 -2 0 2 4 6 8 10 12

3. 𝑥 𝑛 = 𝑎 𝑛 ≥ 00 𝑛 < 0

𝑋 𝜃 = 𝑥 𝑛 𝑒 = 𝑎 𝑒 = 𝑎𝑒 𝑓𝑜𝑟 𝑎 < 1

𝐴 𝜃 =1

1 − 2𝑎cos 𝜃 + 𝑎 cos (𝜃) + 𝑎 sin (𝜃)=

1

1 − 2𝑎cos 𝜃 + 𝑎

Ψ 𝜃 = −arctan𝑎sin (𝜃)

1 − 𝑎cos (𝜃)

=1

1 − 𝑎𝑒=

1

1 − 𝑎cos 𝜃 + 𝑎𝑗sin(𝜃)

𝑎 < 1

15

16

Page 9: s Zz K&d E d, z [Z >> /'/d > W /^ Z d d/D KEd/EhKh^ DW>/dh ...lapi.fi-p.unam.mx/wp-content/uploads/Capitulo1.pdf^ DW>/E' t/d, W Z/K 6 /'/d > ^/'E > T : J 6 ; î X /'/d > ^/'E > ' E

20/03/2020

9

Properties

1. Linearity 𝑎ℎ 𝑛 + 𝑏𝑔 𝑛 ↔ 𝑎𝐻 𝜃 + 𝑏𝐺(𝑐)

2. Time shift ℎ 𝑛 − 𝑖 ↔ 𝐻(𝜃)𝑒

3. Frequency shift ℎ(𝑛)𝑒 ↔ 𝐻(𝜃 − 𝜃 )

Modulation2ℎ 𝑛 cos 𝑛𝜃 ↔ 𝐻 𝜃 − 𝜃 + 𝐻(𝜃 + 𝜃 )

2ℎ 𝑛 sin 𝑛𝜃 ↔1

𝑗𝐻 𝜃 − 𝜃 − 𝐻(𝜃 + 𝜃 )

4. Convolution𝑦 𝑛 = ℎ 𝑛 ∗ 𝑔 𝑛 ↔ 𝐻 𝜃 𝐺 𝜃 = 𝑌(𝜃)

𝑦 𝑛 = ℎ 𝑛 𝑔 𝑛 ↔ 𝐻 𝜃 ∗ 𝐺 𝜃 = 𝑌(𝜃)

Remark:

ℎ 𝑛 ∗ 𝑔 𝑛 = ℎ 𝑘 𝑔(𝑛 − 𝑘)

𝐻 𝜃 ∗ 𝐺 𝜃 =1

2𝜋𝐻 𝜁 𝐺 𝜃 − 𝜁 𝑑𝜁

5. Relation of Parseval

ℎ(𝑛) =1

2𝜋𝐻(𝜃) 𝑑𝜃 6. ℎ(𝑛) real ℎ 𝑛 = ℎ∗(𝑛)

𝐻 𝜃 = 𝐻∗ −𝜃 ↔ 𝑅 𝜃 = 𝑅(−𝜃)

𝐼 𝜃 = −𝐼(−𝜃)

𝐴 𝜃 = 𝐴(−𝜃)

Ψ 𝜃 = −Ψ(−𝜃)7. ℎ(𝑛) even ℎ 𝑛 = ℎ (−𝑛)

8. ℎ(𝑛) odd ℎ 𝑛 = −ℎ (−𝑛)

𝐻 𝜃 = 2𝑗 ℎ 𝑛 sin (𝑛𝜃)

𝐼 𝜃 = 0

𝐻 𝜃 = ℎ 𝑛 𝑒 = ℎ 0 + ℎ 𝑛 𝑒 + ℎ −𝑛 𝑒

= ℎ 0 + ℎ 𝑛 𝑒 + 𝑒 = h 0 + 2 ℎ 𝑛 cos (𝑛𝜃)

17

18

Page 10: s Zz K&d E d, z [Z >> /'/d > W /^ Z d d/D KEd/EhKh^ DW>/dh ...lapi.fi-p.unam.mx/wp-content/uploads/Capitulo1.pdf^ DW>/E' t/d, W Z/K 6 /'/d > ^/'E > T : J 6 ; î X /'/d > ^/'E > ' E

20/03/2020

10

Z-Transform

• z is the complex frequency• There is a relation between the z-transform and the FTD• The z transform is a universal transform for digital signals and digital systems

Z-Transform

• Continues-timeFTC: Real frequencies f or ωLaplace: Complex frequencies s

(poles/zeroes)• Discrete/time

FTD: Real frequenciesNormalized ɵUn-normalized ω

Complex frequenciesPoles/zeroes

?

