s. wulfinghoff, t. böhlke, e. bayerschen single crystal gradient … · 2012-08-31 · literature...

18
0 12.07.2012 S. Wulfinghoff, T. Böhlke, E. Bayerschen: Continuum Dislocation Microplasticity Chair for Continuum Mechanics, KIT Chair for Continuum Mechanics – Institute of Engineering Mechanics S. Wulfinghoff, T. Böhlke, E. Bayerschen Single Crystal Gradient Plasticity – Part II Chair for Continuum Mechanics Institute of Engineering Mechanics (Prof. Böhlke) Department of Mechanical Engineering KIT – University of the State of Baden-Wuerttemberg and National Laboratory of the Helmholtz Association www.kit.edu

Upload: others

Post on 09-Aug-2020

0 views

Category:

Documents


0 download

TRANSCRIPT

Page 1: S. Wulfinghoff, T. Böhlke, E. Bayerschen Single Crystal Gradient … · 2012-08-31 · Literature 1 12.07.2012 S. Wulfinghoff, T. Böhlke, E. Bayerschen: Continuum Dislocation

0 12.07.2012 S. Wulfinghoff, T. Böhlke, E. Bayerschen: Continuum Dislocation Microplasticity Chair for Continuum Mechanics, KIT

Chair for Continuum Mechanics – Institute of Engineering Mechanics

S. Wulfinghoff, T. Böhlke, E. Bayerschen

Single Crystal Gradient Plasticity – Part II

Chair for Continuum Mechanics

Institute of Engineering Mechanics (Prof. Böhlke)

Department of Mechanical Engineering

KIT – University of the State of Baden-Wuerttemberg and

National Laboratory of the Helmholtz Association www.kit.edu

Page 2: S. Wulfinghoff, T. Böhlke, E. Bayerschen Single Crystal Gradient … · 2012-08-31 · Literature 1 12.07.2012 S. Wulfinghoff, T. Böhlke, E. Bayerschen: Continuum Dislocation

Literature

1 12.07.2012 S. Wulfinghoff, T. Böhlke, E. Bayerschen: Continuum Dislocation Microplasticity Chair for Continuum Mechanics, KIT

Fundamental dislocation theorye.g. Taylor (1934); Orowan (1935); Schmid and Boas (1935); Hall (1951); Petch (1953)

Kinematics and crystallographic aspects of GNDsNye (1953); Bilby, Bullough and Smith (1955); Kröner (1958); Mura (1963); Arsenlis and Parks (1999)

Thermodynamic gradient theoriese.g. Fleck et al. (1994); Steinmann (1996); Menzel and Steinmann (2001); Liebe and Steinmann (2001);

Reese and Svendsen (2003); Berdichevski (2006); Ekh et al. (2007); Gurtin, Anand and Lele (2007);

Fleck and Willis (2009); Bargmann et al. (2010); Miehe (2011)

Slip resistance dependent on GNDs and SSDse.g. Becker and Miehe (2004); Evers, Brekelmans and Geers (2004); Cheong, Busso and

Arsenlis (2005)

Micromorphic approache.g. Forest (2009); Cordero et al. (2010); Aslan et al. (2011)

Continuum Dislocation Dynamicse.g. Hochrainer (2006); Hochrainer, Zaiser and Gumbsch (2007); Hochrainer, Zaiser and

Gumbsch (2010); Sandfeld, Hochrainer and Zaiser (2010); Sandfeld (2010)

Page 3: S. Wulfinghoff, T. Böhlke, E. Bayerschen Single Crystal Gradient … · 2012-08-31 · Literature 1 12.07.2012 S. Wulfinghoff, T. Böhlke, E. Bayerschen: Continuum Dislocation

Outline

2 12.07.2012 S. Wulfinghoff, T. Böhlke, E. Bayerschen: Continuum Dislocation Microplasticity Chair for Continuum Mechanics, KIT

Motivation

Equivalent Plastic Strain Gradient Plasticity

Numerical results

Dislocation density model

Conclusion and Outlook

Page 4: S. Wulfinghoff, T. Böhlke, E. Bayerschen Single Crystal Gradient … · 2012-08-31 · Literature 1 12.07.2012 S. Wulfinghoff, T. Böhlke, E. Bayerschen: Continuum Dislocation

Motivation

3 12.07.2012 S. Wulfinghoff, T. Böhlke, E. Bayerschen: Continuum Dislocation Microplasticity Chair for Continuum Mechanics, KIT

Typical crystal gradient plasticity extension:

W (...) → W (...) + Wg(∇γ1, ∇γ2, . . . , ∇γN )

Problem: 15 node variables (FCC)→Gradients massively increase DOFs

Proposition:

W (...) → W (...) + Wg(∇γeq)

