rrba presentation 29nov07

Upload: jobsmiles

Post on 30-May-2018

219 views

Category:

Documents


0 download

TRANSCRIPT

  • 8/14/2019 RRBA Presentation 29Nov07

    1/137

    IEEE 802.22 Standard for Rural

    Broadband State of Development

    Grald Chou in ard Program Manager Tel.: (613) 998-2500

    [email protected]/broadband

  • 8/14/2019 RRBA Presentation 29Nov07

    2/137

    Outline

    1. Broadband Access in Canada

    2. Best frequency range for rural access3. Regulatory steps towards use of the TV bands4. The IEEE 802.22 WG5. The WRAN system concept6. The IEEE 802.22 Draft Standard

    a) PHYb) MACc) Cognitive radio capability

    i. Coexistenceii. Geolocationiii. Sensing

    7. Protection of broadcast incumbentsa) Protection of TV broadcastingb) Protection of wireless microphones (Part 74)

    8. Possible research areas9. Conclusion

    Rural andRemote

    B roadbandAccess

  • 8/14/2019 RRBA Presentation 29Nov07

    3/137

    Outline

    1. Broadband Access in Canada

    2. Best frequency range for rural access3. Regulatory steps towards use of the TV bands4. The IEEE 802.22 WG5. The WRAN system concept6. The IEEE 802.22 Draft Standard

    a) PHYb) MACc) Cognitive radio capability

    i. Coexistenceii. Geolocationiii. Sensing

    7. Protection of broadcast incumbentsa) Protection of TV broadcastingb) Protection of wireless microphones (Part 74)

    8. Possible research areas9. Conclusion

    Rural andRemote

    B roadbandAccess

  • 8/14/2019 RRBA Presentation 29Nov07

    4/137

    Broadband Access Uneven

    => 63%=> 37%

    20072004

  • 8/14/2019 RRBA Presentation 29Nov07

    5/137

    Telecom Policy Review Panel

    Market Analysis of Broadband Service in Ruraland Remote Canada (An nex A o f the report)

    by 2007: 89.3% population reached by broadband 26.8 millions Canadians served by land-based broadband 200,000 Canadians served over satellite (NSI) 3 millions unserved

    by 2010: 95% population served economically 1.2 million additional served by Wi-MAX type technology

    (assuming 5 years payback period)

    300,000 more served by Ka-band satellite 1.5 million people could not be served economically

    areas with fewer than 1200 people living within a 5 10kilometre radius from the broadband PoP generally werenot economic to serve (i.e., 4 to 15 people/km 2)

  • 8/14/2019 RRBA Presentation 29Nov07

    6/137

    b

    Population density (per km 2)

    R e l a t

    i v e c o m p

    l e x i

    t y / c o s

    t ( % )

    S u b u r

    b a n

    U r b a n

    D e n s e u r

    b a n

    R u r a l

    S p a r s e l y p o p u l a t e d

    0

    10

    20

    30

    40

    50

    60

    70

    80

    90

    100

    0.1 1 10 100 1,000 10,000 100,000

    www.crc.ca

    Household reach by technologies (last mile)

    Optical fiber

    Cable modem

    ADSLWireless

    Satellite

    New wireless

    0.4 M

    0.8 M

    1.2 M

    1.6 M

    2.0 M

    0.0 M P o p u

    l a t i o n p e r

    d e n s

    i t y

    b i n ( M i l l i o n

    )

    Satellite TerrestrialWireless

    ADSL, Cable, ISM and UNII Wireless and Optical Fiber

  • 8/14/2019 RRBA Presentation 29Nov07

    7/137

    Outline

    1. Broadband Access in Canada

    2. Best frequency range for rural access3. Regulatory steps towards use of the TV bands4. The IEEE 802.22 WG5. The WRAN system concept6. The IEEE 802.22 Draft Standard

    a) PHYb) MACc) Cognitive radio capability

    i. Coexistenceii. Geolocationiii. Sensing

    7. Protection of broadcast incumbentsa) Protection of TV broadcastingb) Protection of wireless microphones (Part 74)

    8. Possible research areas9. Conclusion

    Rural andRemote

    B roadbandAccess

  • 8/14/2019 RRBA Presentation 29Nov07

    8/137

    Reducedrefraction

    Doppler spread

    0

    10

    20

    30

    40

    50

    60

    70

    80

    90

    100

    .03 0.1 1 50.3 3Frequency (GHz)

