s m sze solution

130
ch.l ch.2 ch.3 ch.4 ch.5 ch.6 ch.7 ch.8 ch.9 ch.10 ch.rl ch.t2 ch.13 ch.r4 Contents Introductiorr----- --- 0 EnergyBands and Carrier Concentration I Carrier Transport Phenomena ------ ---- 7 p-n Junction ----- --- 16 Bipolar Transistor andRelated Devices- --------- 32 MOSFET andRelated Devices--------- ---------- 48 MESFET andRelated Devices------- -- 60 Microwave Diode, Quantum-Effect andHot-Electron Devices ----- 68 Photonic Devices ---------- ----------- 73 Crystal Growthand Epitaxy------ Film Formation------ -- 92 Lithography andEtching ---- 99 Impurity Doping-- - 105 Integrated Devices--------- -- l 13

Upload: manisha-mohil

Post on 14-Oct-2014

605 views

Category:

Documents


15 download

TRANSCRIPT

ch.lch.2ch.3ch.4ch.5ch.6ch.7ch.8ch.9ch.10ch. r lch.t2ch. 13ch.r4

ContentsIntroductiorr----- --- 0Energy Bands and Carrier Concentration ICarrier Transport Phenomena ------ ---- 7p-n Junction ----- --- 16Bipolar Transistor and Related Devices- --------- 32MOSFET and Related Devices--------- ---------- 48MESFET and Related Devices------- -- 60Microwave Diode, Quantum-Effect and Hot-Electron Devices ----- 68

Photonic Devices ---------- ----------- 73Crystal Growth and Epitaxy------Film Formation------ -- 92Lithography and Etching ---- 99Impurity Doping-- - 105Integrated Devices--------- -- l 13

CHAPTER 2

1. (a) From Fig. llq the atom at the center of the cube is surround by four

equidistant nearest neighbors that lie at the corners of a tetrahedron. Therefore

the distance between nearest neighbors in silicon (a: 5.43 A) is

l/2 [(a/2)' * (Jzo /2127t/' : J-zo /4 : 235 A.

(b) For the (100) plane, there are two atoms (one central atom and 4 corner atoms

each contributing ll4 of an atom for a total of two atoms as shown in Fig. 4a)

for an area of d, therefore we have

2/ &:2/ (5.43 ,. l0-8)z :618 * 10la atoms / crt

Similarly we have for (110) plane (Fig. 4a and Fig. 6)

(2+2x l l 2+4x l l 4 ) / JTo2 :9 .6 , . 10 rs a toms / c r1 � . ,

and for (111) plane (Fig. 4aand Fig. 6)

(3 x I/2+ 3 x r/6) / rlz|mlf ,ffi" I : : 7.83 * 10la atoms / crrt.(9.

2. The heights at X, Y, and Z point are /0, %,^O %.

3. (a) For the simple cubic, a unit cell contains 1/8 of a sphere at each of the eight

corners for a total of one sphere.

- Ma><imum fraction of cell filled

: no. of sphere x volume of each sphere / unit cell volume

:1x 4ng /2 )3 l a3 :52o /o

(b) For a face-centered cubic, a unit cell contains 1/8 of a sphere at each of the

eight corners for a total of one sphere. The fcc also contains half a sphere at

each of the six faces for a total of three spheres. The nearest neighbor distance

is l/2(a J; ). Therefore the radius of each sphere is l/4 1a Jz ).

- Maximum fraction of cell filled

- (1 + 3) {4[ [(a/2) / 4It I 3] / a3 :74o/o.

(c) For a diamond laffice, a unit cell contains 1/8 of a sphere at each of the eight

corners for a total of one sphere, I/2 of a sphere at each of the six faces for a

total of three spheres, and 4 spheres inside the cell. The diagonal distance

between (112,0, 0) and (114, ll4, Il4) shown in Fig. 9a is

The radius of the sphere isDl}: 1Jj8- Maximum fraction of cell filled

: (t + 3 + 4) lyErtj l ' 'o, :nJT t16 : 34 %.' 1 3 \ 8 ) )

This is a relatively low percentage compared to other lattice structures.

4. la,l : la,l : la,l: laol : a4 *4+4+4 :o4 . ( 4 * 4 + 4 * 4 ) : 4 . o : ola, l ' *4 -4 *4.4 + 4. L: o

--d2+ d2 coflrz + dcoiln I dcoflr+ ! dz +3 d2 coil! 0

- coil: +[: cos-r

+ [ 109.4/ !

5. Taking the reciprocals of these intercepts we get ll2, ll3 and l/4. The smallest

three integers having the same ratio are 6, 4, and 3. The plane is referred to as

(643) plane.

6. (a) The lattice constant for GaAs is 5.65 A, and the atomic weights of Ga and As

are 69.72 and 7 492 glmole, respectively. There are four gallium atoms and

four arsenic atoms per unit cell, therefore

4/a3 : 4/ (5.65 x 10-8)3 : 4.22 x lTn Ga or As atoms/cr*,Density: (no.of atoms/crrf x atomic weight) / Avogadro constant

: 2.22 * 1022(69.72 + 74.92) I 6.02* 1023 : 5.33 g I cni.

(b) If GaAs is doped with Sn and Sn atoms displace Ga atoms, donors are

formed, because Sn has four valence electrons while Ga has onlv three. The

resulting semiconductor is n-type.

7. (a) The melting temperature for Si is l4l2 oC, and for SiOz is 1600 oC. Therefore,

SiOz has higher melting temperature. It is more diflicult to break the Si-O

bond than the Si-Si bond.

(b) The seed crystal is used to initiated the growth of the ingot with the correct

crystal orientation.

(c) The crystal orientation determines the semiconductor's chemical and electrical

; ) ' . ( ; ) 'n : 1

2

properties, such as the etch rate, trap density, breakage plane etc.

(d) The temperating of the crusible and the pull rate.

4.73x10u T'ErQ): l . l7 for Si

. '. Es ( 100 K) = 1.163 eV, and Es(600 K): 1.032 eV

E,(D= r.5 ,n -t'o-l!j_"t!1,!' ror GaAs(T + 204)

,.Er( 100 K) : 1.501 eV, and Es (600 K) : 1.277 eY .

9. The density of holes in the valence band is given by integrating the product

N(E)tl-F(DldE from top of the valeri c:e band (En taken to be E : 0) to the

boffom of the valence band Rottoml

p: ytu'�n^ N(qtl _ F(DldE

where I -F(E): I - { t r [ t * "(t-

Ee)*t ] : [ t *"(E-Eilr t ' r l t

If Er- E >> kT then

| - F(E) - exp F (n, - r)lwl e)Then from Appendix H and, Eqs. I and 2we obtain

p : 4Df2mp / h2f3D I:""^ EtD exp I-@r - E) / kT ldE (3)

Letxt+ E lkT, and let Ebooo*: - @, Eq.3 becomes

p : 4\-2mo / rtflz (kTlttz exp [-(Ep / kl)i I xtD e*dx

where the integral on the right is of the standard form and equats G tZ.- p :2l2Dmo kT / h213D exp [-(Ep / kI)j

By refening to the top of the valence band as ETinstead of E:0 we have

or p:2Qo';f:"i1ff;Trrlf;, u, /krl

where Nv:2 (Nmo kT / rtf .

10. From Eq. 18Nv :2QDmo kT I h2f D

The effective mass of holes in Si is

mp -- (Nvt 21ztt (rt tzDkT)

( 1 )

1.38 x 10-233oo): 9.4 " 10-3 t kg : 1.03 mo.

Similarly, we have for GaAs

f f ip :3 .9 x 10-31 kg: 0 .43 mo.

Using Eq. 191 1 .

E i = (8, + til' . (%)^ (N, I w,)

= (Ec* Ey)l 2 + (*T I 4) ln

A t77 KE,: (1.t6/2) + (3 x 1.3g x t}-,tT) / (4 x 1.6 x 10-,r) ln(l.0/0.62)

:0.58 + 3.29 x 10-5 Z= 0.5g + 2.54 x 10-3 - 0.5g3 ev.At 300 K

Ei: (1.12/2) + (3.29 x 10-sX300; : 0.56 + 0.009 : 0.569 eV.At 373 K

Ei: (1.0912) + (3.2g x l0-sx3731 - 0.545 + 0.012:0.557 ey.Because the second term on the right-hand side of the Eq.l is much smaller

compared to the first term, over the above temperafure range, it is reasonable to

assume that Ei is in the center of the forbidden gap.

"-@-r rYw 6B

l '=rr-rr,

lr*,1*,)(o%f (1 )

I : :@_ECT2. KE :

1 3 .

f : JE -Er"-@-tP)/*r6P

1 . 5 x 0 . 5 " G

0.sJ;

?= ;or.

(a) p: f tw:9.109 x 10-3r x105 :9.109 x 10-26 kg-mA

1 : h - 6 '626x10-14- :7 .27 x r0-e m:72.7 Ap 9.109 x l0- ' "

m ^ ^ I(b) 1" 'L : *x 72.7: I154 A ."

m p 0.063

From Fig.22when nr: l0t5 cd3, the corresponding temperature is 1000 / T: l.B.

So that I : 1000/1.8:555 K or 282 [

From E" - Er: kT lnlNc / (No - N,q)]which can be rewritten as No - N.e: l/c exp IaE, - Er) I kf IThen No-N.a:2.86 * 10re exp(-0.20 /0.0259): 1 .26 x 1016 crn3

o r No :1 .26x 1016+ N . t : 2 .26 * 1016c rn3A compensated semiconductor can be fabricated to provide a specific Fermi

energy level.

16. From Fig.28a we can draw the following energy-band diagrams:

14.

1 5 .

AT 77K Ec(0.ssevi'EF(0.s3)

E;(o)

Ev(-0.59)

Ec(0.56 ev)

EF(0.38)

Ei (o)

Ev(-0.56)

E9(0.50eV)

AT 3OOK

ri

AT 6OOK

0.s0)

17. (a) The ionization energy for boron in Si is 0.045 eV. At 300 K, all boronimpurities are ionized. Thus pp: N.a: l0ls crn3

np: t?i2 / n.a: (g.6i " K;9f / l}ts :9.3 * lOa crn3.

The Fermi level measured from the top of the valence band is given by:

Ep- Ev: kTln(N/ND):0.0259ln(2.66 x 10re / l0r5; :0 .26 eY

(b) The boron atoms compensate the arsenic atoms; we have

p p : N e _ N n : 3 x 1 0 1 6 _ 2 . 9 x l 0 1 6 : l O l s c r n 3Sincepo is the same as given in (a), the values for no and Ep are the same asin (a). However, the mobilities and resistivities for these two samples are

different.

18. Since Np >> ni, wa can approximate e : Nt andpo: n? I no:9.3 x l } te I l0 l7 : 9 .3 x ld crn3

( p - r ' \From fio: txiexP I

"t "' | '

\ . kT ) 'we have

Ep - Ei: kT ln (no I n) : 0.0259 ln (1017 / 9.65 * 10e) : 0.42 eYThe resulting flat band diagram is :

E c

EF

A.rr2eY

- E - F .t - l

19. Assuming complete ionization, the Fermi level measured from the intrinsic

Fermi level is 0.35 eV for 10rscm-3,0.45 eV for 1017 crn3, and 0.54 eV for 10le

crn3.

The number of electrons that are ionized is given by

n = Npfl - F(En)l: Np / f l + "-(ro-rr)r*r ]Using the Fermi levels given above, we obtain the number of ionized donors as

l1.12 eV

l

20. No* -

Therefore, the assumption of complete ionization is valid onty for the case of10ls crn3.

10 tu 1016: _l + e - {Eo -E r ) / k r 1 +e -0 .13s

n: !0 t5 crn3n: 0.93 * 1017 crn3n :0 .27 * lO le c rn3

:5 .33 t 10 ls c rn3

for Na : 1015 crn3forNo: 1017 crn3forNo: 10le crn3

_ l 0 t u

. l

1 . t45The neutral donor: 1016- 5.33 ,. l0ls crr3 : 4.67 x 1015 crn3

-The ratio of N; - 4'76 - 0.g76N; s.33

CHAPTER 3

I . (a) For intrinsic Si, /4, : 1450, l+ :505, and n: p : lti:9.65x lOe

We have p - - 3.31x 10' C)-cmqntth + {lpltp en,(lt, + pr)

(b) Similarly for GaAs, lh: 9200, Lb : 320, and n: p : ni:2.25x106

We have p - = 2.92x lOt O-crnqnltn + llPIIp

For laffice scatteri nE, l-h n 73/2

en,(ltn + po)

2.

3. Since

1 1 1- = - + -p 250 500

Fr : 1 67 cr# N-s.

4. (a) p:5x l01s cd3, n: n / /p : (9 .65x l0e12l5x10rs : 1 .86x104 cm-3

14:4lo cm2lv-s, Lh:1300 cm2lv-s

r3oox #:2388

cm2lv-s

T : 4oo K, 1^4,: l3oox % : 844 "m'lv-s.300-rt

2

r I :3 C)-cm

T : 200 K, Lh:

l l l- = - + -P l-t' l-t"

p :qpon + qlrpp qppp

( b ) p : N t - N o : 2 x 1 0 1 6 - 1 . 5 x 1 0 1 6 : 5 x 1 0 l t " * ' , n : L 8 6 x 1 0 a c m - 3

!-b: Ib (M + No) : I+ (3.5xl0tu) :290 cm2A/-s,

fh: th(Nt + Np): 1000 cm2ny'-s

= | :4.3 C)-cmp

qLthn + q[Lpp qppp

6.

(c) p:N,q @oron) -Nn+ N,q(Gal l ium):5x10ls cd3, n: L86xl0a cm-3

I+: I$ (M r Np* Ne): 14 Q.05x10tt) : 150 cm2A/-s,

l-h: th (Ne * Np* N,q) : 520 crr?A/-s

p:8.3 C)-cm.

5. Assume No- N1>> n;,the conductivity is given by

ox qn[h: elh(No - Nd)

We have that

16 : (1.6x tOae)1^6Qtp- 10tt)

Since mobility is a function of the ionized impurity concentration, we can use

Fig. 3 along with trial and error to determine 7^6, and No. For example, if we

choose No : 2xl0r7,then Nr : ND* + Nd- : 3x lQtt, so that Lh x 510 cm2lV-s

which gives o: 8.16.

Further trial and effor yields

Nn=3.5x1017 crrt .3

and

lh x 400 cm2lV-s

which gives

6x 16 (O-cm)-t

o- q(lt n + Fo p) = ello(bn + ni t n1

From the condition dddn: 0. we obtain

f t :n i I {b

Therefore

i . At the limit when d >> s, CF: :4.53. Then from Eq. 16

0.226 x 10-' - 10.78 mV.50x10-o x4 .2

R u =V,A 1 0 x 1 0 - 3 x 1 . 6 x l 0 - 3 - 426.7 cnf tCIB ,W 2 .5x l0 -3 x (30x10-n x l0o )x0 .05

Since the sign of R'7 is positive, the carriers are holes. From Eq.22

V l0 x l0 -3p = i x W x C F - x 5 0 x 1 0 - 0 x 4 . 5 3 - 0 . 2 2 6 C ) - c m

From Fig. 6, CF:4.2 (d/s: 10); using the a/d: 1 curve we obtain

p * _ q i o ( b n , l 4 b + ^ , l b n , ) _ b + lP, 2JE

QFpni(D + l)

= 380 cm2lv-s.Wp 1 .6x10 - ' n x1 .46x10 '6 x1 .1

7C

lnz

V = p . I / ( W . C F ) _

8. Hall coefficient,

l l 1

' eR, l , .6xl0- 'n x426.7

Assuming Ne x p, from Fig. 7 we obtain p: 1.1 f)-cm

The mobllity pg is given by Eq. 15b

1I: - =p,

9. Since R n pand p-qnph + wl_rp

From Einstein relation D n lt

, hence R o. 1

. nl+ + pLrp

H l l r o = D n l D o - 5 9

R , _

0.5Rr

We have N.e:50 Nn .

N olt^

N o l t , + N e q p

10. The electric potential @is related to electron potential energy by the charge (- q)

IQ:*=(Er_ n i )

q

The electric field for the one-dimensional situation is defined as

e(x) : -!!-: l dEid x q d x

( n- - n \ft: ni explT): No(x)

Hence

l l .

E p - E ; : k T h ( * r @ )

l . )

E &) - -( tt\ t dN o(x)\ q ) N o ( * ) d x

(a) From Eq. 31, Jn:0 and

r (x) - - D, d/d* - - kT No!:a)9- " - *kT o

H n q N o " n ' q

(b) E (r): 0.0259 (100) :259 V/cm.

At thermal and electric equilibria,

J , = qgn(x)e + qD, 4:!') -,dx

12.

Dn I dn(x) D, N, -f f .

LE ( x ) =

F,

- - D n

p,

n(x) dx Lt,

N , -NoN o * ( N r - N ' ) ( * l L )

L N o + ( N , - N o ) t

l 0

t , - [ ' - D"

J o p

I\a) Tp =

oor,rry =

N, -No- -o -nNL

LNo + (N, - N, )r p" N,

13. Nt = Lp - ToG, = 10 x 10-6 x l0 tu = 10t t crn3

f l : f t no + Ln :No + Ln :10 I s +10 t t - 19 t s c rn3

n? e.65 x lon ) ' + lor , = lo, , cm-,p - \ + 4 p = 1 0 "

t4 .5 x l 0 - t 5 x 1 0 7 x 2 x l 0 t s

f ln = tlno, Pn = Pno

= 10- t s

10-8 x 20

3 x 1 0 - a + 1 0 - 8 x 2 0

- 3 x 1 0 { c m

Sr, : v,r,o,N,,, - 107 x 2x 10-t6 x 10to - 20 cm/s

(b) The hole concentration at the surface is given by F,q.67

p ̂ (o) = pno + roG rlt -, "11'-

I\

u p * T o S , , )

_ (9.g5 1 l9_') ' + 10-, *t0,,( t _2 xl}tu (.

= lOe cm-'.

6= QnLIt, * wqy

Before illumination

1 5 .

