r&t 2007 - co2 issues - halsey cascade

Upload: prkrause

Post on 06-Jul-2018

224 views

Category:

Documents


0 download

TRANSCRIPT

  • 8/18/2019 R&T 2007 - CO2 Issues - Halsey Cascade

    1/18

    Page 1

    Issues and Answers for CO2Compressors

    INDUSTRIAL REFRIGERATION CONSORTIUM

    RESEARCH TECHNOLOGY FORUM

    FEBRUARY 8-9, 2007, MADISON, WI

    77The Pyle Center, 702 Langdon St. Madison, WI

    thh

    Annualnnual

    Page 2

    Why CO2 ?

  • 8/18/2019 R&T 2007 - CO2 Issues - Halsey Cascade

    2/18

  • 8/18/2019 R&T 2007 - CO2 Issues - Halsey Cascade

    3/18

    Page 5

    BASIC FUNDAMENTALS OF

    CO2 SYSTEMS

    • CO2 cascade system uses CO2 on low

    side with compressor 

    • Compressor discharges to cascade

    condenser 

    • Condense CO2 and boil ammonia or

    halocarbon

    • Indirect CO2 systems use CO2 as “brine”

    with conventional 2-stage system

    Page 6

    R717

    CO2

    +30 oC [+86 oF]

    -12 oC [+10 oF]

    -15 oC [+5 oF]

    NH3 - CO2 cascade system

    -40 oC [-40 oF]

    CO2-evaporator 

    CO2 compressor 

    CO2 - receiver 

    CO2 -R717 Heat exchanger 

    -40 oC [-40 oF]

  • 8/18/2019 R&T 2007 - CO2 Issues - Halsey Cascade

    4/18

    Page 7

    R717

    CO2

    NH3 - CO2 brine system

    CO2-R717 Heat exchanger 

    CO2-evaporator 

    -45 oC [-49 oF]

    -40 oC [-40 oF]

    -40 oC [-40 oF]

    CO2 - receiver 

    -40 oC [-40 oF]

    +30 oC [+86 oF]

    Page 8

    CO2R717R404aRefrigerant

    276636ft/sVelocity

    4.20.440.31psip

    358Diameter – Inch

    2-1/2”1-1/22-1/2Diameter - Inch

    Wet

    return

    line

    Liquid

    line

  • 8/18/2019 R&T 2007 - CO2 Issues - Halsey Cascade

    5/18

    Page 9

    CO2R717R404aRefrigerant

    5112367ft/sVelocity

    4.250.440.3psip

    246Diameter – Inch

    1-1/23/41-1/2Diameter - Inch

    Dry

    suction

    line

    Liquidline

    Page 10

    Relative

    displacement

    CO2R717R404aRefrigerant

    1.09.26.5

    91840590CFM

    Required

    compressor

    swept volume

    (45 TR @ -58F

    and +10F)

  • 8/18/2019 R&T 2007 - CO2 Issues - Halsey Cascade

    6/18

    Page 11

    Swept volumes CO2 vs. NH3

    GEA FES 180GLB

    572 CFM

    10.4 / 62.2 psia

    51.8 psi

    6

    GEA Grasso 55HP

    76 CFM @ 1150 RPM

    145 / 504 psia

    359 psi

    3.5

    - 40 F / 32 F

    Cap = 50 TR

    Pressure Suct. / Disch.

    Pressure differential

    Pressure ratio

    GEA FES 290GLB

    917 CFM

    5.9 / 42.2 psi (a)

    36.3 psi

    7.15

    GEA Grasso 65HP

    91 CFM @ 1150 RPM

    98 / 383 psi (a)

    285 psi

    3.9

    -58 F / 14 F

    Cap = 45 TR

    Pressure Suct. / Disch.

    Pressure differential

    Pressure ratio

    NH3CO2Running Conditions

    Page 12

    CO2 COMPRESSOR

     Application

    Considerations

  • 8/18/2019 R&T 2007 - CO2 Issues - Halsey Cascade

    7/18

    Page 13

    Compressor Concerns:

    Low Pressure Ratio

    High Pressure Difference

    High Design Pressure

    High Shaft Torque

    Shaft Seal Design

    Design Concerns

    Page 14

    Controls

    • Pressure ratio can be below

    2:1(300/150), and typically runs 3:1

    (360/120). An ammonia system

    pressure ratio is 5:1 (200/40) or even

    20:1 (200/10).

    • Pressure difference is high from suctionto discharge (can be 250-300 psi

    differential)

  • 8/18/2019 R&T 2007 - CO2 Issues - Halsey Cascade

    8/18

    Page 15

    Controls

    • Casing design pressure is high. CO2compressors must be designed for at

    least 31 bar/g (450 psig). [Some

    compressors are now designed for 50

    bar/g (725 psig). Ammonia compressors

    only require 20-28 bar/g (300-400 psig)].

    Page 16

    Controls

    • Shaft torque is high relative to CFM.

    Small compressor must have enough

    strength in shaft to resist torsional failure

    • Shaft seal design is based on high

    pressures, even when operating at or

    near suction

  • 8/18/2019 R&T 2007 - CO2 Issues - Halsey Cascade

    9/18

    Page 17

    System Concerns:

    Water in system

    Design Pressure

    System shutdown

    Oil selection

    Component selection

    Controls

    Design Criteria

    Page 18

    If water is

    present in CO2systems, water

    reacts with CO2and creates

    Carbonic acid.