    R e l a t

    i v e c o m p

    l e x i t y / c o s t

    ( % )

    Cosmicnoise

    Industrialnoise

    Ionosphericreflection

    Rain fade

    Foliageabsorption

    %bandwidth

    Outdoor/indoor attenuation

    Groundwave reach

    Filter selectivity

    Antennaaperture

    Phasenoise

    NoiseFigure

    Optimum frequency rangefor large area Non-Line-of-sight Broadband Access

  • 8/14/2019 RRBA Presentation 29Nov07

    9/137

    Optimum frequency rangefor large area Non-Line-of-sight Broadband Access

    0

    10

    20

    30

    40

    50

    60

    70

    80

    90

    100

    Frequency (GHz)

    R e l a t

    i v e c o m p

    l e x i

    t y / c o s t

    ( % )

    .03 0.1 1 50.3 30.4 0.5 0.6 0.7 0.8 0.9

    20.20.15

    TVCh. 7-13

    R a d

    i o n a v

    i g a t

    i o n

    F i x e d

    F i x e

    d

    F i x e

    d

    F i x e d s e c .

    F i x e

    d s e c . M

    o b i l e

    M o

    b i l e

    M o

    b i l e

    M o b

    i l e

    M o

    b i l e

    M o b

    i l e

    A e r o

    M o b

    i l e F i x e d s e c .

    TVCh. 14-36

    TVCh. 38-69

    M e t e o F

    i x e d

    M o

    b i l e

    License-exempt bands

  • 8/14/2019 RRBA Presentation 29Nov07

    10/137

    (Test conducted with antenna at a height of 22.1 meters above the ground

    in the rural sector of Carp)

    Broadband IP-based communications below 1 GHzSpectrum Occupancy

    Low UHF

  • 8/14/2019 RRBA Presentation 29Nov07

    11/137

    Outline

    1. Broadband Access in Canada

    2. Best frequency range for rural access3. Regulatory steps towards use of the TV bands4. The IEEE 802.22 WG5. The WRAN system concept6. The IEEE 802.22 Draft Standard

    a) PHYb) MACc) Cognitive radio capability

    i. Coexistenceii. Geolocationiii. Sensing

    7. Protection of broadcast incumbentsa) Protection of TV broadcastingb) Protection of wireless microphones (Part 74)

    8. Possible research areas9. Conclusion

    Rural andRemote

    B roadbandAccess

  • 8/14/2019 RRBA Presentation 29Nov07

    12/137

    US Band Plan (Channels 52-69)

    Commercial: 52 MHz to be auctioned, split into 4 blocks in a mix of geographic area sizes; Lower 700 MHzBlocks A, B, E; Upper 700 MHz Block C.

    Public Safety/Private Partnership: 10 MHz commercial block to be auctioned and licensed on a nationwidebasis; Upper 700 MHz Block D.

    Public Safety: 24 MHz (10 MHz Broadband, 12 MHz narrowband, 2x1 MHz internal guard bands)

    Commercial blocks already auctioned

    Auctioned in 2002-2003, 734 Licences

    69

    B*

    Public Safety

    Auctioned 6 Licences,MediaFLO (Mobile TV)

    62 63 64 65 66 67

    BB NB

    68

    D GB

    B*

    CommercialSpectrum

    A* D BB NB

    Public Safety

    GB

    Public Safety

    B*

    60 61

    C C

    52 53 54 55 56 57 58 59

    A B C D E A B C

    Public/Private Partnership1 License

    176 Licenses

    734 Licenses

    12 LicensesOpen Access

    Lower 700 MHz Upper 700 MHz

  • 8/14/2019 RRBA Presentation 29Nov07

    13/137

    U.S. Activity- Channels 2-51

    403938 41 444342 45 484746 49 5150

    432

    54 MHz 72

    614 668 698 MHz

    5 6

    76 88

    Low power devices*

    Low power devices*

    37

    87 9 1211 13

    174 216

    Low power devices*

    10 1816 17 2019

    470 512 MHz

    1514Low power devices** in areas not used by PLMRS

    or CMRS (licensed in 13 metropolitan areas)