After illumination

f l n = f r n o * L r t - f t r o * T r G ,

p n = p n o * L p - p n o * t r G

Ao - tqtt,(nno * Ln) + qlrp(p," + 4p)] - (qlt n," * QFo p,")

- q(l+ + Fp)r oG .

l l

9 x 10-8D oTo

ta) J r .a in - -nD r#

- - l.6x 10-lex IZx . - l-

x l0rsexp (-x/12)L2xl0-"

: 1.6exp (-x/12) Alcrrl

(b) / " ,dr i f t = J,o,o,-Jp,ain

: 4.8 - 1.6exp(-x/12) Alcni.

(c) 't Jn.a,in - qnl+E

- '- 4.8 - l.6exp(-xll2): 1.6x 10-1ex 1016x 1000x8

E :3-exp(-x/t2) V/cm.

1 7 . F o r E : 0 w e h a v e

a _ _ P n _ P n o + D , I * = g0t tp o Ax'

at steady state, the boundary conditions are p" @ - 0) : p" (0) and pn (, : lV) :

Pno.

Therefore

'*[fj'*F)

J r(x- o) : - QDp H,.- q[.p,(o) - o,"l+-4+)

J o(x -w) = - QD.H,=, - ql.p

18. The portion of injection current that reaches

T2

p,(x)= pno +[1t , (0)- p^.

n,(o)- p^,1?4.

'o ,inhf w I

lL, )

the opposite surface by diffirsion IS

given by

a $ =J o(W)JoQ) cosh(W lLe)

Lo = ̂ t ' r%= '& tso* to* -5x lo -2 cm

; . d o - - 0.98cosh(10-2 /5x 1O-' �)

Therefore,9SYo of the injected current can reach the opposite surface.

19. In steady state, the recombination rate atthe surface and in the bulk is equalAPr,ou,u

- LPn,"urf^u

so that the excess minorirv " *i:;:*..J#'ff at the surface

;,,surrace : lora. :g :1013 cm-3- 1 0 - o

The generation rate can be determined from the steady-state conditions in thebulk

G: lo to : lom crn3s- ll 0 - 6

From Eq. 62, we can write

D ^ a ' L ! + G - & : o" Axt To

The boundary conditions are 4(. = - ): l01a crn3 and 4(* - 0): 1013 crn3

Hence

where

4(i: lola( 1 - o.ge-' t to )

Lp:.f io- to-u : 31.6 pm.20. The potential barrier height

Qa = Q^ - X: 4.2 - 4.0:0.2 volts.The number of electrons occupying the energy level between E and E+dE isdn: N(DF(DdEwhere N(E^) is the density-of-state function, and F(E) is Fermi-Dirac distributionfunction. Since only electrons with an energy greater than E, + eQ^ and havinga velocity component normal to the surface can escape the solid, the thermioniccurrent density is

- | r- +Az.T)% v,E%e-G-rr)ln 4gJ -- JQt,

= Jrr*qq^ ht

'

where v, is the component of velocity normal to the surface of the metal. Sincethe energy-momentum relationship

n P 2 I . ) ) ? rE - -2m 2m

2 t .

l 3

Differentiation leads to dE - PdP

mBy changing the momentum component to rectangular coordinates,47iP2 dP - dp,dp ,dp "

f - Z? , S f [- p ,u-'ol

* p2,+ p]-z^t1) lzmkr dp ,dp ,dp ,

Hence =Ht',

^t'r'-,;t,'^rl')u,, o,oo,ll- ,-01r,^0, dp, f- ,-r)/z^kr dp,mht J p,o

where p',o = Zm(E, + qQ).

l E t " l l 2

Since L e-o" dx -{ ll , the last two integrals yield (2dmkT)v'� .\ a )

The first integral is evaluated by setting oi:'9' - u

Therefore we have du - P'dP'

2mkT

mkTThe lower limit of the first integral can be written as2m(E, +qQ)-2mE, _qQ*

2mkT kT

so that the first integral becomes mkT fr^,0,

e-" du - mkT e-qL-l kr

Hence , -4tqmkz 72o-a0^lk, - A*7, "*(-fg^\h ' \ k T )

22. Equation 79 is the tunneling probability

r _ { t * [ 2 0 x s i n h ( 2 . 1 7 x l 0 o x g x t o - ' o ] ' ] : 3 . r 9 x l 0 * .L 4 x 2 x ( 2 0 - 2 ) )

23. Equation 79 is the tunneling probability

p -

r '0-,0) - { , * [6x sinh( 9.99 x 10n x 10-'o)f ]- ' _ 0.403

L 4 x 2 . 2 x ( 6 - 2 . 2 ) )

Tr0-\ _ {r * [o * rinh (q.qq :. ro' *lo-'l ' ]- ' = 7.8 x r0-,.'

L^ '

4 x2.2"(e -z.z) l

t4

Differentiation leads to dE = PdP

mBy changing the momentum component to rectangular coordinates,47d, 2 dp : dp,dp ,dp "

Hence t = +[, [=- [ l =*o,r-rr2'+pi+p2,-znr1)' '^o' dp,dp rdp "

= ,r2o ff,,

"to'-'^Et)l2^tr p,dp,!-_ "-oll'^o'dp, f* "^o1/'^0, dp,

rvhere p'�,o = 2m(E, + eQ).r : l l 2

r' *' - =[ Z1 , the last two integrals yield (2dmk|)v, .Srnce J__ e-"^ dx \" )

The first integral is evaluated by setting pi;29' :, .

2mkT

Therefore we have 4y - P'dP'mkT

The lower limit of the first integral can be written as2m(E, +qQ)-2mEo =qQ.

2mkT kT

so that the first integral becomes *0, fr^,o

e-" du: mlsT s-tQ./ kr

Hence 1 =4tq*k' 72"-t0^lw = A'7, "*"( - uh).-

h 3 -

k r ) '

ll. Equation 79 is the tunneling probability

o _ l2* , (qVo - E) _P_t l - - - - - - - - - - ' i -_

2(9. l Ix t0_3 'x20 -2)(1.6x 10- 'e)= 2 . 1 7 x 1 O t o m - t(1.054x 10- 'o ) t

) - ' = r . ,n , ,0 *, - lr- [20 x sint( 2.17 x 100 x 3 x 10-'o] '

r - \ r

| 4 x2 x (20 -2 )

13. Equation 79 is the tunneling probability

B =

r '0-,0) = {r* [6x sintr( 9.99 x10' x10-'o)I ] = o.oo,

| . 4 x2 .2x(6 -2 .2 ) )

r '0 -n l = [ * [o* r inh (q .qq I ro ' * lo - ' l ' I ' = 7 .8x l0 -e .'

l ' ' 4 x 2 . 2 " ( a - z . z ) J - '

24.From Fig. 22A s s : 1 0 3 V / s

ua = l.3xl06 cm/s (Si) and ua x 8.7x106 cm/s (GaAs)

t x 77 ps (Si) and t x 11.5 ps (GaAs)

As E :5x104 V/s

va x 107 cm/s (Si) and, ua x 8.2x106 cm/s (GaAs)

t x l0 ps (Si) and t = l2.2ps (GaAs).

25. Thermal velocitv

= 9.5 x 10n m/s = 9.5 x 10u cmlsFor electric field of 100 vlcm, drift velocity

v a = l_4,E = 1350 x 100 = 1.35 x 105 cm/s << v,,

For electric field of 104 V/cm.

FoE = 1350 x 104 = 1.35 x 107 cm/s = y,r, .

The value is comparable to the thermal velocity, the

drift velocity and the electric field is not valid.

linear relationship between

2 x|.38 x 10-2' x 300

CHAPTER 4

l. The impurity profile is,

(Np-N,a) (cm")

3x lOra

x (pm)

The overall space charge neutra

c :101e cm-a

of the semiconductor requires that the total negative

space charge per unit area in the p-side must equal the total positive space charge per

unit area in the n-side, thus we can obtain the depletion layer width in the n-side region:

0 . 8 x 8 x 1 0 ' o- Wn x3 x 10 'o

Hence, the n-side depletion layer width is:

W, =1.067 pm

The total depletion layer width is 1.867 pm.

We use the Poisson's equation for calculation of the electric field n(x).

In the n-side region,

L = 3 - * r + r ( x ^ ) = L N o x + Kd x t " " E s

E ( x , = 1 . $ 6 7 F m ) = O + K = - + N , x l . 0 6 7 x 1 0 - a€.,

" ' E ( t , \ = L * 3 x l o r a ( x _ � l ' 0 6 7 x l o r )E

E ̂o, =E ( x, = 0 )= -4. 86 x 103 V/cm

In the p-side region, the electrical field is:

9=L*^ =e (x " ) = =n rax2 + K 'dx t r P ' 2€ ,

E (x p = _0.81m) :0 + K ' =- t * o*(0.S" t0-o) '

. . , G") :a *o, l * ' - (o.s, , ro- ' ) ' l\ P ' 2 t , L ' ' )

E,o, =E (ro =0) = -4.86 x 103 V/cm

The built-in potential is:

v,, = - I _:,, &W = - l'0,,, (r)d*l o _,,0" _�l;", (')4 n _s ide =0.s2 v .

L From Vo, = - J

r (*V, , the potential distribution can be obtained

With zero potential in the neutral p-region as a reference, the potential in the p-side

depletion region is

v,(,) = - li e)a* = - ft * o *l'- (o.r x 10' )'f* = -ftLir - (o.s * r0-o)' " -l{o rx 10 0

= -7.5e6x 10" x [1"'

- (0.r, ro-') ' * -?r(0.t,. to- ') ' ]

With the condition Vp(0):V"(0), the potential in the n-region is

v^&) = -t":' ro''[]"' -t.o67xro-ax.UF,.ro-')

= -4.56xr0' "()* -1.067x lo-ox T,.

,o-')

[[-

!!- )D---lr-

l[_ l l . - , .!_-.[.-_

m_ l!_.- n!

!m l[ n__tr- ,

[!- l ! , f l _

-____t ,_[[^ l!-

-^-[-m_ l![[--

l--

!!t [ [ [ . . ,__fl-

l[l-_J_t--

---l[- t![. f____ r

["Jr][+n_Jo_!{

i. The intrinsic carriers density in Si at different temperatures can be obtained by using Fig22 in

Chapter2:

Temperature (K) lntrinsic carrier density (n,)

250 1.50+108

300 9.65+10'

350 2.oo+10"

400 8.50]l10''�

450 9.00+10'3

500 2.20+10t4

The Vu can be obtained by using Eq.12, and the results are listed in the following table.

J! --lmIml ![-

__m m nmt m-__tr . n[[![_ m , n

__tr l![[[- m_

ml mlm!- Iu-MD , n , n [ ! * !!-J

Thus, the built-in potential is decreased as the temperature is increased.

The depletion layer width and the maximum field at 300 K are

I T :

_ m u =qN p f t r _ 1 .6 x 10- 'e x 10 '5 x 9 .715 x 10-5

q 1 1 . 9 x 8 . 8 5 x l O - ' a

=0.9715 lnt

=1.476 x 104 V/cm.

2 xl l .9 x 8.85 x 10-'o x0.717

1 . 6 x 1 0 - t e x l 0 t 54No

+. .E- - . = lz rn ( .y^*+ ) - l " '=4xr0s- f2x t .6x l0 ' ' x30 [ '9 ] ' t , ) l ' "m u

L e [ N r * N r ) ) [ l t . e x 8 . 8 5 x l 0 - ' o [ 1 0 ' ' + N " ) ]

> 1 .755x 10 tu = N D

r + #

We can select n-type doping concentration of Nr: 1.755x10t6 crnt for the iunction.

5. From Eq. 12 and Eq. 35, we can obtain the l/C2 versus Zrelationship for doping concentration of

l0't, 10t6, or lOtt crn3, respectively.

ForNr:16r5 "*-:,

+= 'V : ,

_ ' ) - zx (o .s t t -v ) -=1 .187x 10 ,6 (o . tz t -v )C , ' Q d " N u 1 . 6 x 1 0 - ' n x l l . 9 x 8 . 8 5 x 1 0 - ' n x l 0 '

For No:19r6 "*-:,

c , ' e d " N u l . 6 x 1 0 - r e x 1 1 . 9 x g . g 5 x l 0 - , 0 ; 1 0 " = 1 ' 1 8 7 x t o " ( o ' s l o - r )

For Nlr:1017 crn3,

I _ zVu, -v) _ zx(o.gsa-v)C , ' 4 d , N u l . 6 x l 0 - l 9 ' t t f f i = L . | 8 7 x t o ' o ( o . e s o - r , )

When the reversed bias is applied, we summarize atable of I /Ct, vs V for various Np values asfollowing,

[_ l!.-._lI [[_-*JI'-l

l! , - fl-l

Lt__-[[ x. fr!L-

] [ , . f l t._n

l ! . f [n-

3r nl![[!_ rr__Jm. f-l

n n m

[-JD TIT]4U/4U iL__.__.![

.-nn . n n n

[ " __[-_.nn-

__-!-_ul.-n

D[!!D[-

[. nD -n.^---_ln.

_J____-[!--!

_ nn. n[[_

! * .--8.-.-D[-

J_n._nl._n

n n n1!J1_!U

mm ._-[!__^-l! -_rJJil--[

-i--m

! ][l [![-I

Jln__-lil.-n

[-__n[

Hence, we obtain a series of curves of I/A versus Zas following,

. | I I - !

t r s Ltk<{mth4}g

The slopes of the curves is positive proportional to the values of the doping concentration.

The interceptions give the built-in potentialof thep-n junctions.

6. The builrin potential is

2 k T , ( a ' e " k r \ ? (Vr , :=- ln l - - i ; l= i *0 .0259x h l" ' 3 q \ \ q ' n i ) 3 t= 0.5686 V

From Eq. 38, thejunction capacitance can

8 x 1.6 x l0-'n r (l.os * to' I

e )-)l0 'o x1020 x I 1 .9 x 8 .85x 10- 'a x 0 .025

] " '

be obtained

x lo 'o x ( t t .e " 8.85x lo"o) '

7.

[ . 6x 10 - ' '

rz(o.s6s6 -vR)

At reverse bias of 4V, the junction capacitance is 6.866x l0-e F/crf .

( - - 4 - l q o t , ' , l ' " = [. ,=T=lq;4j =L

From Eq. 35, we can obtain

+=ry#+N,=&*r|' . ' vR>>vu,+ No =2(v^) r '

QE" r

2 x 4x (0.85 x 10- ' )2

1 . 6 x l 0 - t e x 1 1 . 9 x 8 . 8 5 x 1 0 - ' a

+No =3.43x10"cm- '

We can select the n-type doping concentration of 3.43x l015crn3

8. FromEq.56,

,-, rr f " ocnD,rN, lG = - L : l l n ,

Lo,"*ol- rf )+ o,e*n[-;-J]

[ . r - l 5 v l n 7 y l n l 5 I_ l 1 0 - t 5 x l 0 - t 5 x 1 0 7 x l 0 r t=l

. lxe.65x10e:3.8exr0 '6

and

2 xI l .9 x 8.85 x 10- 'o x(0.717 + 0.5)1 . 6 x 1 0 - ' e x l 0 t t

=12.66 x l0-5 cm=1.266 tm

9.

Thus

J g" ,= qGWr = 1 .6x lOtn x3 .89x10 'u x 12 .66x l0 - t = 7 .879x l0 - t A /cm' .

F r o m E q . 4 9 , a n d p - ^ = i l ' 'no ND

we can obtain the hole concentration at the edge of the space charge region,

n . , ( o r

) / - \ r / n c \

,^ =#"i i ; i ' -g{#lel; '- 'J =2.42x t0,, ,cm-,.l v D

J = J o(r , ) + J , ( - * o) = J ,G" ' r ' _ � t )

I v)

" - e o . o 2 5 e _ lJ"

v

3 0 . 9 5 - e o o 2 s e _ l

=V = 0 .017 V .

The parameters are

ni: 9.65x10e cm-3 Dn: 21 cm2lsec

Do:|0 cm2lsec eo:T.o:5xI0-7 sec

From Eq. 52 andBq.54

J,( r , \ =n ' :o- (suvr*'

Lp

10 .

l l .

-,)=nF*,z f ( qv " \ 1! i -" lel trr J - l IND L ]

I r--qrt Ix l e \ o o 2 s e l - l I

t lL J

" (q.os,. ton )'

-

7 = 1 . 6 x 1 0 - t t xl 0

5 ><10-

N o = 5 . 2 x 1 0 1 5 c m - '

ND

2 5 = 1 . 6 x 1 0 - t t x

::>

N t = 5.278 x 1016 cm 3

We can select a p-n diode with the conditions of Nn: 5.279xl016crn3 and Np :

5.4x 10lscrn3.

12. Assume[ s 4p {,r: 1O6 s, Dn:21 cr*/sec, and Do: 10 c#/sec

(a) The saturation current calculation.From Eq. 55a and to =,[Drrr, we can obtain

J^( - * r ) =no: ' * (4vr t r - l )=qLn

=

1 - _ Q D o P n o * Q D , n p o = o n : ( L E _ * t' L e L n " | . N D I ? p o N A

= r.6 x lo- ' �e x (e.os',0') ' [*. ,8. +.8]' [ lo ' ' l l to -u to 'u \ l to- " )

= 6.87 xl}-t'Ncmt

And from the cross-sectional area A: 1.2x10-5 cm2, we obtain

I , = AxJ " =1 .2x 10 -5 x 6 .87 x l0 - t ' = 8 .244x l0 - t7A .

(b) The total current density is

( q v \

J = J" l " ' - t l\ /

Thus

[;"t"1't*t-'],

F;)! ^ )

I o rn

I _o.r ,

( o r \= 8 . 2 4 4 x l 0 - r ? [ e o o r t , - r | | = t .

( u , \=8.244 x 10- r? [eo .o"n - t

r= f

244 x l0-t7 x 5.47 x 10" = 4.51 x l0-5 A

.244 x 10-"A.