Definition

• z is a complex number• 𝑋 𝑧 is also complex and is defined for those values of z for which 𝑋 𝑧 converges

The inverse transformation is defined by:

𝑋 𝑧 = 𝑥(𝑛)𝑧 (ZT)

𝑥 𝑛 =1

2𝜋𝑗𝑋 𝑧 𝑧 𝑑𝑧

(IZT)

• C is any closed contour in the region of convergence that encloses z=0• Fortunately the IZT is never used in practice

𝑋 𝑧 =𝑇(𝑧)

𝑁(𝑧)=

𝐴 + 𝐴 𝑧 + ⋯

𝐵 + 𝐵 𝑧 + ⋯

19

20

Page 11: s Zz K&d E d, z [Z >> /'/d > W /^ Z d d/D KEd/EhKh^ DW>/dh ...lapi.fi-p.unam.mx/wp-content/uploads/Capitulo1.pdf^ DW>/E' t/d, W Z/K 6 /'/d > ^/'E > T : J 6 ; î X /'/d > ^/'E > ' E

20/03/2020

11

Examples1. 𝑥 𝑛 = 𝛿 𝑛 → 𝑋 𝑧 = 𝛿 𝑛 𝑧 = 𝑧 = 1

2. 𝑥 𝑛 = 𝛿 𝑛 − 𝑘 → 𝑋 𝑧 = 𝛿 𝑛 − 𝑘 𝑧 = 𝑧

3. 𝑥 𝑛 =1 𝑓𝑜𝑟 𝑛 ≤ 𝑁

0 𝑓𝑜𝑟 𝑛 > 𝑁

𝑋 𝑧 = 𝑧 = 𝑧 + 𝑧 + ⋯ + 𝑧 + 𝑧

4. 𝑥 𝑛 = 𝑎 𝑢(𝑛)

𝑋 𝑧 = 𝑎 𝑧 = (𝑎𝑧 ) =1

1 − 𝑎𝑧

𝑓𝑜𝑟 𝑎𝑧 < 1

𝑜𝑟 𝑧 > 𝑎

5. 𝑥 𝑛 = 𝜌 cos 𝑛𝜑 𝑢 𝑛 =1

2𝜌 𝑒 + 𝑒 𝑢(𝑛)

𝑋 𝑧 =1

2𝜌 𝑒 + 𝜌 𝑒

𝑧 =

1

2𝜌 𝑒 𝑧 +

1

2𝜌 𝑒 𝑧

=1

2

1

1 − 𝜌𝑒 𝑧+

1

1 − 𝜌𝑒 𝑧=

1

2

1 + 1 − 𝜌𝑧 𝑒 + 𝑒

1 − 𝜌𝑧 𝑒 + 𝑒 + 𝜌 𝑧

𝑋 𝑧 =1 − 𝜌𝑧 cos (𝜑)

1 − 2𝜌𝑧 cos (𝜑) + 𝜌 𝑧

6. 𝑥 𝑛 = 𝜌 sin 𝑛𝜑 𝑢 𝑛

𝑋 𝑧 =𝜌𝑧 sin (𝜑)

1 − 2𝜌𝑧 cos (𝜑) + 𝜌 𝑧

21

22

Page 12: s Zz K&d E d, z [Z >> /'/d > W /^ Z d d/D KEd/EhKh^ DW>/dh ...lapi.fi-p.unam.mx/wp-content/uploads/Capitulo1.pdf^ DW>/E' t/d, W Z/K 6 /'/d > ^/'E > T : J 6 ; î X /'/d > ^/'E > ' E