    608

    3421 242322 25 282726 29 323130 33 3635

    512

    Low power devices*

    608 MHz

  • 8/14/2019 RRBA Presentation 29Nov07

    14/137

    TV bands white space: Regulatory steps

    Fixed Wireless Access technologies for rural areas Better propagation at lower frequencies (below 1 GHz) Opportunity for using vacant TV broadcast spectrum in scarcely

    populated areas

    USA

    FCC NPRM on License-Exempt devices in VHF/UHF TVbands below 700 MHz in ET Docket 04-186 (May 2004)

    First R&O and Further NPRM (Oct. 2006)

    FCC-OET has carried out lab tests of DTV receivers

    FCC-OET is still carrying out lab tests of DTV sensingdevices

    Final R&O expected for 1Q 2008

  • 8/14/2019 RRBA Presentation 29Nov07

    15/137

    Canadian Approach to TV bands use

    To be licensed as per RP-06 Focus licensing in Channels 25, 34, 35 and 43 initially

    Help manufacturers keep costs down

    Minimize broadcast coordination Other channels may be used on a case-by-case basis

    Mobile services not permitted Coverage into urban centres not permitted RRBS are not allowed closer than 120 km from the US border Licensing and technical rules well advanced

    Remote Rural Broadband Systems (RRBS) on channels 21-51

  • 8/14/2019 RRBA Presentation 29Nov07

    16/137

    Applications for Rural Broadband in Channels 2-59November 2006

    Applications for RuralBroadband in Channels2-59, November 2006

  • 8/14/2019 RRBA Presentation 29Nov07

    17/137

  • 8/14/2019 RRBA Presentation 29Nov07

    18/137

    IEEE 802 Standards ProcessIEEE

    802

    802.11WLAN

    802.15WPAN

    802.16WMAN

    802.11g54 Mbit/s

    802.11b11 Mbit/s

    802.15.1Bluetooth

    802.15.3High rate

    802.11n100 Mbit/s

    802.16dFixed

    802.16eMobile

    802.20WMANMobile

    802.22WRAN

    802.22.1EnhancedPart 74

    protection

    802.22.2Recommended

    Practice802.11jRelay

    802.15.4Zigbee

    Wi-Fi Wi-MAX

    802.18Regulatory

    Matters

    SensingTiger Team

    GeolocationTiger Team

  • 8/14/2019 RRBA Presentation 29Nov07

    19/137

    IEEE 802.22

    RAN Regional AreaNetwork

    IEEE Standards

    30 km

    54 - 862 MHz

  • 8/14/2019 RRBA Presentation 29Nov07

    20/137

    IEEE 802.22 Work Plan

    Steps Deadline Formation of the 802.22 WG Jan 05

    Functional Requirements definition &Call for proposals

    Sept 05

    Proposals / Contributions Nov 05 & Jan 06

    Consolidation of proposals March 06Standard drafting process starts January 07

    Working Group ballot / Commentsresolution process

    March 08

    IEEE Sponsor Ballot / Commentsresolution process

    November 08

    Standard approved and delivered toindustry

    March 09

  • 8/14/2019 RRBA Presentation 29Nov07

    21/137

    Outline

    1. Broadband Access in Canada

    2. Best frequency range for rural access3. Regulatory steps towards use of the TV bands4. The IEEE 802.22 WG5. The WRAN system concept6. The IEEE 802.22 Draft Standard

    a) PHYb) MACc) Cognitive radio capability

    i. Coexistenceii. Geolocationiii. Sensing

    7. Protection of broadcast incumbentsa) Protection of TV broadcastingb) Protection of wireless microphones (Part 74)

    8. Possible research areas9. Conclusion

    Rural andRemote

    B roadbandAccess

  • 8/14/2019 RRBA Presentation 29Nov07

    22/137

    Rural Broadband:- Cable-modem / ADSL- WiFi hot-spots in ISM bands

    - Higher power, lower frequencybroadband access system

    30 km23 km

    16 km

    MACLong round-trip

    delays

    QPSK

    16-QAM64-QAM

    PHYAdaptive

    modulation

    - Medium power wireless systems

    5 km

  • 8/14/2019 RRBA Presentation 29Nov07

    23/137

    WRAN System Capacity and CoverageTypical WRAN service model

    RF channel bandwidth 6 MHzTypical spectrum efficiency 2 bit/(s*Hz) (Max: 3.8 bit/(s*Hz) )Channel capacity 12 Mbit/sSubscriber capacity (forward) 1.5 Mbit/sSubscriber capacity (return) 384 kbit/sOver-subscription ratio 40:1Subscribers per forward channel 255