13. From( q v \

J = J " l r n - l l\ /

we can obtain

v = "[f+]* r l = v :0.025e* ,[ l , to-' ,= )* , l - 0.78 v.0.02se L\/" / I L\t.z++" l0-' ' J I

14. From Eq. 59, and assume Do: l0 cnflsec, we can obtain

J-=af i " : *Q ' 'w" '1 r, No t,

= r.6 x lo.n /-lL (q'os * ton)' *lJ to* lo '5

l . 6x lO - te x9 .65 x10e

l0-u

vo, =0.0259,r, - lo' ' x lo'5- = 0.834 V(9.65 x l0 ' ) '

Thus

J n : 5.26x 10- ' l + 1.872x 10- ' J0.s34 + V^

2x l l .9 x8 .85 x10- ra x (Vo, +V^

1 . 6 x 1 0 - t e x 1 0 ' 5

( ._-[*-__-ml^

Il._ --l--lm[^

[l.- ._ff_-_m[^

m_ J. "nm! ^

m

mI _lm__nI[ ^

DI -n__1._nt[^

![^ -J-- .![!^

m_ _ff__!mn ^

!m __n-._.[_-!l[^

__n m!!^

ll-fi_ ro0ri

m -

m

Jm^

_!00^

Jm^

o:B:_.

olo0t0

WhenNo:1017 cn 3, we obtain

v^, =0.025g, -10 ' ' x l0 ' t - =0.g53 v(9.65 x l o') '

J n = 5.26x 10-'' +1.872* to-'.ft.lso + tu*

llJr]- trri.a.O

From Eq. 39,

Q o = 4 f , b " - p ^ " \ d *

-E

J

u-L uL u1_R<dIIl ll"llrtl

15 .

= n[l,o*(ftvrn -t) e-G-', \ / '04*

The hole diffusion length is larger than the length of neutral region.

Qo=ef ; {0 , -p , , )d *

= a ln *Q{ rtcr - l) e-G-.,),t" 4*

( qv \ f ' ; - t - t - t )=epnoct)1"' - l j le Lp -e "

)

: r .6xr0- 'e x" i#t l (-5xro . , [" - '1" * -" ;)

=8.784 x 10-3 Clcm' .

16. From Fig. 26, the critical field at breakdown for a Si one-sided abrupt

junction is about 2.8 +105 V/cm. Then from Eq. 85, we obtain

zr(breakdown uottugq=E{ = t:'"' (t, )'2 2 q

_ 1 1 . 9 x 8 . 8 5 x 1 0 - ' o x ( 2 . 8 x 1 0 ' ) ' , . - \ ,

2x l .6xro- , , -z- (10 ' ' /

=2ss v

:1.843 x 10-3 cm= 18.43fem

when the n-region is reduced to 5pm, the punch-through will take place first.

From Eq. 87, we can obtain

Zr' _ shadedar_eain F_is. 2ginsert =(!_)(r_y_)vB G.w' Iz \w^ )\" w^ )

( w \ ( w \ ( s \ / s \Vu '=Vu l ; l l 2 - - l =258x1 - l l z - - - : - - l =12 l v\w ̂ )\ It/^ ) \ 18.43l\ t8.43 )

Compared to Fig. 29, the calculated result is the same as the value under the

2xl l .9x 8.85 x l0- 'a x 258

1 . 6 x 1 0 - r e x l 0 t 5

condit ions ofW:5 pm andNa: 1015cnL3.

17. we can use following equations to determine the parameters of the diode.

J , =e ,p -n , ' , u ,0 , *Qwt l , ecv t2k r = "E tLesv tk r' ' \ " , N , 2 T ,

- ' \ t , N o -

vr=t"! =t,!" ' (*)." 2 2 q

=

AJ, = n" E:-eqv ,kt + Axr.6x l0-re " E b os * lot ) '. , 1 l T o N o , r , + A x | . 6 x l 0 _ , " x i , ; ? e a o 2 5 9 _ 2 . 2 x 1 o - 3

v, :E+ = ff{* ")-r = 130 =aH*#5 (ru,)-'

Let E.:4x105 Y/cm,we can obtain No:4.05x101s crn3.

The mobility of minority carrier hole is about 500 at No:4.05x l0r5

.' Dp:0.0259x500:12.95 cnf ls

Thus, the cross-sectional area A is 8.6x 10-5 cm2.

18. As the temperature increases, the total reverse current also increases. That is.

the total electron current increases. The impact ionization takes place when the

electron gains enough energy from the electrical field to create an electron-

hole pair. When the temperature increases, total number of electron increases

resulting in easy to lose their energy by collision with other electron before

breaking the lattice bonds. This need higher breakdown voltage.

19. (a) The i.layer is easy to deplete, and assume the field in the depletion region is

constant. From Eq. 84, we can obtain.

" w . ( r \ u . ( e \ o t /, I l 0 ' l = - - | d * = l = 1 0 0 1 . - - | x l 0 - ' = l l E " , n i , o t : 4 x 1 0 5 x ( 1 0 ) l o = 5 . 8 7 x 1 0 5 V / c mJ o \ 4 x 1 0 ' / [ a x l 0 5 /

4 V B = 5 . 8 7 x 1 0 ' x 1 0 - 3 = 5 8 7 V

(b) From Fig.26, the critical field is 5 x 105 V/cm.

Z"(breakdown uottu) :{ =''i;' (w r)'

- 12.4 x 8.85 x 10-ta ab x 105I Q * t ' ,uf '

2 x l . 6x l0

= 42.8 V.

I - t n l 8

2 0 , e - o n ' u = 1 0 2 2 c m - o2 x l } -o

y, =Y - + "" ' l2e "1" ' 1o1'" ' �E ^r 3 L q l

- 4E r"' |z * n,g l,s,Ls-.:to'

o 1"' * 1ror,1-,,,3 L 1.6 x l0- ' ' , j

= 4.84 xl}-,E"3 /t

The breakdown voltage can be determined by a selected t".

21. To calculate the results with applied voltage of V = 0.5 V , we can use a similar calculation

in Example 10 with (1.6-0.5) replacing 1.6 for the voltage. The obtained electrostatic

potentials are l.lV and 3.4x l0-o V, respectively. The depletion widths are

3.821 xl 0 -s cm and 1.27 4 x 1 0 -8 cm, respectively.

Also, bysubstituting V =-5 V to Eqs.90 and 91, the electrostatic potentials are 6.6V

and 20.3 x l0-4 V , and the depletion widths ue 9.359 x l0-5 cm and 3.12 x l0-8 cm,

respectively.

The total depletion width will be reduced when the heterojunction is forward-biased from

the thermal equilibrium condition. On the other hand, when the heterojunction is reverse-

biased, the total depletion width will be increased.

22. Es(0.3) = 1.424 + 1.247 x 0.3 = 1.789 eV

r/ - Esz A-E/ b i _ _ _ ' c _ ( E o r _ E r r ) / q _ ( E r r _ E r r ) / q

q q

= t.tle * o.^-gh o I \l=orr' -4r 1

,. l:,, = r.273 y

q 5x10" e 5x l0

r ^ , , t V r| 2N /E$.v^, l " I^ , - , - , - ,' L q N o ( e , N r + e r N n ) ) t

2x12.4xLI.46 x8.85 x l }- ta x1.273

1.6 x to - 'e x 5x1or5 ( tz .++11.46)

: 4 .1x10 -5cm.

Since Nrr, = N ,txz .-. xr = xz

. ' . W : 2x , : 9 .2x 10 -5 cm =0 .82 p tm .

1'

CHAPTER 5

l. (a) The common-base and common-emitter current gains is given by

do : 1&r = 0.997 x 0.998 = 0.995

o ao 0.995l - d ^ l - 0 . 9 9 5

= 1 9 9 .

(6) Since 1a =0 and lgr=l}xl0-eA,then lruo is toxlO-e A.Theemittercurrent is

Icno =(t+ p)truo

= ( t + t r ) . to x lo -e

= 2 x 1 0 { A .

2. For an ideal transistor,

d ' o = f = Q ' ! ) )

P' :&:ses '

Iruo is known and equals to t0 x t0-5 A . Therefore,

Iceo = (* gotruo

: ( l + 999) .10 x 10-6= 1 0 r n A .

3. (a) The emitter-base junction is forward biased. From Chapter 3 we obtain

vo, =kr 1n(N 't! 'l= o.orrnrf sl to'' 'z '-t-9'' l= o.nru u .

q \ n i - ) t p.65 xlo"f J

The depletion-layer width in the base is

4 =( ,, N n=,

I gotAa"ptetion - layer width of the emitter - base junction)' (N , +No )-

= ̂lz,(yolf =_+lr,,u, _r,)1 l q [ l r o ) \ ' , n - ' , o 1

_ /z .r.os * ro_,, f:::g:)f , \.= I '- ,-'' t; , rorj(.;,. roq;Ar.,l(0'es6

-0's)

=5.364 x 10-6 cm =5.364 xl0-2 trrm .

Similarly we obtain for the base-collector function

v^, = o.o25e"[?' ro' ' ' ro: -l = o.rn, u ."

L P.os " lo'Jr l

l4.254x706 cm:4.254x10-2 um .

Therefore the neutral base width is

Vl =Wn -Wr-W, =l-5.364x10-2 -4.254x10'2 = 0.904 Um .

(b) Using Eq.l3a

. | ^ \ 2

p,(0) = pnoe4vralkr = l-i ' ,rrolor - (9'65 x l0-'f eosloo2ss =2.543x l0r cm-3

N D - 2 x 1 0 t 1

4. [n the emitter region

D, =52 cmls L, =62,10-t

n Eo =(q gs - lo- ' ) ' =rg.625 .5 x l 0 ' 8

In the base region

= 0 . 7 2 1 x 1 0 ' c m

Do=40cmls Lo=f f i =J+o '10-7 =2x10-3 cm

^ - n,'-=(q'os ' ro-nY =465.613 .P ro = Vtr-

= -, "10--

= +o).1

In the collector region

Dc =ll5 cm/s Z. =fis to* =10.724x.10 3 cm

,rn =futrt=9.3r2x lo3' l o ' u

The current components are given by Eqs. 20, 2I, 22, and 23:.

Iuo

Iro

Iun

1,,

Iuu

l .6x l0- 'e .0 .2xI0-2 .40.465.613eos loozse =1.596x lo r A

0.904 x 10-o7 I uo =1 .596x l 0 - ' A

_ l .6x l0 ,n . 0 .Zx l0 - .2 .52 . 19 .625 ( ro r t ro r rn_ l )= t .04 lx I 0_ i A0.721x10-3 v

d , = f U r = 0 . 9 9 3 8

Fo = :ao :160.3l - d o

5. (a)

1.6 x 10- ' ' . 0 .2x10-2 . I l5 .9 .3 12 x l03= 3 .196x 1O- to A

10.724x10- '= I ro - I ro =0

The emitter, collector, and base currents are given by

I, = I to * Irn = l '606x10-5 A

Ic = Icp * Icn =1.596 x l0 5 A

I u = I r n * I u , - I c ^ = l ' 041x10 -7 A '

We can obtain the emitter efficiency and the base transport factor:

1,, 1.596 x lo-5Y- " ' = =0.9938'

I" 1.606 xl0- '

Iro 1.596 x l0-5* r -

I t u l . 5 9 6 x l o - 5

Hence, the common-base and common-emitter current gains are

(b)

(c) To improve y,the emitter has to be doped much heavier than the base.

To improve a, we can make the base width narrower.

6. We can sketch p^(x)l p,(0) curves by using a computer program:

0 . 4 0 . 6

DISTANCE x

In the figure, we can see when WlLo.O.L (WlLe=0.05 in this case), the

minority carrier distribution approaches a straight line and can be simplified to

Eq. 15.

7. Using Eq.l4, 1r, is given by

oco-

xv c 0 . 4

l- t .ornEl

Le lL, )

-a"".n[l]Lp lL, )

t , ( w - * \L p I z o )

,t"hf4l\1 , )

'*g)nrno

-r)

t lt l

tlll

'ulkr -

t-rrfL

rfr

lkr _

. l?)l

' a Ve '

'alkt

WL,

\e

74Yt

I'hl\

n o

e '

'th

| ,,[---L1:{All=qoTI*'^'- L,*[fJ] L'ry';]i

= qAT;E lQ,, *, r, -,). "".{fJ]

I ,o :A(-ro,H,^)

Similarly, we can obtain lro:

,r,=u(-no,H,=,)

=u(nilf oI

= nn.'=O"f ,L o l

=uDrf "o

l_' I ' n o

,*r4)\1, )

= ̂- r r,rln ^. r"' ^' * - ttl

8. The total excess minority carrier charge can be expressed by

g,:nn([r,e)- p,"fdx, w l -

- 1

=qAl I p ,o"o"u,o,1 l - | - ; laxJ o L - " " W )" t w

:qApnoeorol* O-+)l2prh

otr14tr.. -"evrolkI

2

_ qAWp"(0)4L

From Fig. 6, the triangular area in the base region i, wpo(O).

By multiplying thisz

value by q andthe cross-sectional area A, we can obtain the same expression as en.

In Problem 3,

1.6 x l0- te .0.2x10-2 .0.9M x l0{ . 2 .543 x l } t l

2= 3 . 6 7 8 x 1 0 - t 5 C .

9. lnEq.27,

I c = or, (f avulw -l)+ a,

_ qAD, p,(0)

W

=2Do qAep,(o)w.2 2

2D= *?Q'

'

Therefore, the collector current is directly proportional to the minority carrier

charge stored in the base.

10. The base transport factor is

l{""*'* -r)*I-. l ' l

sllillt - |

lL ' )I"^d , Z J ='

Ib tHV

LThus,

:.""nIlL)\1 , )

t - t (w) '2 lL ' )

=r-0t ' lzro

""'nI

For t4f Lo<<1, cosh(Vf L)=1.

d r =

,,,,,i',hfzl ""rh(L\\1, ) \1, )

z )

11. The common-emitter current gain is given by

R : d o - W r' o -

l - o o l - w r '

Since 7 = 1,

8.. = a'l - d ,

_ r-frr,'lz4') ,,t - [ -Vy' lzr, ' ) ]

=Qto' fw')- t .

rf Wf Lp <<1, then po=zLo'f W' .

12. Lo=r lDot , =^ /100.3 x10-7 =5 .477 x10-3 cm =54.77 pm

Therefore, the common-emitter current gain is

."./zll\1, ))

P' =2L,2 lW, =z(s ! . l l " to . : \ 'P t

Q " l o - ' ) '= 1500 .

1 3 . In the emitter region,

In the base region,

In the collector region,

In the emifter region,

In the base region,

Fpr =54.3+l + 0 . 3 7 4 x l 0 - r t . 3 x l 0 r 8

=87.6

D t = 0.0259 -87.6 = 2.26 cml s

p n = 8 8 + 1252 = 1186.63I + 0.698 x l0-r t .2x l0t6

Dp =0.0259.1186.63 =30.73 cm/s .

Lr.r- = 54.3 + 407

.= ,, = 453.82l + 0 . 3 7 4 x 1 0 - " . 5 x 1 0 ' '

Dc = 0.0259 . 453.82 = I l .75cm/s .

I

L, = ̂ tDp, =^lZ.Z6g.l0* =1.506 x l0 3 cm

n__ = f r i =

(9 .65 r ' ^nYr L,(,, N F 3r. l ir

= 3r.04 cm-j

L, = J3u734.10u = 5.544x10-3 cm

6.os ' ton Yn ̂ - = Y:::::LJ- = 4656 .13 cm-3

2 x l 0 ' o

14 .

ln the collector region,

L. --"111.754-10{ = 3.428x10-3 cm

/ ^ \ ,

,.^ -19'65 xlol- f = 18624.5 cm'35 x l 0 ' '

The emiffer current components are given by

, r, :Weo.6ro o2se = 526.g3x lo-6 A0.5x l0+

r _1.6xrc-t:. .1_0: ..?.?69.3r.04 Qo

4o.ozse_r)= t.OOe x l0_e A .' EP - r.506 x lo-3

\

Hence, the emitter cunent is

It = I tna Itu = 526.839 x lOj A .

And the collector current components are given by

, r^ _l .6xl} ' " .10-o -30.734.4656.13 eoqo.o2ss =526.g3x 10_6 A

0 . 5 x l 0 {

I - _1 .6x101e .104 .11 .754.19624.5 =1 .022x10rn A .'cP -

3.428 xro-3

Therefore, the collector current is obtained by

Ic = Ico '1 Ico :5-268x l0- A .

15. The emitter efficiency can be obtained by

do -- Tdr = I x 0.99998 = 0.99998 .

The value is very close to unigz.

The common-emitter current sain is

y - I tn - 526'83x lo{- = 0.99998 .' IE 526.839x l0-

The base transport factor is

I"- 526.83 x l0*f l _ \ r t* ' -

h - 5 2 6 ^ 8 3 * l o - u - ' '

Therefore, the common-base current gain is obtained by

B^ = oo - 0'99998 = 5oooo .

l -a" l -0 .99998

16. (a) The total number of impurities in the neutral base region is

% = fr Nnoe-,/tdx= wnol(l- r-*/,)

= 2x l0r8 . 3 x l0-5 ( -e- ' " 'o ' / ' . 'o- ' )= 5.583 x l0t3 cm-2

(b) Average impurity concentration is

9 c _ 5 . 5 8 3 x 1 0 ' 3W 8 x 1 0 - 5

=6.979 x 1017 cm-3

L7. For N, = 6.979x10tt "*-t, D, =7.77 cm3/s, and

L, = ,tD^r, = tll.l l . l0{ = 2.787 x 10 -3

cm

_, w2 , (sr lo- ' IAr =l - - - - - - - - -==l- - r- I - -

2Ln' zQ1u " to- ' f= 0.999588

I - = 0.99287l +

I . 5 . 5 8 3 x 1 0 ' 37 .77 lOte .10-4 ,

Therefore,

ao=wr=0 .99246

B o = : u : 1 3 1 . 6 .l - C / o

18. The mobility of an average impurity concentration of e .glg x l0r7 cm-3 is about

300 cm'�/Vs. The average base resistivity pu is given by

, , D t Q oD, N ELE

Therefore"

Ru -- 5 x to1 (p- u I w) = 5 x l0' - (o.ozes ltx 10r ) = 1.869 o .

For a voltage drop of kr f q ,

,, = #=

o.ol3e A .

Therefore.

I c = Fo I a = 131 .6 .0 .0139 = 1 .83 A .

19. From Fig. 100 and Eq. 35, we obtain

1" (r,A) 1. (mA) e, =#

0

5

l0

l 5

20

25

0.20

0.95

2.00

3 .10

4.00

4.70

150

210

220

180

140

Bo is not a constant. At low 1, , because of generation-recombination current, Fo

increases with increasing 1, . At high I B, vEB increases with l, , this in turn causes

a reduction of lzr. since Vru+Vur=Ytc=sV. The reduction of Vu, causes a

widening of the neutral base region, therefore po decreases.

The following chart shows Bo as function of I B. lt is obvious that Fo is not a

constant.