Simplification α → ∇γeq

node variables: 15 → 4

Page 5: S. Wulfinghoff, T. Böhlke, E. Bayerschen Single Crystal Gradient … · 2012-08-31 · Literature 1 12.07.2012 S. Wulfinghoff, T. Böhlke, E. Bayerschen: Continuum Dislocation

Equivalent Plastic Strain Gradient CrystalPlasticity

4 12.07.2012 S. Wulfinghoff, T. Böhlke, E. Bayerschen: Continuum Dislocation Microplasticity Chair for Continuum Mechanics, KIT

Small Strains

H = ∇u = He + Hp; Hp =∑

α

λαdα ⊗ nα; εp =∑

α

λαMSα

Two slip parameters λα per slip system, λα ≥ 0.

Equivalent plastic strain γeq →∑

α

λα = Σλ

Equality of γeq and Σλ is weakly enforced

Stored Energy W = We(ε, εp) + Wh(Σλ) + Wg(∇γeq) + p(Σλ − γeq)p: Lagrange multiplier

Independent variables: u, λα, γeq

Page 6: S. Wulfinghoff, T. Böhlke, E. Bayerschen Single Crystal Gradient … · 2012-08-31 · Literature 1 12.07.2012 S. Wulfinghoff, T. Böhlke, E. Bayerschen: Continuum Dislocation

Equivalent Plastic Strain Gradient CrystalPlasticity

5 12.07.2012 S. Wulfinghoff, T. Böhlke, E. Bayerschen: Continuum Dislocation Microplasticity Chair for Continuum Mechanics, KIT

Variation of displacements (δλα = δγeq = 0)

δ

∆B

W dv =

∆B

∂εW · δε dv =

∂∆B

t · δuda (1)

⇔∫

∂∆B

(∂εWn − t) · δuda −∫

∆B

div (∂εW ) · δudv = 0 (2)

Result:

Cauchy stress σ = ∂εW

Linear momentum balance div (σ) = 0

B

∆B

Page 7: S. Wulfinghoff, T. Böhlke, E. Bayerschen Single Crystal Gradient … · 2012-08-31 · Literature 1 12.07.2012 S. Wulfinghoff, T. Böhlke, E. Bayerschen: Continuum Dislocation

Equivalent Plastic Strain Gradient CrystalPlasticity

6 12.07.2012 S. Wulfinghoff, T. Böhlke, E. Bayerschen: Continuum Dislocation Microplasticity Chair for Continuum Mechanics, KIT

Variation of γeq (δλα = 0, δu = 0)

δ

∆B

W dv =

∆B

(∂γeqW

︸ ︷︷ ︸

−p

δγeq + ∂∇γeqW

︸ ︷︷ ︸

ξ

· ∇(δγeq)) dv =

∂∆B

Ξ δγeq da

⇔∫

∂∆B

(ξ ·n − Ξ) · δuda −∫

∆B

(div (ξ) + p)δγeq dv = 0

Result:

Micro traction Ξ = ξ ·nBackstress p = −div (ξ)

B

∆B

Page 8: S. Wulfinghoff, T. Böhlke, E. Bayerschen Single Crystal Gradient … · 2012-08-31 · Literature 1 12.07.2012 S. Wulfinghoff, T. Böhlke, E. Bayerschen: Continuum Dislocation

Equivalent Plastic Strain Gradient CrystalPlasticity

7 12.07.2012 S. Wulfinghoff, T. Böhlke, E. Bayerschen: Continuum Dislocation Microplasticity Chair for Continuum Mechanics, KIT

Dissipation and flow rule

Dtot(∆B) =

∂∆B

(t · u + Ξ γeq) da −∫

∆B

W dv!

≥ 0 (3)

with div (σ) = 0, σn = t, Ξ = ξ ·n and p = −div (ξ):

Dtot(∆B) =

∆B

α

(σ ·MSα − ∂Σλ

Wh − p) λα

︸ ︷︷ ︸

D

dv!

≥ 0 (4)

Local dissipation D!

≥ 0 ⇒ Flow rule, e. g. :

λα = γ0

⟨τα − (τC

0 + ∂ΣλWh + p)

τD

⟩p

(5)

Page 9: S. Wulfinghoff, T. Böhlke, E. Bayerschen Single Crystal Gradient … · 2012-08-31 · Literature 1 12.07.2012 S. Wulfinghoff, T. Böhlke, E. Bayerschen: Continuum Dislocation

Equivalent Plastic Strain Gradient CrystalPlasticity

8 12.07.2012 S. Wulfinghoff, T. Böhlke, E. Bayerschen: Continuum Dislocation Microplasticity Chair for Continuum Mechanics, KIT