20/03/2020

12

𝜌 cos 𝑛𝜑 𝑢 𝑛 ↔1 − 𝜌𝑧 cos (𝜑)

1 − 2𝜌𝑧 cos (𝜑) + 𝜌 𝑧

𝜌 sin 𝑛𝜑 𝑢 𝑛 ↔𝜌𝑧 sin (𝜑)

1 − 2𝜌𝑧 cos (𝜑) + 𝜌 𝑧

𝑋 𝑧 =𝑎 + 𝑎 𝑧

1 + 𝑏 𝑧 + 𝑏 𝑧↔ 𝑥 𝑛 =?

Example

𝑋 𝑧 =2 +

16

𝑧

1 −13

𝑧 +19

𝑧↔ 𝐴𝜌 cos 𝑛𝜑 + 𝐵𝜌 sin 𝑛𝜑 𝑢(𝑛)

=𝐴 + 𝐵𝜌 sin 𝜑 − 𝐴𝜌 cos 𝜑 𝑧

1 − 2𝜌𝑧 cos 𝜑 + 𝜌 𝑧𝐴 = 2𝐵𝜌 sin 𝜑 − 𝐴𝜌 cos 𝜑 =

1

6

2𝜌 cos 𝜑 =1

3

𝜌 =1

9→ 𝜌 =

1

3

1

3𝐵 sin 𝜑 −

2

3cos 𝜑 =

1

62

3cos 𝜑 =

1

3→ 𝜑 =

𝜋

3

1

3𝐵 sin 𝜑 −

2

3cos 𝜑 =

𝐵

2 3−

1

3=

1

6→ 𝐵 = 3

𝑋 𝑧 =2 +

16

𝑧

1 +13

𝑧 +19

𝑧↔ 𝑥 𝑛 = 2

1

3cos

𝑛𝜋

3+ 3

1

3sin

𝑛𝜋

3𝑢(𝑛)

Inverse transformation1. Use IZT formula

2. Partial fraction expansion

3. Ordinary division

𝑋 𝑧 =∑ 𝑎 𝑧

1 + ∑ 𝑏 𝑧=

𝛼

1 − 𝛽 𝑧+

𝑎 + 𝑎 𝑧

1 − 𝑏 𝑧 + 𝑏 𝑧

𝑥 𝑛 = 𝛼 𝛽 𝑢(𝑛) + 𝐴 cos 𝑛𝜑 + 𝐵 sin 𝑛𝜑 𝜌 𝑢(𝑛)

Remark: if 𝑁 ≥ 𝑀 there are additional terms

… + 𝑐 𝑧 → ⋯ + 𝑐 𝛿(𝑛 − 𝑘)

𝑋 𝑧 = 𝑎 + 𝑎 𝑧 + 𝑎 𝑧 + ⋯ = 𝑎 𝑧

𝑥 𝑛 = 𝑎 𝛿 𝑛 + 𝑎 𝛿 𝑛 − 1 + 𝑎 𝛿 𝑛 − 2 + ⋯ = 𝑎 𝛿(𝑛 − 𝑘)

23

24

Page 13: s Zz K&d E d, z [Z >> /'/d > W /^ Z d d/D KEd/EhKh^ DW>/dh ...lapi.fi-p.unam.mx/wp-content/uploads/Capitulo1.pdf^ DW>/E' t/d, W Z/K 6 /'/d > ^/'E > T : J 6 ; î X /'/d > ^/'E > ' E

20/03/2020

13

Example

𝑋 𝑧 =9 + 21𝑧 + 32𝑧

1 + 4𝑧 + 9𝑧 + 6𝑧=

9 + 21𝑧 + 32𝑧

(1 + 𝑧 )(1 + 3𝑧 + 6𝑧 )

=𝐴 + 𝐵𝑧

1 + 3𝑧 + 6𝑧+

𝐶

1 + 𝑧=

𝐴 + 𝐵𝑧 1 + 𝑧 + 𝐶(1 + 3𝑧 + 6𝑧 )