20. Comparing the equations with Eq. 32 gives

5 1 0 1 5 2 0 2 5 3 0

ls (trA)

I r o = a r t , a ^ I o o = a ,

d rI ro = ar, artd I no = dzz

o

Hence,

21. In the collector region,

,1/ \

/ \/ t

/ \/ \ .

d - : a z t* ' - o r - t Z . % . " *

LE De p,o

crr . I- : -- - n e r , , , W D c f l c o

r J _ . - . _

Lc Dp pno

Lc : ^[Dc% = Jr.tou =1.414 x lo .3 cm

ftco =f t ,2 lN, =(e.Os " rc t l f sx l0r5 =1.g63 x l0a cm- i .

From Problem20, we have

I"

. 14/ D, npnl + - . - . :

LE D, P,O

= 0.99995

, * 0 . 5 x 1 0 4 . 1 . 9 . 3 1lo-3 lo 9.31 x lo-2

d R - 1, , W Dc ftco 0.5 x l0{ 2 1.863 x lOa' -

+ , , , - t - * * " -

m 9 3 r . r o -= 0.876

rro=ctr,=n4+.ry:). ( r c . 9 . 3 1 x 1 0 2 1 . 9 . 3 1 )1 . 6 x 1 0 - t e . 5 x l 0 - a . l . * - l

| 0.5 x l0* t0* ): I .49 x 10- to A

rno=ozz=r4+.T)

= 1.6 xl0-re .5 xl0+ .( !2 ' t t" to ' 2 ' l '863x 104 ' )

\ 0 . 5 " 1 0 - t -

l A A " l l - t )=1 .7 x10- r4 A .

The emitter and collector currents are

I . . , . - \I , = I ro\ea,ett*t

- 1)+ u^l ^o

= 1 . 7 1 5 x 1 0 r A

L . , . - \I c = dr I rope'ut r ' - l )+ I *o

= 1 . 7 1 5 x 1 0 { A .

Note that these currents are almost the same (no base current) for Wf Lo <kl .

22. Refening Eq. 11, the field-free steady-state continuity equation in the collector region is

D-ld'",y)l_n,(,')-,0" _ o ." L d t z ) t ,

The solution is given by ( L, = ̂ lD {, )

"r(r\ = gr"''/r' *Cre-''lLc .

Applying the boundary condition at x'="o yields

Cre4r, +Cre-41. =0 .

Hence Cr = 0 . In addition, for the boundary condition at x'= 0 ,

Cre-oltt :C, =nc(o)

n.(o) = nroQ*'"ln -|]1 .

The solution is

n, &) = nro (eav" ul w - tp-'l t"

The collector current can be expressed as

,, = n(- n o,*|.=.J., [- n o,#1. =,)= q AL#(*il m t*r - t- r^(2"t-. "f) Qtrc,r

rr - r)

ar, (dr* lkr - l) - ou (f+vcnltr - 1) .

23. Using E,q.44, the base transit time is given by

tu =w'/2D, =$ji# =t.25xro-ro s .

We can obtain the cutoff frequency :

f, =lf2m u:l '27 Grrz

From Eq. 41, the common-base cutoff frequency is given by:

.f" = .f, I ao =# =1.27 SGHz .

The common-emitter cutoff frequency is

,f p =(t- a)f" =(t - o.f8)" 1.275 x10e =2.55 MHz .

Note that "f p can be expressed by

f B = (t - uo)f" =(t - aoY oo * .f, =* f, .Po

24. Neglect the time delays of emitter and collector, the base transit time is given by

t , = - J - � = 3 1 . 8 3 x 1 0 - " s ." 24, 2nx5 xl}"

From Eq. 44, l/'can be expressed by

w = ̂ lr4r, .

Therefore,

w=ffi=2.52x 10-5cm

= 0.2521"rn .

The neutral base width should be 0.252 pm.

25 . L,E , :9.8Yo xl .I2 = 1 10 npV.

( tn-\D,-.wl "i l

\ ^ , . ,

. . . B , ( t ,oo"?) : , ( t tomev l l0mev) :0 .2g .7F-q-exp[ 373r

- mk )

26 ffi="*(!o#"�J="*Lwhere

Eru(x) -1.424

0.02s9

E rr@) =1.424 + 1.247 x, x < 0.45

= 1.9 + 0.125x +0.143x, 0 .45 < x < l .

The plot of B,(HBT)/F, (Bni is shown in the following graph.

t.e.o.tesx*d.r/t3*

x

Note that B'(IST) increases exponentially when x increases.

27. The impurity concenhation of the nl region is t0ra cm-3 . The avalanche

breakdown voltage (for w rW^) is larger than 1500 V (ry^ >l00pm). For a

reverse block vottage of 120 V, we can choose a width such that punch-through

occurs, i.e.,

Thus,

When switching occurs,

That is,

v - qNoW', D T

- - -

28,

*- (# l=r .nuxro-3cm.

a , r + a , r = l

o,=osp'(*)=

. t J lu r l - |

t r I\ " 0 , /

= 0.6t - 0 . 4

25x70-a

39.6 x l0-u

0.6= -0.5

= 1 .51

Therefore.

J = 4.5J0 = 2.25 x l0-5 A/cm2

/ l x l0 - lA r e a :

- ' = " " " - = 4 4 . 4 c m t

J 2.25 xlo-5

28. In the nl -p2 - n2 trarsistor, the base drive current required to maintain current conductionis

1,' = (l - u")I* .In addition, the base drive current available to the nl - p2 - n2 transistor with areverse gate currert is

I , = q I n - I r .Therefore, when use a reverse gate current, the condition to obtain tum-off of the thyristor

is given by

Ir 1I ,

o r q I n - I s < G - u r ) I * .

Using Kirchhoffs law, we haveI * = I u - I s .

Thus, the condition for hrm-on of the thyristor is

, q + 4 - 1 ,t s / - t A '- o q

Note that if we define the ratio of llto 1" as tum-off gain, then the maximum tum-offgatn h* is

F * = % , .oc, + a" _l

1 .

CHAPTER 6

\...-.................-. - - -

METAL OXIDE n-TYPE SEMICONDUCTOR

EcEpEi

Ev

2.

EeEcEi

Ev

EcEi

ErEv

3 .n- POLYSILICON OXIDE p-TYPE SEMICONDUCTOR

EcEiErEv

-la",l

v

n- POLYSILICON OXIDE p-TYPE SEMICONDUCTOR

4.

(a)

(b)

E (x)

v6)

5. W, =2

C-,"

J " n *885x ro ' o xoo26h f 3+ l_ . , 1 \ 9 . 6 5 x I 0 ' ,- ' | J

l i x t o r v " * r ; ": 1 .5 x l0-s cm : 0 .15 I m.

tot6.

Vn7.

d +(e,, /e")W^W^ =o.l5p m From Prob. 5

i 'C^ i n :3.9 x 8. 85 x l0 -ra

= 6.03 x l0{ F/cm2 .

= 0 . 7 4 x 1 0 - 5 c m

8 x l 0 - 7 * 3 ' 9

* 1 . 5 x 1 0 - 5I 1 . 9

=t!n!o:o.o26h to" = =0.42yq ni 9.65 x l0'

, "=4at in t r ins ic v "=vne"

E J

E o : E r € " : 1 . 1 1€o*

V: Vo+yr,: Eod + y ":0.59 V.

1 . 6 x 1 0 - t e x 5 x 1 0 1 6 x l . 5 x l 0 - 5

_ l . 6 x l 0 - r e x l 0 r 7 x 0 . 7 4 x 1 0 - 5

1 1 . 9 x 8 . 8 5 " 1 0 F = l ' 1 1 x l o ' v / c m

. 1 t ox l 0 5 x " ' ' : 3 . 3 8 x l 0 5 V / c m

3 .9

:(r rt x lo5 x 5 x to-? )+0.+2.

8 . At the onset of strong inversion, V ":2V n ) V6:V7

thus, v6=$*r, uco

From Prob. 5, W* :0. t5fgm, y u:0.0261n[- t , ! to ' l r ] : O.O u[9.65 x 10' J

L o :--------:- : 3.45x I 0-7 F lcm21 0 *

. r / -. . v c -

3.45 x l0-?+ { . 8 : 0 . 3 5 + 0 . 8 : 1 . 1 5 V .

s. Q., =: [:,-

QO'

coA,V.. =

yq(rl,, >0, =ryfft)* rc',:8x10-e C/cr*

- 8x lo -e - =2 .3zx lo - ' � v .3 .45 x l0 - '

x (10-u ) ' l

/ = 5xl0-7

y * 5xl0-7

l r a10. Q* =i

lo rp",Q)dy

po,=e x5x10t t {x) , where 6(_r)

. ' . O ^ , - I

" 5 x 1 0 " x 5 x 1 0 - ' x l10 '

:4x10-8 C/cnf

: ' L V ' o - Q o ' - 4 x 1 0 - 8 - = 0 ' 1 2C , 3 . 4 5 x 1 0 - '

(l @ '= 1

10,. 6 x 1 O r n

V

:+ x 1 .6 x tO- 'n x l " S "10"110* ; , .10- " 3

I r l o {I 1 . Q", : ; l , y (qx5 xLo23 x y)dy

:2.67x10'8 Clcn?

: ' LV" -Qo ' -2 '67x10-B =7 '74x10- ' � V 'C 3 .45 x 10 - '

12. LVr, =% = +"4x N ̂ ,where N, is the area density of 'e*.f D C C d

M )

- l t { , - ! ' vou*c " - 0 ' 3 -xJ '+ }10 ? =6 .47x10 ' , c rn2 .

q 1 . 6 x 1 0

13. Since Z, << (Vo -Vr) , the first term in Eq. 33 can be approximated as7

I lt,C "(vo -ht/ u )Vo .

Performing Taylor's expansion on the 2nd term in Eq. 33, we obtain

(vo +2tyu ) t , , - (2Vu) t , , =(2Vu) t , , +) {zwu)r , 'vo - (2Vu)r , , =} f rw, l , rvo

Equation 33 can now be re-written as

- z ' n '{'" -l*" .E 'n\'*'1I'^=T l ' t ' t ' l - L Lo r l

=(|)p,c"(vG -vr)vD

where v, =ayu.JO'tTy

14. When the drain and gate are connected together, Vo =Vo and the MOSFET isoperated in saturation (V o > V o"*) . I o can be obtained by substitutingV, =V^* in Eq. 33

I ol,o*o = 1 n, "{W 2v,u)v^", {ry)[,""^

+ 2vru)'''

where Vo,o, is given by Eq. 38. Inserting the condition Q,(y = L)=0 into Eq.27 yields

VD"o,= . ^l2e"Own(Vo,* *2Vr) +Attu -Vc =0L ,

For Vo,o, <<2eu, the above equatioh reduces to

vo =vo -J'4@J +2tyu =v, ." c o

Therefore a linear extrapolation from the low current region to I o =0 will yieldthe threshold voltage value.

o.o26rn I s " to'u --l= o.oo u19.65 x l0- 'J

-rfv)'''l

k T . . N ,| ) . V =- ln ( - ) =

q n i

/-------:-;-Y: ' ' l t 'QNn -

C 3.45 x l0-7

:s-0.8 +(0.27) ' � I r-

: 3 .42V

r D"o, =zt!:l ' vo -vr)2 L

\ U

l 1 + - - -

I,l^ ' (o.zt),'

_ 1 0 x 8 0 0 x 3 . 4 5 x 1 0 - ?

2x l:2.55x10-2 A.

(s - 0.7) '

17 .

a l t TTherefore, r, : frl n=*^, =f F,C "(vo

: 5 * 5 0 0 x 3 . 4 5 x 1 0 - '0.25

: 1.72x10-3 S.

oln I zg. = frlvpuo,"t

= Tlt

c,vo

- 5 x 5 0 0 x 3 . 4 5 x 1 0 - ' x 0 . l

0.25:3.45x10-4 S.

1 8 . V, =Vru + Ay ul o l ?

,Vn=0.026t { - - : i - - )- 9 .65 x10" -

E"- 7 - u n -

-0 .56 -0 .42 -0 .02 : - l V2 . l l l . 9 x 8 .85x l 0 - ' o x 10 " x 0 .42x1 .6x10 - ' n

16. The device is operated in linear region, since Vo =0 .1 Y < (Vo -V r )= 0 .5 V

- v r )

x 0.5

1 . 6 x 1 O - t e x 5 x 1 O t o

3.45 x10-7

o"V , o = 6 - : ! - =

c"=

" 'V r = -1+ 0 .843.45 x l0 -?

: - 1+ 0.84 +0.49: 0 . 3 3 V

(Q., can also be obtained from Fig. 8 to be - 0.9S V).

n F= 0 . 3 3 + a ' B

3.45 x l0 -?

_ 0.37 x 3.45 x 10-?

1.6 x 10- 'e= 8 x l O t t c r n 2

0.7t9.

FB

V20. f . , = -t i*U/a =-0.56 +0.42= -0.14

v, = e., ? 2rru - 2.[€JN "W

(-

h?;, : . l I l .9 x 8.85x 10*'a xl .6x 10- ' t x l0t7 x0.42= -0.14 - 0.02 - 0.84 -

: - 1 . 4 9 V3.45 xl0-7

21. -0J : -1.4g * nFu =

3.45 xl0- '

, , - o ' 79x3 '45x lo r = l . 7x lo ' ' c rn2 ." l . 6 x l 0 - ' '

22. The bandgap in degenerately doped Si is around leV due to bandgap-

narrowing effect. Therefore,

Q^" =-0.14+ 1= 0.86 V. ' .V, = 0.86-0.02-0.84 -0.49 = -0.49 V.

z ) . v. :o .o26r [ to ' ' - ] :0 .0 , u[9 .65 x l0 ' /

Vr=Q^" ?+2ryu+'ry= - 0 . 9 g - l ' 6 x 1 0 - t e x l 0 t t

* 0 . * Oco

= 4 .14* l5 '2 x l0 -8

co

3.9 x 8.85 x l0- 'o 3.45 x 10- '3- d - d

v r >20= d . l l t l t 9 , ' >20 .143.45 x 10- ' '

.'. d > 4.57 x l0-5 cm : 0.457 prn

24. Vr =0.5Y at Io = 0.l fg{

9.1 = --- iJ--7 -logI olr.=o

bg 1rl vo=o = -12 . ' . I olro* = I x 10-' ' A.

25 .

^vr=a*utp;-lv;)' c o

Vn =o '026n( = - t -o ' ' - ^ . )=0.42Y'9 .65 x 10 "

'

a - 3'9 x 8'85 x-l0-ro 6.9 x ro-? Frcrf i"

5 x 1 0 ' 'AY, = 0. I V if we want to reduce Ip at V6: 0 by one order of magnitude,

since the subthreshold swins is 100 mV/decade.

0 . ,_ r /2x l .6x l0 ' ' x4 .9x8 .85x r0 - ' o x r017 ( ro ra . r r_ _Jo84)6.9 x 10- '

i .Vu, =0.83V.

26. Scaling factor r :10

Switching energy = *,a

. A)v'

,vco

C ' - t * - t Cd

A , - A

{

V ' = LIf

.'. scaling factor for switching energy :

A reduction of one thousand times.

From Fig. 24 wehave(r, + L)2 : (r, +[ry^\' -W.'

.'. A2 + 2Lr, -2lf/.r . = 0

L=-r j+ \ l ; ;zw*

1 1 1 1n . - - . - - - . - = - - - - : . = -

t< t( i 1000

27.

L '= L-2A,

L+-21-2^=r -A = t -2 (2 L 2 L L L I

From Eq. 17 we have

28. Pros:

Cons:

no. _ (space charge in tre toapezaid al regio! - space charge in tre rectangula r region )[ / r -' c o

_QN nW^ ,L + L', QN nW, qN nW,r, ( f W , ')- - - : - r , r T - - r ! .C o 2 L ' C o C , L [ 1 r j I

Higher operation speed.High device density

More complicated fabrication flow.High manufacturing cost.

l .2.

l .2.

29. The maximum width of the surface depletion region for bulk MOS

nl _" le ,kT ln (Nn/n , ), m - L 1 l -

Y Q,Nn

=r .-1/ 1.6;m

= 4 .9x l0 * cm= 49 rnn

ForFD-SOI, d , i 1W^ =49rwr.

30. v- =v-^ +2tu- *4Nnd"'t rD t D C.

v,u = e^" = - + -+^(+) = -f -o 026tnt##) = -, o, u2uru =z*!!n(L) =0.92Y

3 1 . At , qNnLd

r il\l/ .7 =

' C o

1 . 6 x 1 0 - t n x 5 x l 0 t t x 5 x 1 0 - 7

For the trench capacitor

A:4x 7 prfr+ I pm2 : 29 pn?C :29 x3.45 x10-1s F : 100 x l0-1s F.

3 3 . I = C d V = 5 x 1 0 - t a * ' ' t

- = 3 . 1 x 1 0 - " Ad 4 x 1 0 - '

q n i

3 .9x 8 .85x 10 - ' aC o =

4xl}- '

".V, = -1.02+0.92+

= -0 .1+0.28

= 0 .18 V.

734. f " = ; ! - tpc i (V , -Vr )

4 x l 0 - 5 : A ( - 5 - V r )

I ' 1 0 - 5 : A ( - 5 + 2 )L Y = 7 - ( - 2 ) = 9 Y .

= 8.63 x10-t F/cm'

l . 6x 10 - te x 5x 10 t t x3x l 0 -u

8.63x 10- i

8 .63 x 10-?= 46mVThus, the range of 27" is from (0.18-0.046): 0.134 V to (0.18+0 .046) : 0.226 V .

32. The planar capacitor

^ . F , z _ ( 1 x 1 0 r ) ' � 3 . 9 x 8 . 8 6 x 1 0 - 1 4 = 3 . 4 5 x 1 0 _ r , Fc: A'"/a = ----a.lo*

35. V, =Vru +2r,ltu

' V r = 7 V

8 .854x l 0 - ' oCo =3 '9 x

l 0 - '

V- =4 .98 +0.42+

=3.45 x 10-' Flcm2

( r o ' i )V" =0.0261n1 ' -

= l=0.42Y( 9 . 6 5 x l 0 ' /

O , Evou =Q^, - t= - ; -vu -o

=-0.56 -0.42 = -{.98 V

23.45 x 10-8

Q , 5 x 1 0 " x l . 6 x l O - ' eLV-- =

co 3.45 x 10-8

V=-2 .32

Vr =4.34 -2.32

=2.02Y.