Global residuals for FE-Implementation

Gu =

B

σ · δεdv −∫

∂Bt

t · δuda!= 0

Gγeq =

B

(ξ · ∇(δγeq) − p δγeq) dv −∫

∂BΞ

Ξ δγeq da!= 0

Local (integration point) residuals based on implicit Euler:

rσ = C−1[σ]︸ ︷︷ ︸

εe

−(

ε − εpn −

α

∆λα(σ, p)MSα

)

!= 0

rp = γeq −(

γeq,n +∑

α

∆λα(σ, p)

)

!= 0

Page 10: S. Wulfinghoff, T. Böhlke, E. Bayerschen Single Crystal Gradient … · 2012-08-31 · Literature 1 12.07.2012 S. Wulfinghoff, T. Böhlke, E. Bayerschen: Continuum Dislocation

Possible Enhancements/Modifications

9 12.07.2012 S. Wulfinghoff, T. Böhlke, E. Bayerschen: Continuum Dislocation Microplasticity Chair for Continuum Mechanics, KIT

Penalty approximation

W = We(ε, εp) + Wh(Σλ) + Wg(∇γeq) + p(Σλ − γeq)

→ W = We(ε, εp) + Wh(Σλ) + Wg(∇γeq) +1

2Hχ(Σλ − γeq)

2

Penalty parameter Hχ: large number

Energy 1/2Hχ(Σλ − γeq)2 penalizes deviations of Σλ from γeq

Grain Boundary Yield Criterion

fΓ = JΞK − ΞC

ΞC : Grain boundary yield stress

Grain boundary yield resistance

Delays initiation of plastic flow on the grain boundaries

Page 11: S. Wulfinghoff, T. Böhlke, E. Bayerschen Single Crystal Gradient … · 2012-08-31 · Literature 1 12.07.2012 S. Wulfinghoff, T. Böhlke, E. Bayerschen: Continuum Dislocation

Simulation Results

10 12.07.2012 S. Wulfinghoff, T. Böhlke, E. Bayerschen: Continuum Dislocation Microplasticity Chair for Continuum Mechanics, KIT

Figure: Periodic Simulation, 2 Mio. Dof

Hardening model

Wg = 1

2KG∇γeq · ∇γeq; Wh(Σλ) = τC

∞Σλ + 1

θ0(τC

∞ − τC0 )2 exp

(

− θ0Σλ

τC∞

−τC0

)

Material Parameters

E ν γ0 p τD τC0 τC

∞θ0 KG iii

70 GPa 0.34 10−3

s−1

50 1 MPa 50 MPa 100 MPa 500 MPa 0.01 Niii

Page 12: S. Wulfinghoff, T. Böhlke, E. Bayerschen Single Crystal Gradient … · 2012-08-31 · Literature 1 12.07.2012 S. Wulfinghoff, T. Böhlke, E. Bayerschen: Continuum Dislocation

Macro Response

11 12.07.2012 S. Wulfinghoff, T. Böhlke, E. Bayerschen: Continuum Dislocation Microplasticity Chair for Continuum Mechanics, KIT

0

250

500

750

1000

0 0.025 0.05

σ[M

Pa]

ε [−]

L = 1 µm

L = 2 µm

L = 5 µm

L = 10 µm

L = 30 µm

L = 100 µm

Page 13: S. Wulfinghoff, T. Böhlke, E. Bayerschen Single Crystal Gradient … · 2012-08-31 · Literature 1 12.07.2012 S. Wulfinghoff, T. Böhlke, E. Bayerschen: Continuum Dislocation

Comparison With Hall-Petch Relation

12 12.07.2012 S. Wulfinghoff, T. Böhlke, E. Bayerschen: Continuum Dislocation Microplasticity Chair for Continuum Mechanics, KIT

0

250

500

750

0 20 40 60 80 100

Rp

0,2

[MPa]

L [µm]

Hall-Petch

σY 0 + k√

L

0

250

500

750

0 0.3 0.6 0.9 1.2

Rp

0,2

[MPa]

1/√

L [µm]−1/2

Hall-Petch

Figure: Tensile test with periodic 2-grain microstructure

Page 14: S. Wulfinghoff, T. Böhlke, E. Bayerschen Single Crystal Gradient … · 2012-08-31 · Literature 1 12.07.2012 S. Wulfinghoff, T. Böhlke, E. Bayerschen: Continuum Dislocation

Convergence

13 12.07.2012 S. Wulfinghoff, T. Böhlke, E. Bayerschen: Continuum Dislocation Microplasticity Chair for Continuum Mechanics, KIT

Euclidean Norm of Force Residual∆t : 0.012 s 0.024 s 0.048 s 0.096 s 0.192 s 0.333 s 0.295 s