    The

    concentration is

    depending on

    the water content

    Strong acid

    Water in CO2 Systems

  • 8/18/2019 R&T 2007 - CO2 Issues - Halsey Cascade

    10/18

    Page 19

    Heavy corrosion

    in a steel pipe

    from a CO2production

    system caused by

    Carbonic acid.

    Corrosion will not

    take place in a

    well maintained

    CO2 refrigeration

    system.

    Water in CO2 Systems

    Page 20

    Principle diagram: CO2-NH3 cascade system

    CO2Evaporator 

    Liquid

    CO2 receiver 

    CO2Compressor 

    Dry suction

    CO2 - NH3heat exchanger 

    ”High” water

    concentration”Low” water

    concentration

    Water in CO2 Systems

  • 8/18/2019 R&T 2007 - CO2 Issues - Halsey Cascade

    11/18

    Page 21

    Principle diagram: CO2-NH3 cascade system

    CO2Evaporator 

    Liquid

    CO2 receiver 

    CO2Compressor 

    Dry suction

    CO2 - NH3heat exchanger 

    Filter drier 

    Moisture indicator 

    Water in CO2 Systems

    Page 22

    Design pressure depends on:

    • Pressure during operation

    • Pressure during “stand still”

    • Temperature requirements for defrosting

    • Pressure tolerances for safetyvalves (10 – 15 %)

    Design Pressure

  • 8/18/2019 R&T 2007 - CO2 Issues - Halsey Cascade

    12/18

    Page 23

    R717

    CO2

    Controlling the

    pressure during

    ”stand still”

    System Shutdown

    Page 24

    0%

    10%

    20%

    30%

    40%

    50%

    60%

    70%

    80%

    90%

    100%

    -40 -20 0 20 40

    Temperature

       V

      o   l  u  m  e  c   h  a  n  g  e

       [   %

    CO2

    R134a

    R717

    Relative liquid volume

    Reference: -40 [oC] / [

    oF]

    [oC]

    -40 32 104-4 68 [oF]

    System Shutdown

  • 8/18/2019 R&T 2007 - CO2 Issues - Halsey Cascade

    13/18

    Page 25

    • High affinity to water 

    • Long term stability of oil

    • ”Clean” refrigerant system required

    • Oil separation and returnsystem

    • Long term oil accumulation in

    e.g. evaporators

    Challenge

    • Simple

    (system requirements like HCFC

     / HFC )

    • Special demand:

    • Oil drain from low temperature

    receiver ( oil density lower than

    CO2 -opposite NH3)

    Oil return system

    • No special requirements

    (system requirements like HCFC / HFC )

    • Special demand:

    • High filtration demanded

     – Two-stage coalescing

    filters – 0.05 ppm

     – Three-stage - .01 ppm

    Oil separation system

    High affinity to water LowHydrolysis

    High (miscible)Low (immiscible)Solubility

    POEPolyol-ester oil

    (Ester Oil)

    PAOPoly-alpha-olefin oil

    (Synthetic Mineral Oil)

    Oil type

    Oil Selection

    Page 26

    • Due to the relatively small vapor volume of the

    CO2 system and large volumetric refrigeration

    capacity, the CO2 system is relatively sensitive

    to capacity fluctuations.

    Controls

  • 8/18/2019 R&T 2007 - CO2 Issues - Halsey Cascade

    14/18

    Page 27

    CO2Experiences and

    References

    Page 28

    GEA 65HP endurance test

    in laboratory

  • 8/18/2019 R&T 2007 - CO2 Issues - Halsey Cascade

    15/18

    Page 29

    Field Test CO2/NH3 Cascade

    Systems

    Page 305 plate freezers with -58 F CO2 as secondary refrigerant

    Ocean 7, Trawler (indirect

    system)

  • 8/18/2019 R&T 2007 - CO2 Issues - Halsey Cascade

    16/18

    Page 31

    CO2 as secondary refrigerant for coolingapplications(150 TR)

    -9 / -11

    2 %

    2-1/2”

    2-1/2”

    +18.5 / +8.5

    9 %

    8”

    8”

    +16

    0.3 %

    2”

    6”

    Temperatures (°)

    Cir. pump power

    (%)

    Diameter supply

    Diameter return

    CO2GlycolNH3(Direct)

    Comparison

    Page 32

    • Replacing existingfreezing plant: – CO2 –NH3 cascadeinstallation

     – Two separate freezingsystems each 170 TR at -58F

     – Two CO2 duo pack GrassoD-7 screw compressors witheconomizer 

     – Two NH3 duo pack GrassoM-2 screw compressors witheconomizer 

     – 23 plate freezers

    Dirk Dirk, Trawler (direct system)

  • 8/18/2019 R&T 2007 - CO2 Issues - Halsey Cascade

    17/18

    Page 33

    First CO2/NH3 Project with

    Pistons: CO-OP Vaxjö

    Page 34

    CO2/NH3 cascade system

    Complete “factory”

    built cascade system

    incl. :

    - 2 x Grasso 45HP -

    CO2- 2 x Grasso 410 -

    NH3- Cascade H.E.

    - Surge drum

    - Standstill coolingcircuit

    - 2 xCO2 pumps

    - Water cooled cond.

    - Power panel

    - PLC control

    Distribution Center “CO-OP”

    Vaxjö, Sweden

  • 8/18/2019 R&T 2007 - CO2 Issues - Halsey Cascade

    18/18

    Page 35

    CO2/NH3 cascade system

    Process:

    Cold storage

    Running conditions:

    T evap. - 49 F

    T cond. +28 F

    Running hours:

    > 3000

    Distribution Center “CO-OP”

    Vaxjö, Sweden

    Page 36

    CO2/NH3 Cascade System withScrews