= - 0 . 9 8 + 0 . 4 2 + 4 . 9

=4 .34 Y

CHAPTER 7

1. From Eq.l, the theoretical banier height is

Qa, : Q. - X= 4.55 - 4.01 :0.54 eV

We can calculate Z, as

v, =!! yr5= g.g259 *2'86 x 1o''

, = 0. r88 v" q N D 2 x l 0 r 6

Therefore, the built-in potential is

Vo ,=Qr , -Vn = 0 .54 -0 .188 = 0 .352V.

2. (a) From Eq.l1

de I C,) _ (6.2 - L6):I0', = _2.3x 10,0 (cm,/F),/V

d v - 2 - 0

) f _ t - lN ^ =

- | l = 4 . 7 x 1 0 ' u c m - '" qe" Ld(l /C') I dV )

v- =t!n lk- = s.6259 ^( +: * to".l= o.* u" q ND \4 .7 x l 0 ' " /

From Fig.6, the intercept of the GaAs contact is the built-in potential V6i,

which is equal ta 0.7 V. Then, the barrier height is

Qu, =Vo, *Vn =0.76V

(b) J" =5x10'7 Ncmt

Ar = 8 NK2-cr* for n- type GaAs

J, = A.T'e-qQBt1 tkr

eu. = {'{I\, = 0.025erf r I (1ggJ' I = o.rr.,,q / " | 5 x l 0 - ' J

The barrier height from capacitance is 0.04 V or 5Yo larger.

(c) For V: -l Y

=2.22x 10-t cm=0.222 tm

4N'w =1.43x105 v/cmes

C =L=5 .22x10-8 F /cm2W

3. The barrier height is

The maximum electric field is

l..l =1. (r= o)l =QN n y4t =q

Qu, = Q^ - x= 4.65 - 4.01= 0.64 V

v, =L! yr{s-=6.6259 *vr(2.8orlo'n l=0.,r, u" q N D [ 3 x l o ' u )

The built-in potential is

Vo , =Qr , -V ,=0 .64 -0 .177 = 0 .463V

The depletion width is

= 0.142 hn

(1 .6 x 10 ' ' ) x (3 x 101u) x (1 .42x t0 r ) =6.54 x 100 V/cm.1 1.9 x (8.85 x 10- 'n )

4. The unit of C needs to be changed from pF to F/c#, so

1rc2 -- t.74xl01s -2.r2xl}ts 4 1crfinf

Therefore, we obtain the built-in potential at IlC2 :0

,^ - l '57 x lo t j - = 0.74y" ' 2 .12x10"

2e,(Vo, -V)

4No

2x l l .9 x8 .85 x l0 - 'o

1 . 6 x 1 0 - t e x 3 x 1 0 t 6

From the

d(J-)\ c ' )dn

From Eq.

N r =

given relationship between C and Vo,we obtain

: -Z.l2xl}ts 1cn?ny2V

t 1

2 f - 1 I_ t _ |

qe, lag tc ' ) / dv l2 _ [ r ' )

ffil.rlr.ro"j

= 5.6x 10" cm- '

v- ={1n &- =0.025e*[z.so* r0' ' ]=0.,u, u" q ND I S .0x l0 ' " J

We can obtain the barrier height

Qun =Vo , *Vn =0 .74+0 .161 = 0 .901V.

5. The built-in potential is

v t ,=Qan_T" *O

= 0.8 - o.o25gr[z'se " ro" ]I t .s><lo" )

= 0.8 - 0.195= 0.605 V

Then, the work function is

Q^ =Qr^ * X:0 .8 + 4 .01= 4 . 8 1 V .

6. The saturation cunent density is

J . = A rT2 " *o ( - qQu" )

\ r r )= I lo x (3oo), >( "*ol, ,-,9

', )

\0.025e /:3.81 x l0*1 Alcm2

The injected hole current density is

, - Q D o n , ' - 1 . 6 x 1 0 - ' n x 1 2 x ( 9 . 6 5 x 1 0 ' ) ' r , ^ . .J * = i:t= ffi

= l.lex l0-" Ncm'

Hole cunent J ,"1eqn'k' -11

Electron current J"(etvlkr -l)

= J r o _ t . l g x l o - r r = 3 x l o _ 5 .J " 3 . 8 1 x 1 0 - '

7. The difference between the conduction band and the Fermi level is given by

( d t ' t o " \V^ =0.0259 t" l :* l :0.04V.

\ 1 x 1 0 " )

The built-in potential barrier is then

Vt, =0.9 - 0.04 = 0.86 V

For a depletion mode operation, VTis negative. Therefore, From Eq.38a

V r = 0 . 8 6 - V , < 0

q a ' N ^ l . 6 x l O - ' n a ' x l O ' tr r= -zE :=m>0 '86

1 . 6 x 1 0 - 2---------------- a" >0.862.19 x l0 - ' '

a > 1.08 x 10-5 cf i r = 0. 108 i m.

8. From 8q.33 we obtain

5 x 10-o x 4500 x12.4x8.85 x 10-'a' o =" 6 m

0 . 3 x 1 0 - o x 1 . 5 x 1 0 - a

:1 .28x10-3 S: 1 .28 mS.

_ Q N o a ' _ 1 . 6 x 1 O - t e x 7 x l 0 t 6 x ( 3 x 1 0 - s ) 2 _ A A . ,2e. 2x12.4 x 8.85 x l0- 'o

Es2i l *o . t

VP

9. (a) The built-in voltage is

vo, = Qun -v, =0.9 - 0.025hIo 11, t0 ' ' l : 0.86 V[ 1 0 " /

At zerobias, the width of the depletion layer is

:1 .07 x 10 -s cm

: 0 . 1 0 7 p m

Since I/ is smaller than 0.2 pm, it is a depletion-mode device.

(b) The pinch-off voltage is

v " _ e N o a ' _ l . 6 x l 0 - ' n x 1 0 t t ( 2 x l 0 r ) : 2 . 9 2 y' 2e " 2x12 .4x8 .85x l 0 - ' o

and the threshold voltage is

Vr : Vri- Vp : 0.86 - 2.92 : -2.06 V.

10. From Eq.3lb, the pinch-offvoltage is

2x1.09x10-" x0.86[ . 6 x 1 0 - t n x 1 0 t 7

, , _ Q N o a ' _ l . 6 x l o ' n x l o ' t ( 2 x l o

, - - - 7 - - l): o.ruo u2 t , 2x l2 -4 x 8 .85x l 0 - ' o

The threshold voltage is

Vr : Vni- Vo : 0.8 - 0.364 : 0.436 Y

and the saturation current is given by Eq. 39

I r"o, :t44v" -Vr)'2 a L \ s

50 x 1:0r;+2'1:j ':851t0: : i

4s00 (0 - 0.436), : 4.7 x10* A.2 x ( 0 . 5 x 1 0 " ) x ( l x l 0 - o )

l l ' 0 '85- o 'ozsgh(4 '7"10" l - - lux l ' - rexN^ )

\ N , ) 2 * 1 2 . 4 , 8 J 5 . l 0 - " a - : 0

For No : 4.7 x 1016 crn3

( _ , t ,

a: | 0.85 -0.0259^4'7 xl}" )"

(3'7xr} ')- t N D ) ^ l N "

: 1 . 5 2 x l 0 - s c m : 0 . 1 5 2 p m

For Nl : 4.7 x 1017 crn3

a:0.496 " 10-s cm:0.0496 pm.

12. From Eq.48 the pinch-off voltage is

. Mv, = Qnn - - ' -v ,q

:0.89 -0.23 - (-{.5)

: 0 . 6 2 V

and then,

eNnd , ' 1 .6x l0 - te x3x10 t t " "y . = - : ' a ' : 0 . 6 2 V'

2e. 2x12.3 x 8.85 x 10- 'o

d r : 1 . 6 8 ' 1 0 6 c m

dt: 16.8 nnr

Therefore, this thickness of the doped AlGaAs layer is 16.8 nm.

13. The pinch-offvoltage is

v, -_ QNodl - l .6x lO-rn x l0 's x (50x l0-7) : l .g4 v2e" 2x12 .3 x 8 .85 x l 0 -o

The threshold voltage is

AE, r./V , = Q u , - " _ � r ,q

:0.89 -0.23 - 1 .84

: - 1 . 1 8 V

When nr:1.25x 1012 crn2,we obtain

12 .3 x 8 .85 x lO - to r - i'" : ffi

x [o - (-l'18)] = r'25 xrot2

and then

do +58.5 : 64.3

do: 5 .8 nm

The thickness of the undoped spacer is 5.8 nm.

14. The pinch-offvoltage is

r r q N r d l l . 6 x l 0 - ' e x 5 x l 0 ' 7 x ( 5 0 x 1 0 ' ) 'l - ' U | _ \ - - - ' - 1 o ' | \ . ''

28" 2x12.3x8.85 x 10- 'o

The barrier height is

AFQun =V, +

*c *V, = -1.3 + 0.25+ 1.84 = 0.79V

q

The 2DEG concentration is

1 2 . 3 x 8 . 8 5 x 1 0 - ' o

l . 6 x l 0 r n x ( 5 0 + l 0 + 8 ) x l 0 - ?* [o - 1- t.:yf = |.zgx t o, cm-2f r r =

1 5 . The pinch-off voltage is

vr

t6.

, , - QNod l - r < - l . 6x lo - tn x l x lo t8 xd f'

2e 2x12 .3x8 .85 x10*

The thickness of the doped AlGaAs is

d r =1.5 x 2 x 12 .3 x 8 .85 x I n - r+

f f i :4 .45x10-8cm:44.5nm

A F= Q B, _ *_=S_ _ V p =0.9 _ 0.23 _ 1.5 = _0.93 V.

The pinch-off voltage is

aN^v ^ - ' " d :' 2 e

1 . 6 x 1 0 - ' t x 3 x 1 O t t(rs * to' )' : z.t v2 x 1 2 . 3 x 8 . 8 5 x 1 0 - t o

the threshold voltage is

AtrV, = Qr, -

*c -V,q

: 0.89 -0.24 -2.7

: -2.05 Y

Therefore, the two-dimensional electron gas is

1 2 . 3 x 8 . 8 5 x 1 0 * ' of l r =

l .6x 10- 'n x (35 + 8) x 10-7* [o - 1-z.os)]= 3.zx 1o " crn2

l . Z o :r: . 2

CHAPTER 8

t o = 2 * 1 0 - 1 2 x 7 5 2 = 1 1 . 2 5 n H .L = C

2.

3 .

3 x 108 m/s r:==" x { l 1 6 = 1 . 6 1 6 G t l z .a

Vo, = (E, / q) +V^ *Vo : 1.42+0.03+0.03 : 1.48 V

'=^W1 / q I N , N , )

= { t - r - ' ' \ l o " x r o ' ' / '

= 1.89 x 10-6cm = 18.9 nm

c =k-r ' l6x lo- t2 = 6.13 x lo ' F/cmz .W 1.89 x 10- '

4 r="(t)"*? t).,,*o(#)From Fig. 4, We note that the largest negative differential resistance occurs between Vp<V<Vq

The conesponding voltage can be obtained from the condition &ttdV: 0. By neglecting the

second term in Eq. 5, we obtain

:{ro)'.0;GI

#=(+-T)"*l t)#=(+.#).*[' -+)=,. ' .V - 2Vp =2x0 .1= 0 .2V

#|"'.=ifr- %#]"4' #) = -0 0367^=(#1,,")- '= -27.2,, .

5 (a) *":l ( n a*=+t:&d-=#*| , \ 2

_ ( l 2 x l 0 - , 1 =137 { l2(5 x l } -a ) 1 .05 x 10- ' ' x l0 '

(b) The breakdown voltage for Np: 101s crn3 and W: 12 pm is 250 V (Refer to Chapter 4).

The voltage due to {sc is

1Rr. = ( tO' * S x t0 ' )x 137 =68.5 V

The total applied voltage is then 250 + 68.5 :318.5 V.

6. (a) The dc input power is l00V(10-'a1 : tOW.For 25Yo efficiency, the power dissipated as

heat is I0W(l-25%):7.5 W.

LT - -7 .5W x (10 'C /W) =75 'C

(b) AVB =(60mV/"C)x75 ' C=4.5 V

The breakdown voltage at room temperature is (100-4.5):95.5V.

7. (a) For a uniform breakdown in the avalanche region, the maximum electric field is

E^:4.4 xld V/cm. The total voltage at breakdown across the diode is

4 =E,xu.[- -f), w-xn)

= 4Axt d(0.+ x t on) *(+.+. r O - )r1.6 xl0- 'e x 1.5 x1d2

3- 0.a)x 10*1.09x10-"

=17.6+57.2=748V

(b) The average field in the drift region is

572 =Z .2x l05V /cm(3 - 0 .4)x l0 - "

This field is high enough to maintain velocity saturation in the drift region.

( c ) f = , u ' , = ,

l o t . , = l 9 G H z .

2 l t r - xn ) 2 (3 -0 .4 )10 -4

8. (a) In the p layer

s r ( x ) : r ^ - q y ' t o < x < b : 3 1 t mE"

E2(x )+ . ^ -W b< x< I l : t 21 tmq

E2(-r) should be larger than 105 V/cm for velocity saturation

" 'E^ -QN 'b ' 1g 'ts

o r E m > 1 0 5 + q N ' b

= 1 0 5 + 4 . 6 6 x 1 0 - " N 1 .q

This equation coupled the plot of E, versus N in Chapter 3 gives

Nt :7 t 1015 cm3 for E^: 4.2 x lOs V/cm

. . . v * = ( e . - e r ) b

+ E 2 w : ( 4 . 2 - l ) x 1 0 5 x 3 x l 0 { + l ' s x g x l 0 "o 2 z ' - "

: 1 3 8 V

W - b _ ( 1 2 - 3 ) x 1 0 -(b) Transittime t : ;=ffi

: Qxlg-rs : 90 ps .

10. (a) Refening to Chapter 2, we have

Ncu:r(ry\, =*,,(;),

=4.7 x1g,r ( t 'z*o

) ' =o. rx 10r7 x 7 l=3.33x l0 , ,cm-.\0I7m0 )

(b) For T":300 K

NCU oun, . -A E t L , r , \ - ? r . , ̂ - . ^ (

_ �0 '3 lev ) - t ,Ncz-exp(-aE lkq): ztxexn[ffiff

)=rtxexp (- 1r.e7)

: 4 .4x104

( c ) F o r L : 1 5 0 0 K

9. (a) For transit-time mode, we require n6L > l0rz cni2 .

no xl}tz / L =lotz /1x lor - lorucm-'

(b) r: L/v: I}a / 107 - l0-rr s: 10 ps

(c) The threshold field for InP is 10.5 kV/cm; the corresponding applied voltage is

v =(to's:to' )(, ' ,0- ')= o.52sv[ 2 ) "

The current is

I = JA= (qnry, )a =(t .A" I 0-te x 4600x l016 x 5.25 x 10, )x 10{ : 3.g6 A

The power dissipated in the device is then

P = I V = 2 . 0 2 W .

Ncu o-^(- ,r t ] t L.r \ --r . , ^- ,J -0 '3iev ).rr/.r-

exP(-Ar: I k T) = 7 | . "*pl 'oxlpoo l :oo) )=

7 | " "*p (- n94)

= 6.5

Therefore, at T" : 300 K most electrons are in the lower valley. However, at T" : 1500 K ,

87Yo, i.e.,6.5/(6.5+D, of the electrons are in the upper valley.

I l. The energy E" for infinitely deep quantum well is

E n = h "

n '8m't

l*:1#e'x',)l :+LE,=4*

L.'. LEt = 3 meV , LE2 = 11 meV .

12. From Fig. 14 we find that the first excited energy is at 280 meV and the width is 0.8 meV. For

same energy but a width of 8 meV, we use the same well thickness of 6.78 nm for GaAs, but

the barrier thickness must be reduced to 1.25 nm for AlAs.

The resonant-tunneling current is related to the integrated flux of electrons whose energy is in

the range where the transmission coefficient is large. Therefore, the current is proportional to

the width A,En, and sufficiently thin baniers are required to achieve a high current density.

CHAPTER 9

1. fw (0.6 gtllrr) = I .24 / 0.G 2.07 eY (F romEq.9)

oc(0.6 pm):3xlOa crnr

The net incident power on the sample is the total incident power minus the reflected

power, or 10 mW

I , \

1 0 " [ _ e - 3 , 1 0 ' t { J = 5 x t O r

W:0 .231 u rn

The portion of each photon's energy that is converted to heat is

hv - E, _2.07 -1.42 =3l.4yo

hv 2.07

The amount of thermal energy dissipated to the lattice per second is

3 l .4Yox5:1.57 mW.

2. For l": 0.898 pm, the conesponding photon energy is

E = l '24 = 1.38 eVh

From Fig. 18, we obtain "r 1arc.fCa0.7As):3.38

sin Q = -+

= += 0.2958 ) o" = 17"12' .fiz 3.38

Effi c ie ncy - 4n'n' (r - c?: o")- + x t x g'l s [t - c9!(l z' t z')]

@, *f i , ) ' (1+ 3.38f

= 0 .0315 =3 . ISYo .

/ \ 2_ f 3 . 3 9 - l lR = l - l = 0 . 2 9 4

\3 .39 + 1 /

(a) The mirror loss

3. From Eq. 15

f i l l ) = t , h , , f - l - ' ) = 4 0 . 5 8 c m - , .L \ R / 3 0 0 x 1 0 - " \ 0 . 2 9 6 )

(b) The threshold current reduction is

J,o(R = 0.296) - J,o(R, = 0.296,R, = 0.9)

lo*! l,f1)l -l o*rr[--r-)l_L r \R / J L 2 r [R ,R , / j

o* !"fr')L \ R i

4 0 . 5 8 - t

, h f t

)_ 2 .300 x l0 - - \0 .296 '0 .90 /

l0 + 40.58=36.6%o.

4. From Eq. 10

s i n @ = \ - i r = i r . s i n O .n2

From Eq. l4

r = I - exp (- c Li d)= t - ""p(- 8 x r0' . 3.6(1 - sin e" ). 1 x 1 0 * )

F o r 4 : 8 4 o n r : 3 . 5 8 n : 0 . 7 9 4

Q: 78o nz: 3 .52 r ; : 0 .ggS .