1.16e+03 2.33e+03 4.64e+03 9.19e+03 1.83e+04 3.12e+04 2.66e+04

5.20e-01 5.79e+00 1.15e+04 2.55e+04 4.03e+04 3.85e+02 3.45e+02

9.11e-04 2.28e-01 8.26e+01 1.73e+02 2.66e+02 1.64e+02 1.87e+02

1.35e-05 2.20e-04 2.35e+01 3.15e+01 4.13e+01 3.84e+01 9.05e+01

2.01e-07 3.31e-06 3.71e+00 4.30e+00 6.23e+00 9.57e+00 2.09e+01

2.97e-09 5.00e-08 2.10e-01 4.24e-01 5.65e-01 4.12e+00 4.87e+00

1.63e-02 2.91e-02 1.88e-02 5.67e-01 1.18e+00

2.48e-04 3.64e-04 5.44e-05 7.97e-03 1.53e-01

5.35e-07 5.21e-07 4.37e+02 3.94e-05 2.35e-02

3.16e-09 6.48e+01 9.35e+01 1.24e-06 1.26e-04

1.22e+00 3.19e+01 1.03e-06

5.01e-02 3.00e+00

3.10e-04 2.80e-01

8.44e-07 9.25e-03

2.13e+01 5.47e-05

2.46e-01 4.67e+01

2.56e-03 6.73e-01

3.49e-06 8.37e-03

4.66e+00 1.71e-05

8.48e-03 1.47e-07

1.41e-05

2.20e-01

1.28e-04

1.79e-07

3.56e-09

0

250

500

750

0 0.025 0.05

σM

Pa

ε [−]

Macro response

Active Set SearchGrain Boundary Nodes

Marked in red: Active set search of grain boundary nodes

Page 15: S. Wulfinghoff, T. Böhlke, E. Bayerschen Single Crystal Gradient … · 2012-08-31 · Literature 1 12.07.2012 S. Wulfinghoff, T. Böhlke, E. Bayerschen: Continuum Dislocation

Dependence on Time Step Size

14 12.07.2012 S. Wulfinghoff, T. Böhlke, E. Bayerschen: Continuum Dislocation Microplasticity Chair for Continuum Mechanics, KIT

0

250

500

750

0 0.01 0.02 0.03 0.04 0.05

σ[M

Pa]

ε [−]

Macro response

equal time steps

adaptive time steps

Page 16: S. Wulfinghoff, T. Böhlke, E. Bayerschen Single Crystal Gradient … · 2012-08-31 · Literature 1 12.07.2012 S. Wulfinghoff, T. Böhlke, E. Bayerschen: Continuum Dislocation

Improvement of Cross Hardening Model

15 12.07.2012 S. Wulfinghoff, T. Böhlke, E. Bayerschen: Continuum Dislocation Microplasticity Chair for Continuum Mechanics, KIT

Cross hardening is modelled by Wh(Σλ)→ phenomenological approach

Replacement by dislocation based approach

τC = τC(ρ) = τC0 + aGb

√ρ

Advanced dislocation density model (until now only single slip)

∂tρ = −div(κ⊥ν

)+ ρkν

∂tρk = −div(ρk/ρ νκ⊥ + ρ/2∇pν

)

λ = ρbν

ν = ν0 sgn (τ)

⟨ |τ | − τC − p

τD

⟩p

with κ⊥ = 1/b(I − n ⊗ n)∇λ and ∇pν = (I − n ⊗ n)∇ν.

Accounts for dislocation transport and curvature-induced line lengthproduction.

Page 17: S. Wulfinghoff, T. Böhlke, E. Bayerschen Single Crystal Gradient … · 2012-08-31 · Literature 1 12.07.2012 S. Wulfinghoff, T. Böhlke, E. Bayerschen: Continuum Dislocation

Summary

16 12.07.2012 S. Wulfinghoff, T. Böhlke, E. Bayerschen: Continuum Dislocation Microplasticity Chair for Continuum Mechanics, KIT

Crystal plasticity model enhanced by gradient of equivalent plastic

strain

DOFs per node massively reduced

Leads to backstress formally similar to other theories

Classical FE-implementation + Grain boundary yield condition

Converging results

Results close to Hall Petch relation

Page 18: S. Wulfinghoff, T. Böhlke, E. Bayerschen Single Crystal Gradient … · 2012-08-31 · Literature 1 12.07.2012 S. Wulfinghoff, T. Böhlke, E. Bayerschen: Continuum Dislocation

17 12.07.2012 S. Wulfinghoff, T. Böhlke, E. Bayerschen: Continuum Dislocation Microplasticity Chair for Continuum Mechanics, KIT

End of Part II

The support of the German Research Foundation (DFG) in the project

"Dislocation based Gradient Plasticity Theory" of the DFG Research

Group 1650 "Dislocation based Plasticity" under Grant BO 1466/5-1 isgratefully acknowledged.