(1 + 𝑧 )(1 + 3𝑧 + 6𝑧 )

=𝐴 + 𝐶 + (𝐴 + 𝐵 + 3𝐶)𝑧 + (𝐵 + 6𝐶)𝑧

(1 + 𝑧 )(1 + 3𝑧 + 6𝑧 )

We see: A+C=9A+B+3C=21B+6C=32

A=4; B=2; C=5

𝑋 𝑧 =4 + 2𝑧

1 + 3𝑧 + 6𝑧+

5

1 + 𝑧⟹ 𝑥(𝑛)

Examples

𝑎. 𝑋 𝑧 =1 − 𝑧 − 5𝑧 − 3𝑧

1 − 3𝑧

1 − 3𝑧 1 − 𝑧 − 5𝑧 − 3𝑧 1 + 2𝑧 + 𝑧1 − 3𝑧

2𝑧 -5 𝑧 − 3𝑧

2𝑧 -6 𝑧

𝑧 -3 𝑧𝑧 -3 𝑧

Divide:-

-

-0

𝑋 𝑧 = 1 + 2𝑧 + 𝑧 → 𝑥 𝑛 = 𝛿 𝑛 + 2𝛿 𝑛 − 1 + 𝛿 𝑛 − 2

𝑏. 𝑋 𝑧 =1

1 − 𝑎𝑧= 1 + 𝑎𝑧 + 𝑎 𝑧 + ⋯

𝑥 𝑛 = 𝛿 𝑛 + 𝑎𝛿 𝑛 − 1 + 𝑎 𝛿 𝑛 − 2 + ⋯ = 𝑎 𝑢(𝑛)

25

26

Page 14: s Zz K&d E d, z [Z >> /'/d > W /^ Z d d/D KEd/EhKh^ DW>/dh ...lapi.fi-p.unam.mx/wp-content/uploads/Capitulo1.pdf^ DW>/E' t/d, W Z/K 6 /'/d > ^/'E > T : J 6 ; î X /'/d > ^/'E > ' E

20/03/2020

14

Properties of the z-transform

1. Linearity

2. Time shift

3. Scaling

4. Convolution

𝑎ℎ 𝑛 + 𝑏𝑔 𝑛 ↔ 𝑎𝐻 𝑧 + 𝑏𝐺(𝑧)

ℎ(𝑛 − 𝑖) ↔ 𝑧 𝐻(𝑧)

𝑎 ℎ(𝑛) ↔ 𝐻(𝑧𝑎⁄ )

ℎ(𝑛) ∗ 𝑔(𝑛) ↔ 𝐻(𝑧)𝐺(𝑧)

ℎ 𝑛 ∗ 𝑔 𝑛 = ℎ 𝑖 𝑔(𝑛 − 𝑖)Where:

Relation between ZT and DFT

𝑋 𝑧 = 𝑥(𝑛)𝑧 (ZT)

𝑋 𝜃 = 𝑥(𝑛)𝑒 (FTD)

Now substitute 𝑧 = 𝑒 into the ZT;

𝑋 𝑧

𝑧 = 𝑒: 𝑋(𝑒 ) = 𝑋(𝜃)

The fundamental interval −𝜋 ≤ 𝜃 ≤ 𝜋 of X(𝜃) corresponds to the unit circle 𝑧 = 1 in the

z-domain

𝜃 𝑧 = 𝑒

-π 𝑒 = −1

-π/2 𝑒 / = −𝑗

0 𝑒 = 1

π/2 𝑒 / = 𝑗

π 𝑒 = −1

27

28

Page 15: s Zz K&d E d, z [Z >> /'/d > W /^ Z d d/D KEd/EhKh^ DW>/dh ...lapi.fi-p.unam.mx/wp-content/uploads/Capitulo1.pdf^ DW>/E' t/d, W Z/K 6 /'/d > ^/'E > T : J 6 ; î X /'/d > ^/'E > ' E

20/03/2020

15

𝑧 = 𝑒

𝑋 𝑧

Re z

Im z

ɵ=0z=1

ɵ=±πz=-1

ɵ=-π/2z=-j

ɵ=π/2z=j

29