5. From Eq. 16 we have

m L = 2 i L .

Differentiating the above equation with respectto ), we obtain

n d m ^ , d n/ 1 e - + m - z L _ -

dL d^

Substituting Zitll" for m and letting dmldJ,: - Lm/L2,yield

{-}!\*z! =2LE\ ^ 2 ) 1 i l "

:. a,).=

and

fttm

znrl r-(1\( g\l| \n ) \dL))

6. From Eq.22

r:!I..| '(fl andEq 15 R= (=)'

Rr : 0.3 17, R2 : 0.31 I

g(a+" )= #a["'.#'(#)] = 270

g(zs' )= #*['*. **o"'(#)] = zt.

t rnf ' )= ' hf l)2 L ' ( R . 0 . 9 9 l t 0 0 x l 0 - a ( R /

For Rr :0.317

*^Gi "*l ---1-_-'(#), L, -50 pn

For R2 :0.311

#'["#-) =-*-'(#) >Li=5043 1t'�t

7. From Eq.23a

J,o =ro. ftoo

*

For R :0.317

' , h( r )l= ,ooo Ncm',2 x l 0 0 x [ 0 ' \ 0 . 3 1 7 x 0 . 9 9 ) )

'

and so I,n : 1000x100 xl0-o x5x 10+ = 5 nrA

For R: 0.311

FnI]> Fz : 0.1x0.998/0.7 64 : 0. I 3

J,o =7.66,.[roo h( | )' l = ,uu Alcm-,

L 2 x l 0 0 x l 0 - * \ 0 . 3 1 1 x 0 . 9 9 ) ) '

and so I,a =766 x 100 x 10* x 5 x 10-o = 3.83 rnA .

8. From the equation, we have for m:0:

4 t4nL4+ 4nLL = o

which can be solved as

There are several variations of + in this solutions. Take the

practical one, i.e., fuB g fuo, gives l"s :1.3296 or 1.3304 pm.

d- 1'33 =0.196 rrn

2 x 3 . 4

9. The threshold current in Fig. 26b is given by

I*: Io exp (Zl 10).

Therefore

E = J-dI ,o - I = o.oo9 r (, c)-' ,' - I ,o dT l lo

If To:50 oC, the temperature coefficient becomes

(2sa)

(25b)

solution which is the only

1

t = ! = 0 . 0 2 ( , C ) ' .- 5 0 \ /

which is larger than that for To: 110 oC. Therefore the laser with To: 50 oC is worse

for high-temperature operation.

10. (a) Atr: Q Qt"+ 1:n\ enA

- ' - Ln =electron- hole oairs=, M

.oltt, + prb,a

2.83x l0 - '- = t u c i l l

l .6x l0- ' ' (3600 +t700{10/0.0)(zx tx l0- ' � , f

0) ? - 2'83 xlo 3 =l2o us

23.6

(c) nn(t)=^n exp(- tlc)=r0""*n[-#h] =2.5x10e cm-3.

l l . From Eq.33

r _ = n( o.ss. to* ). I rooo .o " r o-' ' . sooo )P ' \ ' 3 " q ) \ t 0 x l O - o )

=2.55x10-u = 2.55 1tA

and from Eq.35

t t -E 3000. 6 x l0- 'o .5000(raln=

r =---

1o; r-, = t '

12. From Eq. 36

, :( L\('--l ' =fgl P\= o f41)' ( q ) \ n v l l P . o , ) \ q ) \ q )

The wavelength 2"of light is related to its frequency v by v = c/L where c is the velocity of

light in vacuum. Therefore hv /q: hc I 2q and h: 6.625x10-34 J-s, c : 3.0x l0l0 cmls, q :

1.6x10-re coul. I eV : 1.6x l0-re J.

Therefore, hv/q:1.24 / ),fum)

Thus, 4: (Rx1.24) / Land R: (rZU / 1.24.

13. The electric field in the p-layer is given by

r , ( x ) = u ^ - T ' N t t o < x < b ,€"

where E,n is the maximum field. In the p layer, the field is essentially a constant given by

r, (x)= ,^ -9!t!- b <x <wts

The electric field required to maintain velocity saturation of holes is - lOs V/cm.

Therefore

qN'bE- -J I -J" > 16s

€ r

or

E . > 1 0 5 * 4 1 ! ' b = 1 0 ' + 4 . 6 6 x 1 0 - , , N r .q

From the plot of the critical field versus doping, the corresponding Em are obtained :

N1 :7xl01s cm-3

E^:4.2x105 V/cm

The biasing voltage is given by

,, =fui& *E2w =":,q*-lo*) + ro, (r x ro-o)

= 138 V.

The transit time is

, - (w - u) _�n1 lg* =e x ro-,, =eo ps.vs 107

14. (a) For a photodiode, only a naffow wavelength range centered at the optical signal

wavelength is important; whereas for a solar cell, high spectral response over a broad

solar wavelength range are required.

(b) Photodiode are small to minimize junction capacitance, while solar cells are large-area

device.

(c) An important figure of merit for photodiodes is the quantum effrciency (number of

electron-hole pairs generated by incident photon), whereas the main concern for solar

cells is the power conversion efficiency (power delivered to the load per incident solar

energy).

15 (a) 1" =AqN,N,(+^E.!^T-)"-",u' [ N , 1 C N o l t o )

= zft.sx to-'n[z.so xto'nfu..66x 10'n )x( == t * .8 * , = ̂E) ,s - , , , " ,1 r ,I t . z * 1 9 t e ! 1 9 - s 5 x r o ' e 1 s * t o - ' J

-

= 2.43 x to2o (s.al * 1g+p-+t z

=2 .28x l 0 - ' ' A

I :1 ,Q* l r ' ) - t ,

l l l=tr-1"(etvtr' -r1

0.3 0.4 0.5 0.6 0.65 0.72.5x10- 1.1x10- 0.55 26.8179 1520 (mA)/ 1

95 95 94.5 68.2 -84

(b) v^. =u^( !-\= 0.025e*[ nt " 'o'.- )= o.u, uq [1" , \ .2.28x10-" )

(c) P= I,VQevrw -t)-trrt

o = 1"(rev/t' - t) * t, #enrlr,

- I,

I,etvlkr (l + tt) - t,

dP

dV

.'. eon/o' - IL

_t!n(r.sL\_tr1q \ . k r ) q )

1" (1

= 0.64

rI= I t l vo ,L

+ v )

VVm

P^ = I,V^

= 9s x 10-3 [0.68 - 0.025e n(t + z+.t)- 0.}zssl

=52 mW

1 5 0

16. From Eq.38 and 39

I = I , ("0,0, - t )- t ,and

t r . ( r , . ) r r . ( r , \y _ - _ n l " + l l = _ l r l l - |q \1" ) q 1 .1"1

I , = I t€ -qv lk r - 3 . e -o6 fao7ss5 = 2 .493 x

I = 3 - 2.493 xlO-ro . evloo2sss and P : I V

1 0 - t 0 A

V I P0 3 . 0 0 0 . 0 0

0 . 1 3 . 0 0 0 . 3 00 . 2 3 . 0 0 0 . 6 00 . 3 3 . 0 0 0 . 9 00 . 4 3 . 0 0 200 . 5 2 . 9 4 . 4 7

0 . 5 1 2 . 9 1 4 80 . 5 22 . 8 6 4 9

0 . 5 3 2 . 8 0 4 8

0 . 5 4 2 . 7 1 4 6

0 . 5 5 2 . 5 7 4 l0 . 6 0 . 0 0 0 . 0 0

.'. Maximum power output : 1.49 WFill Factor

pp:I^V^ = P- =I rV* I ,V* 0.6x3

= 0.83.

17. From Fig. 40

The output powers for &: 0 and &: 5 C) can be obtained from the area

Pr (&:0) :95 mAx0.375V:35.6 mW,

Pz(&: 5 C)) : 50 mAx0. l8v:9.0 mW

.'.For4,:6 Pr/ Pt : L00%o

For& :5 O Pz l P t :9 /35 .6 :25 .3Yo .

18. The efficiencies are 14.2o/o (1 sun), 16.2% (1O-sun), 17.g%(100-sun), and 18.5%

(1000-sun).

Solar cells needed under l-sun condition

aI€

B

2 . 0 0

1 . 5 0

1 . 0 0

0 . 5 0

0 . 0 0

0 . 5

V (vo l t s )

t .49

4(concentrat ion) x P,, (concennat ion)rfi - sun) * P,, (l - sun)

-16'2Yoxlo =11.4 cel ls for 1o-sun14.2Yo xl

=ll,Y|19 =ns cells for loo-sun14.2o/o xl

- l8'5% x 10 = 1300 cells for 1000 - sun.14.2Yo x l

CHAPTER 1 O

l . C o : 1 0 1 7 c r n 3/.g(As in Si) :0.3

0.9

45

0.6

30

0.40.2

l 0

1 6

1 4

o 1 0

- b 8

6

2

0

Cs ftoCo(l - 1,11M0)*-t

: 0.3x 1017(1- x)-o z: 3x 101641 - i l50)0.7

/(cm)

Cs(cm-3) 3 .5x 10 4.28x10 5.68x l0

2. (a) The radius of a silicon atom can be expressed as

Itf = - g

8t;

V Js o r = - x 5 . 4 3 = 1 . 1 7 5 A8

(b) The numbers of Si atom in its diamond structure are 8.

So the density of silicon atoms is

8 on =---== ---+ = 5.0x 1022 atomVcm 3

o' (5.434)3

(c) The density of Si is

M / 6.02x 10 " 28.09x5 x l0 22O = -ff = -ffi gl cm3 :2.33 g / ctlf .

3. ltu:0.8 for boron in silicon

M /N4o :0 .5

The density of Si is 2.33 g / ctrl .

The acceptor concentration for p : 0.01 Clcm is 9x 1018 crn3.

The doping concentration Cs is given by

I l f

C = k ^ C ^ ( l - - ' 1 & - tM ^ '

Therefore

C " 9 x 1 0 "-o ------------7--

k"Q - ! )a ' 0 '8(1- 0 '5) -o '

: 9 .8 x l0 t tcm- '

The amount of boron required for a 10 kg charge is

10'000 x 9.8 x l0' ' = 4.2x|0" boron atoms

2.338

So that

ro.8g/more 'A#ffi,=o.7sg boron .

4. (a) The molecular weight of boron is 10.81.

The boron concenhation can be siven as

number of boron aioms/ I ^ = -"

volume of silicon wa fer

_ 5.41 x 10-3 g/10.819x 6.02x 10 ' �31 0 . 0 2 x 3 . 1 4 x 0 . 1

= 9.78 x l0r8 atomVcm 3

(b) The average occupied volume of everyone boron atoms in the wafer is

t t =L=--- l -cm3nb 9.78 x l0 ' "

We assume the volume is a sphere, so the radius of the sphere ( r ) is the

average distance between two boron atoms. Then

t vr = ^ l - ' = 2 . 9 x I 0 - t c m .

\ 4 n

5. The cross-sectional area of the seed is

/ o.ss )'7 d

- ' - - | = 0 . 2 4 c m 2

( 2 )

The maximum weight that can be supported by the seed equals the product of the

critical yield strength and the seed's cross-sectional area:

(2 x 106)x 0.24 = 4.8x 105 g = 480 kg

The corresponding weight of a 2O0-mm-diameter ingot with length / is

(2.33!cm' ),{ ry)' / : 48oooo sa l\ z /

I =656cm =6.56m.

6. We have

c,/co=^(-#)^'

0 0.2Fractionalsolidified

0 .8 1 .

cslc0 0.05 0.06 0.08 0. t2 0.23

r u .

tm_! m - m q _ m _

lJ-Sflo"mm

The segregation coefficient of boron in silicon is 0.72.It is smaller than unity, so the solubility

of B in Si under solid phase is smaller than that of the melt. Therefore, the excess B atoms will

be thrown-off into the melt, then the concentration of B in the melt will be increased. The tail-

end of the crystal is the last to solidify. Therefore, the concentration of B in the tail-end of

grown crystal will be higher than that of seed-end.

The reason is that the solubility in the melt is proportional to the temperature, and the

temperature is higher in the center part than at the perimeter. Therefore, the solubility is higher

in the center part, causing a higher impurity concentration there.

The segregation coefficient of Ga in Si is 8 x10-3

From Eq. 18

C" / Co = 1- (1- k)"-o' t

We have

= 2501n(1.102)=24cm.

rjl

EI

7.

9.

10. We have from Eq.18

Cs = Co[ -(l - k") exP(krx I L)]

So the ratio Cs /C0 =[1-(1- k")exp(4rx/Q]: 1- (1 - 0.3) . exp(-0.3 x 1) = 6.52: 0 .38 at x /L:2.

a t x l L = l

11. For the conventionally-doped silicon, the resistivity varies from 120 C)-cm to 155 f)-cm. The

corresponding doping concentration varies from 2.5xl0t' to 4" 1013 crn3. Therefore the ranse of

breakdown voltages of p* - n junctions is given by

t E 2v, =.t(il,) '

- 1 . 0 5 x 1 0 - " x ( 3 x 1 0 5 ) 2 ( N r ) - , = 2 . 9 x 1 0 , , / N B = 7 2 5 0 t o l 1 6 0 0 V

2x l .6x 10 - ' tLVB = 11600 -7250 = 4350 V

( n v ^ \| - .

l l7250 =+30%o\ 2 )

For the neutron irradiated silicon, p: 148 + 1.5 C)-cm. The doping concentration is

3xl0l3 (tl%). The range of breakdown voltage is

vB = 1.3 x l0 t1 / N B = 2.9 xr0t7 /3x 1013 ( t l%s

= 9 5 7 0 t o 9 7 6 2 Y .

LVB -9762 -9570=192V

( tv" \l - ^ a l l 9 5 7 0 = * t y o .\ 2 )

12. We have

M, _ weight o f GaAsatTo _C^-C, _sMr weight of liquid at To C, -C^ I

Therefore, the fraction of liquid remained/can be obtained as following

f = , M , - I = 3 o = 0 . 6 5 ." M , + M , s + / 1 6 + 3 0

13. From the Fig.ll, we find the vapor pressure of As is much higher than that of the Ga.

Therefore, the As content will be lost when the temperature is increased. Thus the

composition of liquid GaAs always becomes gallium rich.

14. n ": Nexp(-n" / kT) = 5 x1022 er,p(2.3 ey / kz) = 5 x ro" "*p[- {'8--lL(r /3oo)j

: 1.23x l0-t6cm-3 x 0 at 27o C = 300 K

: 6 . 7 x 1 0 ' ' c m - 3 a t 9 0 0 0 C = 1 1 7 3 K

: 6.7 x lO 'ucm* ' a t 12000 C=1473K.

15. n, =JNi/ exp(-y, /zkT)

:W *"- r . tevt2kr =7.07 x l1to xe- t0.7/ ( r /3oo)

: 5 .27 x 10 - ' t a t27oC:300 K

:2.l4xl0ta at 90fC : 1173 K.

16. 37 x 4: 148 ch ips

In terms of litho-stepper considerations, there are 500 pm space tolerance between the

mask boundary of two dice. We divide the wafer into four symmetrical parts for

convenient dicing, and discard the perimeter parts of the wafer. Usually the quality of the

perimeter parts is the worst due to the edge effects.

300 n rnT o t o t D i e s , 1 4 8

ll vf,dv tykrI I r t = j i _ - l _

ff f'o' \l781/t

4 ( M \ ' ' ' " ( M ! \where n =Glfr) v' "*o[ =ro, I

M: Molecular mass

k Boltzmann constant: 1.38x10-23 J/k

T: The absolute temperature

v: Speed of molecular

So that

2'*= J;

" 0.661 6 . L =

P( in Pa)

2 x 1 . 3 8 x 1 0 - 2 3 x 3 0 0

29xI.67 xl}-"m/sec = 4.68 xlOncm/sec .

;. P - o'!u = 0'66 - 4.4xto-3 pa .L 150

19. For close-packing affange, there are 3 pie shaped sections in the equilateral triangle.

Each section corresponds to 1/6 of an atom. Therefore

^. _ number of aloms contained intre tiangle'1Y." = -

area of fire hiansle

. lJ X _

61 J1 ,- c l x - d2 2

2= _ -Jia'- -Jlg.as"ro*)'

:5.27 xlOto atomVcmt.

20. (a) The pressure at970C (:1243K) is 2.9x10-t Pa for Ga and 13 pa for Asz- The

arrival rate is given by the product of the impringement rate and NnL2 :

Arrivat rate : 2.64xto2o(-LY4)l"lvt )\'t' 1

:2.9x101s Ga molecules/c# -sThe growth rate is determined by the Ga arrival rate and is given by

(2.9x I 0rs)x 2.81 (6xt0ta) : I 3.5 A./s : 8 I 0 A"imin .

(b) The pressure at 700"C for tin is 2.66x l0-6 Pa. The molecular weight is 118.69.

Therefore the anival rate is

2.64xrc^( ]j54Y-ll =2.zlxt0,0 molecul art cm, .s\ " / l 18.69 x 973 . / \ nx12 ' )

If sn atoms are fully incorporated and active in the Ga sublattice of GaAs, we have an

electron concentration of

(z.ztx to 'o )(4.42x to" )I t - t -

- - l l

" ' - " ^ " | = 1 . 7 4 x 1 0 t t c m - ' .( z . e " l o ' , J [ 2 )

21. The.r value is about 0.25, which is obtained from Fig. 26.

22. The lattice constants for InAs, GaAs, Si and Ge are 6.05, 5.65,5 .43, and.5.65 A,respectively (Appendix F). Therefore, the f value for InAs-GaAs system is

f = (5.65 - 6.05)/6.05 = _0.066

And for Ge-Si system is

f = (s.43 - s.65) 15.65 = -0.39 .

CHAPTER 1 1

l. From Eq. l1 (with [:0)

x"+Ax: Bt

From Figs. 6 and 7, we obtain B/A :r.5 pm /hr, 8=0.47 pm2/hr, therefore l=

0.31 pm. The time required to grow 0.45pm oxide is

t=*G' + Ax)= = l r=10.45t +0.31x 0.45)=g.72tr :44min.B ' 0 .47

'

2. After a window is opened in the oxide for a second oxidation, the rate constants areB: 0.01 pmz/hr, A: 0.116 pm (B/A:6 ' I0'2 pm /hr).