    Minimum viable operation Minimum number of subscribers 90Initial penetration 5 %

    Potential full penetration Potential number of subscribers 1,800Number of person per household 2.5Population per coverage area 4500

    Type of operation Low power High power WRAN base station EIRP 4 Watts 100 WattsWRAN user terminal EIRP 163 mWatt 4 WattsCoverage radius 16.7 km 30.7 kmMinimum population density 5.1 person/km 2 1.5 person/km 2

  • 8/14/2019 RRBA Presentation 29Nov07

    24/137

  • 8/14/2019 RRBA Presentation 29Nov07

    25/137

    Characteristics of 802.22 WRAN:

    30 km23 km

    16 km

    QPSK

    16-QAM64-QAM

    Max throughput per 6 MHz:DS: 7.8 Mbit/s (net: 3.89 Mbit/s)US: 768 kbit/s (net: 384 kbit/s)

    Max throughput per 6 MHz:23 Mbit/s (net: 19.44 Mbit/s)

    Minimum service availability:location= 50%time= 99.9%

    Base station power: 100 WAntenna height: 75 m

    User terminal (CPE) power: 4 Wantenna height: 10 m

  • 8/14/2019 RRBA Presentation 29Nov07

    26/137

    802.22 WRAN Deployment Scenario

    TVTransmitter

    WRANBase Station

    WirelessMIC

    WirelessMIC

    WRANBase Station

    : CPE

    : WRAN B ase Stat ion

    Typical ~31kmMax. 100km

  • 8/14/2019 RRBA Presentation 29Nov07

    27/137

    WRAN CPE(Customer Premise Equipment)

    DTV WRAN

  • 8/14/2019 RRBA Presentation 29Nov07

    28/137

    WRAN CPE RF ArchitectureCommon RF path for WRAN operation and sensing

    WRANsynchronization

    demodulator decoder

    Pre-selective

    filter

    L N A

    X

    LO

    Channelfilter

    Sensing schemes:- energy detector -pilot tone detector -correlated detector

    - Part 74 micro detector -TG1 beacon detector

    RFswitch

    Selectableoutput filter H

    P A WRAN encoding and

    modulationX

    Sensingantenna

    WRAN operatingTX/RX antenna

    Tuning for WRAN channel and sensing channel

  • 8/14/2019 RRBA Presentation 29Nov07

    29/137

    Pre-selective

    filter

    WRANsynchronization

    demodulator decoder

    Pre-selective

    filter

    L N A

    L N A

    X

    X

    LO

    LO

    Channelfilter

    Channelfilter

    Sensing schemes:- energy detector -pilot tone detector -correlated detector

    - Part 74 micro detector -TG1 beacon detector

    RFswitch

    Selectableoutput filter H

    P A WRAN encoding and

    modulationX

    Sensingantenna

    WRAN operatingTX/RX antenna

    Tuning for channel sensing

    Tuning for WRAN channel

    WRAN CPE RF ArchitectureSeparate RF path for WRAN operation and sensing

  • 8/14/2019 RRBA Presentation 29Nov07

    30/137

    Outline

    1. Broadband Access in Canada2. Best frequency range for rural access3. Regulatory steps towards use of the TV bands4. The IEEE 802.22 WG5. The WRAN system concept6. The IEEE 802.22 Draft Standard

    a) PHYb) MACc) Cognitive radio capability

    i. Coexistenceii. Geolocationiii. Sensing

    7. Protection of broadcast incumbentsa) Protection of TV broadcastingb) Protection of wireless microphones (Part 74)

    8. Possible research areas9. Conclusion

    Rural andRemote

    B roadbandAccess

  • 8/14/2019 RRBA Presentation 29Nov07

    31/137

    PHY (Baseband) Architecture for theOFDM/OFDMA WRAN standard

    RandomizerEncoderPuncturer

    &Interleaver

    MapperSubcarrierAllocator

    S/P

    Preamble&

    PilotInsertion

    IFFTGuardInsertion

    P/S

    AWGN

    Channel

    De-randomizerDecoder

    De-interleaver

    &

    Depuncturer

    De-mapper

    SubcarrierDeallocator P/S

    ChannelEstimationFFT

    GuardRemovalS/P

    Synchronization

    BinaryData

    RecoveredData

  • 8/14/2019 RRBA Presentation 29Nov07

    32/137

    Parameters Specification Remark Frequency range 54~862 MHz

    Bandwidth 6 and/or 7, and/or 8 MHz

    Data rate 4.54 22.69 Mbit/sSpectral Efficiency 0.76 3.78 bit/(s*Hz)

    Payload modulation QPSK, 16-QAM, 64-QAM BPSK used for preambles, pilots and CDMA codes

    Transmit EIRP Default 4W for CPEsCurrently 4 W for BS in theUSA, may vary in other regulatory domains.