If the initial oxide thickness is 20 nm : 0.02 pm for dry oxidation, the value

oflcan be obtained as followed:

Q.0D2 + 0.166(0.02):0.0r (0 +[)

or

J:0.372tu.For an oxidation time of 20 min (:1/3 hr), the oxide thickness in the window

area is

,t + 0.166x :0.01(0.333+ 0.372\: 0.007

or

x :0.0350 pm:35 nm (gate oxide).

For the field oxide with an original thickness 0.45 pm, the effective[is given by

p:11r, + Ax)=-J-10.+S, + 0.166 x 0.45) =27.72ttr.B ' 0 . 0 1 '

,2 + 0.166x: 0.01(0.33 3+27.72): 0.2g053

or x :0.4530 pm (an increase of 0.003pm only for the field oxide).

3 . * + A x : B ( r + c )

G * ! 1 ' - A ' - B ( t + r \' 2 ' 4

when f 2 ) t t t r u A ' .

4 8 ,

then, x2 :Bt

similarly,

w h e n / s ) r ; t u , A t .

4 8 ,

then.x: ! - f t *c \A '

4. At980 1:1253K) and I atm,,B:8.5x10-t lr^'/lo,B/A: 4xl0'2 pm lfu (from Figs. 6

and7). Since I r>2D/k, B/A: kColCr, Co:5.2x1016 molecules/cm3 and C, :

2.2xI022 crn3 , the diffi.rsion coefficient is given by

8.5 x 10-3 2.2x1022=-?;ffi1tm'tttr

=1.79 xl03 1tm2 /hr

=4.79 xlO-ncm2 /s.

s*!t ' =tl#+tr+zl]

o=L=4( ! . r ' )=g[-E-)2 2 \ A C o ) 2 \ c , )

5. (a) For Sil{"It

s i I , ^- = - = r . !

N x

x : 0 . 8 3

atomic o/o H= looY =20l + 0 . 8 3 + y

- v : 0 . 4 6

The empirical formula is SiN6 s3FI0 a6.

(b) != 5x 1028e-33 3" ' ' :2, 10t' [-cm

As the SiA{ ratio increases, the resistivity decreases exponentially.

6. Set Th2O5 thickness : 3t, e1:25

SiOz thickness : t, ez: 3.9SLN+ thickness : t, E3:7.6, area: A

then

c T o r o r :

I

qqA3t

t= _ + _ + _Co*o Er€oA ereoA er4A

co*o=ffi,

Ct" ro , -e r (e r+Zer )Co*o 3Er€,

_ z s ? . g + z x t . a ) = 5 . 3 7 .3x3 .9 x7 .6

7. Set

8. Let

TazOs thickness :3t" e1 :25SiOz thickness : t, e2: 3.9Si:Nq thickness : t, 4:7.6area: A

then

qqA _4€oA

d =3 t ' t =0 .46g t .q

then

BST thickness : 3t, e1 : 500, area : 41SiOz thickness : t, a2:3.9, area: AzSi:Na thickness : t, E3:7.6, area: Az

o' = o.oonr.A2

444, =3t

9. The deposition rate can be expressed as

r: ro exp (-E^/kT)

where E": 0.6 eV for silane-oxygen reaction. Therefore for Tt : 698 K

r(r,) =2=€XDlo.{ L_ t ) I4 r , )

' L ( k 4 k r , ) )

, 'z : 06 [ f ry_3oo] Io.o2s9 L\6e8 r, ) )

_ Tz:1030 K: 757

We can use energy-enhanced CVD methods such as using a focused energy

source or UV lamp. Another method is to use boron doped P-glass which will

reflow at temperatures less than 900 .

I 1. Moderately low temperatures are usually used for polysilicon deposition, and

silane decomposition occurs at lower temperatures than that for chloride

reactions. In addition, silane is used for better coverage over amorphous

materials such SiO-,.

12. There are two reasons. One is to minimize the thermal budget of the wafer,

reducing dopant diffusion and material degradation. In addition, fewer gas

phase reactions occur at lower temperatures, resulting in smoother and better

adhering filrns. Another reason is that the polysilicon will have small grains. The

finer grains are easier to mask and etch to give smooth and uniform edges.

However, for temperatures less than 575 "C the deposition rate is too low.

13. The flat-band voltase shift is

L V F B D [ l ! [ [ QO,

co

10.

c^ =to ' - 3 '9x 8 '85 x lo- 'a =6.9 x l0* F/cm-r I" d 5 0 0 x 1 0 - o

- Number of fixed oxide charse is

0.5C, _ 0.5 x 6.9 x l0-8 =2.1x l0r , cm-,q 1 .6 x 10 - ' '

To remove these charges, a 450 heat treatment in hydrogen for about 30

minutes is required.

14. 20/0.25: 80 sqs.

Therefore, the resistance of the metal line is

5 x 5 0 : 4 0 0 O .

15. For TiSiz

3 0 x 2 . 3 7 : 7 l . l n mFor CoSio

30 x 3.56: 106.8nm.

16. For TiSiz:

Advantage: lowresistivity

lt can reduce native-oxide layers

TiSiu on the gate electrode is more resistant to high-field-

induced hot-electron degradation.

Disadvantage: bridging effect occurs.

Larger Si consumption during formation of TiSiu

Less thermal stabilifv

For CoSb:

Advantage: lowresistivity

High temperature stability

No bridging effect

A selective chemical etch exits

Low shear forces

Disadvantage: not a good candidate for polycides

1 7 . ( a ) O = e + = 2 . 6 7 x t 0 6 x = 3 . 2 x 1 0 3 Q0 . 2 8 x 1 0 - a x 0 . 3 x l 0 - a

tA eTL

d s3 . 9 x 8 . 8 5 x l 0 - r a x 0 . 3 x 1 0 + x l x l 0 a x 1 0 - 6

0 .36 x l 0 -a

RC =3 .2x105 x2 .9x l } - t s =0 .93ns

(b) R= p+=r .7 x10-6 x - .=+ = 2 x I 0 3 C )A 0.28 x 10-a x 0.3 x 10r

= 2.9 x l0 -r '

F-

€A {L 2.8 x 8.85 x l0- 'o x 0.3 x 10-a x 1( _ = - = - : -d s 0.36 x l0-o

2 ' I x 10- '3 F

RC =2 x 10 t x 2 .1x l 0 - ' 3 =0 .42ns

o 4 )(c) We can decrease the RC delay by 55%. Ratio :

,r; :0.45.

18. (a) R = eL=2.67x l0* = 3.2 x l0 'C)' A 0 . 2 8 x l O o x 0 . 3 x l 0 o

C = 4 = { L - 3 . 9 x 8 . 8 5 x 1 0 - ' a x 0 . 3 x 1 0 { x l x 3 = g . 7 x l 0 - , r Fd .S 0.36 x l0o

RC : 3.2 x 103 x8.7 x 10-13 : 2.8 ns.

T 1( b ) R = O : = l . 7 x 1 0 - 6 x 4 = 2 x l 0 r C )' A

0 . 2 8 x l 0 o x 0 . 3 x l O o

a 4 { L 2 . 8 x 8 . 8 5 x 1 0 - ' o x 0 . 3 x l 0 { x l x 3d s 0.36 x 10a

= 6 '3 x l0- t3 F

R C = 2 x 1 0 3 x 8 . 7 x 1 0 - t 3 = 2 . 5 n s

RC =3.2 x 103 x 8.7 x l0- '3 = 2.5 ns.

19. (a) The aluminum runner can be considered as two segments connected in series:

20%o (or 0.4 mm) of the length is half thickness (0.5 pm) and the remaining

1.6 mm is full thickness (lpm). The total resistance is

*=JL . ! "1=g* ro -u f 9 ' 16 , * , o ' oo - l' l A , A r ) [ 1 0 - * x l 0 - * l 0 - o x ( 0 . 5 x 1 0 - ' ) l

: 7 2 U .

20.

The limiting current 1 is given by the maximum allowed current density times

cross-sectional area ofthe thinner conductor sections:

. / : 5x10s Ncr*" (10-ax0.5x10-a; : 25x103 A:2.5 mA.

The voltage drop across the whole conductor is then

V: N =72Qx2 .5x l 0 - ' A :0 .18V .

40 nm

60 nm

h:height, W;width, r: thickness, assumethatthe resistivities of the cladding

layer and TiN are much larger than p n, and pru

R , , = D , , * (

= 2 . 7 Ih xW (0.5 - 0 .1) x 0.5

R. . . = p, . . , -J- =1.7 (

hxtr (0.5 - 2t) x(0.5 -2t)

When Rn, = Rru

2 . 7 1 . 7l n e n = -

0.4 x 0.5 (0.5 -2t)'�

= t : 0 .073 pm: 73 nm .

0.5 pm

CHAPTER 12

I . With reference to Fig.2 for class 100 clean room we have a total of 3500 particlesinf withparticle sizes >0.5 pm

2L t 3596: 735 particles/r# with particle sizes > 1.0 pm100

** 35OO: 157 particles/# with particle sizes > 2.0 1tmr00Therefore, (a) 3500-73 5 : 2765 particles/nf between 0.5 and I pm

(b\ 735-157 :578 particles/m3 befween 1 and 2 pm(c) 157 particles/# above 2 pm.

:. y = fr,r-o,n

A :50 mm2:0.5 cm2l r _ e4(0 . rx0 .s ) * "4 (o2sxo.s ) * " - t { txo .s ; =g- r .z =30. lyo .

I The available exposure energy in an hour is0.3 mW2/cmz x 3600 s:1080 mJlcr*

For positive resist, the throughput is1080_ = 7 wafers/ty140

For negative resist, the throughput isloSo - 120 wafervtrr.

9

1. (a) The resolution of a projection system is given byL 9.6,1 9:193fgt = o.r7g pmt^ =Kt f r f .=u 'u ̂

0 .65

DoF = k,-L= o.sl o,le,3f l: o.r28 u*'(NA)'� L (0.65)'� I

(b) We can increase NA to improve the resolution. We can adopt resolution enhancement

techniques (RET) such as optical proximity correction (OPC) and phase-shifting Masks

(PSM). We can also develop new resists that provide lower h and higher k2 for better

resolution and depth of focus.

(c) PSM technique changes kr to improve resolution.

j. (a) Using resists with high y value can result in a more vertical profile but tkoughput

decreases.

(b) Conventional resists can not be used in deep UV lithography process because these resists

have high absorption and require high dose to be exposed in deep [fV. This raises the

6. (a)

7. (a)

( b )

(c)

(b)

8 .

9.

concern of damage to stepper lens, lower exposure speed and reduced throughput.

A shaped beam system enables the size and shape of the beam to be varied, thereby

minimizing the number of flashes required for exposing a given area to be patterned.

Therefore, a shaped beam can save time and increase throughput compared to a Gaussian

beam.

We can make alignment marks on wafers using e-beam and etch the exposed marks. We can

then use them to do alignment with e-beam radiation and obtain the signal from these marks

for wafer alignment.

X-ray lithography is a proximity printing lithography. lts accuracy requirement is very high,

therefore alignment is difficult.

X-ray lithography using synchrotron radiation has a high exposure flux so X-ray has better

throughput than e-beam.

To avoid the mask damage problem associated with shadow printing, projection printing

exposure tools have been developed to project an image from the mask. With a 1:l

projection printing system is much more difficult to produce defect-free masks than it is

with a 5:l reduction step-and-repeat system.

It is not possible. The main reason is that X-rays cannot be focused by an optical lens.

When it is through the reticle. So we can not build a step-and-scan X-ray lithography

system.

As shown in the figure, the profile for each case is a segment of a circle with origin at the

initial mask-film edge. As overetching proceeds the radius of curvature increases so that

the profile tends to a vertical line.

(a) 20 sec

0.6 x 20/60:0.2 pm....(100) plane

0.6/16 x 20/60 : 0.0125 pm.... . . . .( l l0) plane

0.6/100 x 20/60: 0.002 pm.... . . .(t I 1) plane

wo = wo - .l-zt = 1.5 - "li x0.z = 1.22 pm

40 sec(b )

0.6 x 40/60:0.4 pm....(100)plane

0.6/16 x 40/60 : 0.025 pm.... ( l t0) ptane

0.6/100 x 40/60: 0.004 pm.... .( l I l) plane

wu =wo -Jzt = 1.5- Ji xo.a:0.93 pm

(c) 60 sec

0.6 x l :0 .6 pm.. . . (100)p lane

0.6/16 xl: 0.0375 pm.... ( l l0) plane

0.6/100 x l: 0.006 pm.....(l I l) plane

W o : W o - J z t = 1 . 5 - J 2 x 0 . 6 : 0 . 6 5 p m .

[-sing the data in Prob. 9, the etched pattem profiles on <100>-Si are shown in below.

(a t 20 sec I :0112 ltm, Wo = Wu = 1.5 pm

(b r -10 sec l:0.025 ltm, Wo - l[t = 1.5 pm

(ct60 sec l :0 .0375 1tm Wo -Wu = 1.5 pm.

lf u'e protect the IC chip areas (e.g. with SfNa layer) and etch the wafer from the top, theri idth of the bottom surface is

r r ' = tTt + Jzt = 1000 *JT*625 = 1884 pm

l-he fraction of surface area that is lost is

(r ' ' - t4/:)/w2 x 100%:(1g842-10002) /t8842x 100%:71.8%

In terms of the wafer area. we have lost

7 1.8 % x tdl5 / 2)' :127 cr*

Another method is to define masking areas on the backside and etch from the back. The widthtrf each square mask centered with respect of IC chip is given by

v [ =Wr -^ l - z t=1000- J i x625 :116 pm

[- sing this method, the fraction of the top surface area that is lost can be negligibly small.

I Pa: 7 .52mTon

PV: NRT

7.52 /760, 10-3 : n/V x0.082 x 273

n/V: 4.42 x l0-7 mole/liter:4.42 x l0-7 x 6.02 " 1023/1000 :2-7 ,l}ta cm3

mean-free-path

2,= 5xI0-3 /P cm:5x l0-3 x1000/ 7.52:0.6649 cm:6649 pm

l50Pa: ll28 m Torr

PV nRT

ll28l 760 x 10-' : n/V x 0.082 x 273

n/V : 6.63 x 10-s mole/liter : 6.63 x lQ-sxg.Q/x 1023/1000 :-4 x 1016 crn3

mean-free-path

2": 5 xl}- ' /Pcm : 5* 10-3 x1000/1128 : 0.0044 cm : 44 um.

l-1. Si Etch Rate (nm/min) :2.86 x 10-13 x n, x7/' ,r-tiA'

:2 .86x l0 - r3 x lx lSrsx(2 9 t1 / , , r#

:224.7 nm/min.

11. SiOz Etch Rate (nm/min): Q.Sl{x 10-13 *3" Iytsx(2Oq% ^"#: 5.6 nm/min

Etch selectivity of SiOz over Si : #=

0.025

or etch rate (Sio2)/etch rate (Si) : ':u-)!

""t-t'u*'ot/n'7x2e8 - 0.025 .' 2 .86

15. A three-step process is required for polysilicon gate etching. Step 1 is a nonselective etch

process that is used to remove any native oxide on the polysilicon surface. Step 2 is a high

polysilicon etch rate process which etches polysilicon with an anisotropic etch profile. Step 3 is

a highly selective polysilicon to oxide process which usually has a low polysilicon etch rate.

I 6. If the etch rate can be conholled to within l0 %o, the polysilicon may be etched 10 o/o longer or

for an equivalent thickness of 40 nm. The selectivity is therefore

40 nm/l nm:40.

17. Assuming a30Yo overetching, and that the selectivity of Al over the photoresist maintains 3.

The minimum photoresist thickness required is

t 8 .

( l+ 30%) x I pm/3 :0.433 pm:433.3 nm.

qB( I ) " =-

me

2nx2.45 x 10e =[ . 6 x 1 0 - ' e x B

9 . l x 1 0 - 3 1

B: 8.75 x 10-2(tesla)

:875 (gauss).

Traditional RIE generates low-density plasma (10e crn3) with high ion energy. ECR and ICp

generate high-density plasma (10rr to 1012 crn3) with low ion energy. Advantages of ECR and

ICP are low etch damage, low microloading, low aspect-ratio dependent etching effect, and

simple chemistry. However, ECR and ICP systems are more complicated than traditional RIE

systems.

The corrosion reaction requires the presence of moisture to proceed. Therefore, the first line of

defense in controlling corrosion is controlling humidity. Low humidity is essentiaf. especially

if copper containing alloys are being etched. Second is to remove as much chlorine as possible

from the wafers before the wafers are exposed to air. Finally, gases such as CF+ and SF6 can be

used for fluorine/chlorine exchange reactions and polymeric encapsulation. Thus, Al-Cl bonds

are replaced by Al-F bonds. Whereas Al-Cl bonds will react with ambient moisture and start

the corrosion process , Al-F bonds are very stable and do not react. Furthermore, fluorine will

not catzlyze any corrosion reactions.

l 9

I (J .

l. E"(boron) :3.46 eV, D :0.76 cn?/sec

From Eq. 6,

CHAPTER 13

4.142xl0-" x 1800 = 2.73x10a cm

-3 .46

8.614x l}-s x1323

- F o . le r *o(

-3 '46D = D o e x ? ( # ) = .

t g . 6 t 4 x l o _ 5x1223)=o ' t+zx 1o-"cm' ls

L=JDt =

From Eq. 9, c (x) = c,ertu (fi)= 1.8 x I 02oerfc (17{6;)

I f x =0 ,C(0)= 1 .8x1020 a ioms /cm3;x :0 .05 t104,C(5* 105) :3 .6 x l0 le

atoms/cm3; x : 0.07 5 r I 0-4, C(7.5 x 1 0-6 ) : g.4 x 1 gls atoms/c rrf ;, :0. I " I 0-a,

C(10-s): 1.8 x l0r8 atoms/cm3;

x :0 .15x 104, C1 l .5x l0 -5) : l .gx l016 a toms/c# .

The x., =ZJDI (efc 'gs!-- ) =o.l5Arn

Total amount of dopant introduced : Q(0

1:#C,L = 5.54x lOtaatoms/c#.

4n

2 ' D=Do*(#)=oz6exn()=

o ' 'ux1o- 'ocm'/s

From Eq. 15, Cs = C(Q,t)= + =2.342x 10'natomVcm 3Jtilt

C(x\ =C-"rf. [a) =2.342*to'nerrc[ " )"

\ 2L ) \ 2 .673x r0 - ' )

I fx :0, C(0): 2.342 x 10le atoms/crrf ;*:0. lxl0-a, C(l0r) : l .4lxl0te atoms/cm3;

x : 0.2x104, C12xl0't) : 6.7911018 atoms/c nf ; * :0.3 x l6-a, C(3 x lo-5; : 2.65 x 10t8

3 . 1 x 1 0 " = t * t O " " * p [

t : 1573 s:26 min

atoms/cm';

x :0.4x104, c14x10-s; : 9 .37x10t7 atoms/cm3;x :0 .5x10-4, c15xlO-s) : 1 .g7x1gtz

atoms/cm3;

x : 0.6x104, c(6x 10-t) : 3.51* 1016 atoms/crrt; t :0.7x10-a, c(7x l0-5) : 7.03x l0r5

atoms/cm3;

.r :0.8x104, C(8x10-s) :5.62x101a atoms/cm3.

The x, = 4Dtht - - = 0.72qm.C uJ tDr

l0- ' )4x2 .3x10 ' ' t )

For the constant-total-dopant diffusion case, Eq. 15 gives C, = -L*Dt

s = 1 x lottm = 3.4xlo*atomVcm t.

4. The process is called the ramping of a diffusion fumace. For the ramp-down situation, the

furnace temperature T is given by

T : T o - r t

where To is the initial temperature and r is the linear ramp rate. The effective Dt product

during a ramp-down time of tr is given by

(Dt)"r = l^' ogyat

In a typical diffirsion process, ramping is carried out until the diffirsivity is

negligibly small. Thus the upper limit t1 con be taken as infinity:

l l l r t- = - * ( l + - + . . . )T T - r t T ' T

0 0 0

and

( - n / \ - l - r r t . l - E - , . - r E t - r E tD=Do exp[ " hr l=Do "*pl 1+A*;* . . . ) l :Oo("*p 3"_ Xexp-#. . . )= D(T;"ry#

\ / r u r / L k I o I o J k l o k f o -

\ u / T k T ^ ,

where D(To) is the diffusion coefficient at T6. Substituting the above equation into the

expression for the effective Dr product gives

(Dt)"n = [i otr,\"*p-]#dt = D(r)+' k T o '

' " ' ' E o

Thus the ramp-down process results in an effbctive additional time equal to Kls2/rgu at

the initial diffi.rsion temperature T6.

For phosphorus difflrsion in silicon at 1000"C, we have from Fig. 4:

|{7d : D (1273 K) : Zx 10-ra cm2ls

1273 -773r = - = 0 . 4 1 7 K / s

20x 60

E" :3 .66 eY

Therefore, the effective diffusion time for the ramp-down process is

oro' _. l.3g xlo-r'(1273)'

= 9ls = 1.5min .,Eo 0.417(3.66x 1.6 x 10- 'n)

5. For low-concentration drive-in diffusion, the diffusion is given by Gaussian distribution.

The surface concentration is then

, s , s ( r " \C(0.t) =+=---exDl -i i

4d)t Jil; ' \2kr)

{ = _L.,*l,&Y-r"' ) = _0.5 *gdt .|1il,

' \2ftrl( 2 ) t

dC dt= - 0 . 5 x -

C t

which means lYo change in diffusion time will induce 0.5Yo change in surface

concentration.

d c , s ( E - \ ( - E - ) E _- - - - : ' s . v r - [ -

dT Jri lo, '

\zkr )\2kT'� ) zkT'

dc - E dT - 3.6 x 1.6 x lo- ' ' dT dTnr , . . . . . . . . . . . . . ._ - a 1L i . .

C 2 k T T 2 x l . 3 8 x l 0 - " x 1 2 7 3 T T

which means lo/o change in diffirsion temperature will cause 16.9% change in

surface concentration.

6. At I 100oC, ni : 6x 1018 crn3. Therefore, the doping profile for a surface concentration

of 4 x 1018 crn3 is given by the "intrinsic" diffi.rsion process:

c(x.t)= c"..r"[4]\2''lDt )

where C, : {x 1018 crn3, t: 3 hr: 10800 s, and D : 5x10-1a cm2ls. The

diffusion length is then

J Dt = 2.32x10-5 cm = 0.232 tm

The distribution of arsenic is C(x) = 4 x 1018 "rf"[---:-)[4.64 xl0-' )

The junction depth can be obtained as follows

10"=4x l0" " . f r f t '

- l( 4.64 x 10- ' J

xi: I.2x 104 cm : 1.2 pm.

7. At 900oC, ni:2x 1018 crn3. For a surface concentration of 4x10tt "-', given by

the "extrinsic" diffusion process

8 .

x t =1.6J Dt = 1.6m = 3.23x l0*ucm = 32.3 nm .

lntrinsic diffusion is for dopant concentration lower than the intrinsic carrier

concentration ni at the diffusion temperature. Extrinsic diffi.rsion is for dopant

concentration higher than n;.

9. For impurity in the oxidation process of silicon,

segregatio ncoefficein t =

3 x 1 0 " 3f=-- - . . -=- : -=0.006.

5 x 10 ' ' 500

[0.5: [1 .1 + qFp/Ci

-E , -4 .05x1.6x10- le

D = D o e k r x "

= 4 5 . 8 e t 3 8 " 1 0 2 r * r l ? l

ni

r ' - € " -" * -Z

, , -3 '45x lo r xo .6 = 1 .3 x lo ,cm- '" I .6 x l0 - ' "

10-t; t = 1 . 3 x 1 0 ' t x l . 6 x l 0 - t n

i4r0.16)'

the implant time r :6.7 s.

12. The ion dose per unit area is

" l# =3.77x10- 'ucm2ls

10 .

1 1 .

3 . 9 x 8 . 8 5 x 1 0 - r a= 3 . 4 5 x 1 0 - 710-u

f t 1 0 x 1 0 { x 5 x 6 0N = q = l .6x lQ- te =2 .3gx1012 ions /cm2A A , I 0 . ,n "\T)-

From Eq. 25 and Example 3, the peak ion concentration

indicates the oo is 20 nm.

is at x : Ro. Figure. l7

Therefore, the ion concentration is

^9 2.38 x 10' ' �= -___-___-___-_ :. = 4.74 x l0'tCm

-3 .

oo42n 20x10- ' 42 t r

13. From Fig. 17,the &:230 nm, and oo = 62 nm.

The peak concentration is

S 2 x 1 0 ' 5: ---------------- = l.29x l0'ocm-loo {2 t t 62x10- ' 42n

From Eq. 25,

t.2ex,o" "*[3:i{l| 260- J

x; :0 .53 pm.

14. Dose per unit area : 9 =CoLVr - 3'9 x8'85 x 10*ta xlq q 250 x 10-s x l -6 x 10- 'n

= 8 '6 x10"cm-2

From Fig. 17 and Example 3, the peak concentration occurs at 140 nm from the

surface. Also, it is at (140-25): 115 nm from the Si-SiOz interface.

15. The total implanted dose is integrated from Eq. 25

e,= f s-"*[-t*I{ l*=l{r*fr- errcl Re-,- l}=lo -erfc(z. 'sur - lo

@- | 2oo. J z I L o,. lz l) z- 3)l= r-xt 'ee8e

The total dose in silicon is as follows (d:25 nm):

Q,,=I:; fu"*|#]*=i{ ' - [ '_", f"(* i , ]}=; ' -er|c(| .87)]={xl.99l8

the ratio of dose in the silicon: Qs/Qr:99.6%.

16. The projected range is 150 nm (see Fig. 17).

The average nuclear energy loss over the range is 60 eV/nm (Fig. 16).

60x 0.25: 15 eV (energy loss of boron ion per each lattice plane)

the damage volume: Vo: n (2.5 nm;21tSO nm):3" 10-18 cm3

total damage layer : 150/0.25: 600

displaced atom for one layer: l5l15 : I

damage densitY : 600/Vo : 2" l02o cm3

zxlo2o / 5.02x102 : 0.4%.

17. The higher the temperature, the faster defects anneal out. Also, the solubility of

electrically active dopant atoms increases with temperature.

o1 8 . L V , = l V : = ''

Cor

where p1 is the additional charge added just below the oxide-semiconductorsurface by ion implantation. Cox is a parallel-plate capacitance per unit area

given by C"" =1a

(d is the oxide thickness, €r is the permittivity of the semiconductor)

e, = LV,c". - 1v x 3'9 x 8'85 x 10-'4F/cm : g.63x r0-' c;

0.4 x l0 -6cm cm'

8'63 x 1o-' : 5.4 x1ol2 ions/c#1.6 x 10- te

Total implant dose: t'0,\!9" :1.2 x 1013 ions/c#.

45%

19. The discussion should mention much of Section 13.6. Diffi.rsion from a surface film

avoids problems of channeling. Tilted beams cannot be used because of

shadowing problems. If low energy implantation is used, perhaps with

preamorphization by silicon, then to keep the junctions shallow, RTA is also

necessary.

20. From Eq.35

& = 1 "rp"[o o-g)= 0.84^ s 2 [ 0 . 2 J 2 )

The effectiveness of the photoresist mask is only 16%o.

s, = l.rr"ig) =0.023.s 2 \0.2J2 )

The effectiveness of the photoresist mask is 97.7%.

2 1 . r = ] - { u - � l o - ,24n u

. ' . u = 3 . 0 2

d: &+ 4.27 op: 0.53 + 4.27 x 0.093 = 0.927 pm.

CIIAPTER 14

l. Each U-shape section (refer to the figure) has an area of 2500 pm x 8 pfft:2 x

10a pm2. Therefore, there are (250(|)2/2*104:312.5 U-shaped section. Each

section contains 2long lines with 1248 squares each, 4 corner squares, 1 bottom

square, and 2 halfsquares at the top. Therefore the resistance for each section is

l kO/i l (1248x2 +4x0.65 +2):2599.6 kO

The maximum resistance is then

3r2.5x2500.6:7.8t * 108 C) : 781 MO

2.5 mm

2. The area required on the chip is

, c o ( 3 0 x l o - ' X 5 x l 0 - , , )Eo, 3.9 x 8.85 x l0-tu

= 4.35x 10-5 cm2

4Pm(PITCH)

:4 .35 " 103 pmz :66 x 66 pm

Refer to Fig.4a and using negative photoresist of all levels

(a) Ion implantation mask (for p+ implantation and gate oxide)

(b)Contact windows (2x10 pm)

(c) Metallization mask (using Al to form ohmic contact in the contact window

and form the MOS capacitor).

Because of the registration errors, an additional2 pm is incorporated in all critical

dimensions.

( o )

56 pm

I

II

{ l + 2 F m

Zli* ( b )

1

73

If the space between lines is 2 p*, then there is 4 pm for each turn (i.e., 2xn, for

one tum). Assume there are n turns, from 8q.6, [, x 1tan2r * 1.2 x 10-6r?r, where r

can be replaced by 2 x n. Then, we can obtain that n is 13.

4. (a) Metal 1, (b) contact hole, (c) Metal2.

(a) Metal l,

(b) contact hole,

I(c) Metal2.

I

5. The circuit diagram and device cross-section of a clamped transistor are shown in

(a) and (b), respectively.

COLLECTOR E M I T T E R

Si02

(a) The undoped polysilicon is used for isolation.

(b) The polysilicon I is used as a solid-phase diffusion source to form the

extrinsic base region and the base electrode.

(c) The polysilicon 2 is used as a solid-phase diffusion source to form the emiffer region

and the emitter electrode.

(a) For 30 keV boron, & : 100 nm and A,Ro: 34 nm. Assuming that .Ro and A,Ro

for boron are the same in Si and SiOz the peak concentration is given by

( o )

( b )

6 .

7.

P -SUBSTRATEoHilrcCONTACT

J-zntn,J:19f- =9.4xro,u cm-,t l2nQa x l0- ')

The amount of boron ions in the silicon is

f;=rffiq"*lWs [ ( n " -d . t l

==12 _ erf ,c l _+_ l l2L [^/2m,.,1-18 x l o " [ ^ ^ ( 7 5 0 ) l

= - t z - E l t v t - = : - I I2 L \ Jz *340 ) l

= 7.88 x 10"cm- '

Assume that the implanted boron ions form a negative sheet charge near the Si-

SiO2 interface, then

LVr = re)/ Co, =-J:6 1 10-'' x (7'88 x 10" )' l q ) 3 .e *8 .8m=o 'e l v

(b) For 80 keV arsenic implantation , &:49 nm and A & : 1S nm. The peak arsenic

concentration i, J- - - 10'u = 2.21x 102, cm-, .42nA,R" r /ax( l8x l0- ' )

Rp =49oi (As)

tu;\\

\.o"r.*.

\

\

\

\

\

IBORON \

(LOWER ScaLsl 1

/ar\

Re-toooi (B)

I{ol5o d tooo -zm

-tso.r-zsoix(i) - FoR cHAls{EL Rectfi

8. (a) Because (100)-oriented silicon has lower (- one tenth) interface-trapped charge and

a lower fixed oxide charge.

(b) If the field oxide is too thin, it may not provide a large enough threshold

voltage for adequate isolation befween neighboring MOSFETs.

(c) The typical sheet resistance of heavily doped polysilicon gate is 20 to

30 Q fl, which is adequate for MOSFETs with gate lengths larger than 3 pm. For

shorter gates, the sheet resistance of polysilicon is too high and will cause large

RC delays. We can use refractory metals (e.g., Mo) or silicides as the gate

material to reduce the sheet resistance to about I O /t1.

(d) A self-aligned gate can be obtained by first defining the MOS gate structure, then

using the gate electrode as a mask for the source/drain implantation. The self-

aligned gate can minimize parasitic capacitance caused by the source/drain

regions extending underneath the gate electrode (due to diffusion or

misalignment).

(e) P-glass can be used for insulation between conducting layers, for diffi.rsion and

ion implantation masks, and for passivation to protect devices from impurities,

moisfure, and scratches.

9. The lower insulator has a dielectric constant Alq: 4 and a thickness dr l0 nm The

upper insulator has a dielectric constant A/q : 10 and a thickness dz: 100 nm. Upon

application of a positive voltage Vc to the extemal gate, electric field E 1 and E2 arc

established inthe dt and dz respectively. We have, from Gauss' law, that e1E1: e2E2

+Q and Vc: Erdt *Ezdz

where Q is the stored charge on the floating gate. From these above two equations, we

obtain

" - v o - Q-l d, + d,(q ltr)

' g * er(a, tar)

a

I

r - , ^ - , I l o x l o ? O' | | 4 \ | / r ^ t , l

Iro+roolrJ f . ' tff iJ],.r.rsx ro-'o

If the stored charge does not reduce E1 by a significant amount (i.e.,0.2>> 2.26x10s

lQ l, *" can write

Q = foadf

x 0.2 Lt = o.z x (o.zsx tO-u)= 5 x t0-s C

L V - : Q = , 5 x l o - 8' c2 ( lo*8.s@=o'565

v

(a)

10.

(b) when t -) a,J -+}we have lgl-+ 0.212.26x10s = 8.84x10-7 C.

8.84x l0 -?Then L,Vr=t=, ( t0x8 .85 x 1g- t4 )716-5

=9.98 V.

(o) p-TUB

(b) POLYSILICOT{ GATE

(c) n-TYPE O|FFUSION

+ +

+ +

+ +

+ +

+

{d) p-TypE DtFFUstoN

++

t r n

t r n(e) CONTACT WINDows

+

(f) METALLTZATIOTTI

11. The oxide capacitance per unit area is given by

€"rn

C ̂ - = ' '7 = 3.5 x l0 t F/cm2d

and the maximum current supplied by the device is

r " , = ! \ rc, ,(vo -v,) ' =: :+3.5xt0r (vo -v,) '= 5 mA2 L - 2 0 . 5 t t n

and the maximum allowable wire resistance is 0.1 V/5 mA. or 20Q. Then. the

length of the wire must be

- Rx Area 20O x I0 - tcm't - _ = 0.074 cm

p 2 .7 x l } 'Q - cm

or 740 pm. This is a long distance compared to most device spacing. When

driving signals between widely spaced logic blocks however, minimum feature

sized lines would not be appropriate.

12.

s i 3N4x x

I ll,*fv - EPITAXY

FIELD OXIDE

( b l

( o )

( d )

( e )

i tap*

RESIST

1 3 .

14.

To solve the short-channel effect ofdevices.

The device performance will be degraded from the boron penetration. There are

methods to reduce this effect: (1) using rapid thermal annealing to reduce the

time at high temperatures, consequently reduces the diffusion of boron, (2) using

nitrided oxide to suppress the boron penetration, since boron can easily combine

with nitrogen and becomes less mobile, (3) making a multi-layer of polysilicon

to trap the boron atoms at the interface of each layer.

Total capacitance of the stacked gate structure is :15 .

c _q "z l(z.e-)d, d, l \d , d , )

7 2 s / ( 7 2 5 \= - x - / l - + - l : 2 . 1 2

0.s l0 l \0 .5 to )

16.

3 ' 9 = 2 . 1 2d

. ' . d = 3'9 =1.84 nm.2 . 1 2

Disadvantages of LOCOS: (1) high temperature and long oxidation time cause V1

shift, (2) bird's beak, (3) not a planar surface, (4) exhibits oxide thinning effect.

Advantages of shallow trench isolation: (l) planar surface, (2) no high

temperature processing and long oxidation time, (3) no oxide thinning effect, (4)

no bird's beak.

For isolation between the metal and the substrate.

GaAs lacks of high-quality insulating film.

t7 .

1 8 .

19. (a)

: 2000 * (el.o: x l0- 'o )= 1.38 x 10-'s = 1.38 ns.

(b) For a polysilicon runner

( r . \ ( l )RC = | R,ouo,"# ll t",- |

\ w ) \ d )( t \ ,

= 391 -- l- l(ol.or>< t0-'o) =2.07 xl0-7 s\ 1 0 - " , / '

= 2 0 7 n s

Therefore the polysilicon runner's RC time constant is 150 times larger than the

aluminum runner.

20. When we combine the logic circuits and memory on the chip, we need multiple

supply volrages. For reliability issue, different oxide thicknesses are needed for

different supply voltages.

21' (a) /r^^, = /cr^,o,

* /r,u,,o"

hence uo%'='%r* 1% =fi 3 A

(b) Eor : 16.7 A.