    Multiple Access OFDMAFFT Mode 2048Cyclic Prefix Modes , 1/8, 1/16, 1/32Duplex TDD

    PHY: System Parameters

  • 8/14/2019 RRBA Presentation 29Nov07

    33/137

    PHY: System Parameters

    6 MHz basedchannels

    7 MHz basedchannels

    8 MHz basedchannels

    Inter-carrier spacing,F (Hz)

    (6x10 6*8/7)/20483348.214

    (7x10 6*8/7)/20483906. 25

    (8x10 6*8/7)/20484464.286

    FFT/IFFT period,T FFT ( s)=1/ F 298.666 = 256.000 = 224.000

    TFFTTCP TSYM

    Cyclic prefix modes: T CP /TFFT = 1/4, 1/8, 1/16, 1/32

  • 8/14/2019 RRBA Presentation 29Nov07

    34/137

    PHY: OFDM ParametersTV channel bandwidth (MHz) 6 7 8Total no. of sub-carriers,

    NFFT 2048

    No. of guard sub-carriers,NG (L, DC, R)

    368 (184, 1, 183)

    No. of used sub-carriers,NT = N D+ N P

    1680

    No. of data sub-carriers,ND

    1440

    No. of pilot sub-carriers, N P 240

    Signal bandwidth (MHz) 5.625 6.566 7.504

    Data Sub-carrier Pilot Subcarrier Guard/Null Subcarrier

    2K FFT

    6 MHz

    DC

  • 8/14/2019 RRBA Presentation 29Nov07

    35/137

    PHY: OFDM ParametersPHY Mode dependent parameters. Note that the data rates are

    derived based on 2K sub-carriers and a TCP to TFFT ratio of 1/16.

    PHYMode

    Modulation CodingRate

    Datarate

    (Mb/s)

    SpectralEfficiency

    (for 6 MHzbandwidth)

    1 1 BPSK Uncoded 4.54 0.762 2 QPSK 1.51 0.253 QPSK 4.54 0.76

    4 QPSK 2/3 6.05 1.015 QPSK 6.81 1.136 QPSK 5/6 7.56 1.267 16-QAM 9.08 1.518 16-QAM 2/3 12.10 2.029 16-QAM 13.61 2.27

    10 16-QAM 5/6 15.13 2.52

    11 64-QAM 13.61 2.2712 64-QAM 2/3 18.15 3.0313 64-QAM 20.42 3.4014 64-QAM 5/6 22.69 3.78

    Note 1: Mode 1 is only used for CDMA opportunistic bursts Note 2: Mode 2 is only used for CBP burst transmission which uses QPSK, rate:

    convolutional coding with repetition of 3

  • 8/14/2019 RRBA Presentation 29Nov07

    36/137

    F r e q u e n c y

    b i n s

    TTG RTG

    Data carrier

    Note:240 Bins = 60 DS sub-channels = DS Capacity, i.e. 4 Bins = 1 DS sub-channel240 Bins = 60 US sub-channels = US Capacity, i.e. 4 Bins = 1 US sub-channel

    Pilot carrier

    (US/DS capacity split for maximum downstream capacity)

    FCH, DS-MAP, US-MAPFrame preamble

    BinDS Subchannel

    (= 4 Bins) BinUS Subchannel

    (= 4 Bins)

    Downstream Upstream

    Frame(CP= 1/8)

    Minimum BurstLength for US

    PHY: OFDM frame structure

  • 8/14/2019 RRBA Presentation 29Nov07

    37/137

    PHY: OFDM frame structure

    TTG

    Data carrier

    Pilot carrier

    FCH, DS-MAP, US-MAP

    Minimum Burst

    Length for US

    F r e q u e n c y

    b i n s

    RTG

    (US/DS capacity split for maximum upstream capacity)Note:240 Bins = 60 DS sub-channels = DS Capacity, i.e. 4 Bins = 1 DS sub-channel240 Bins = 60 US sub-channels = US Capacity, i.e. 4 Bins = 1 US sub-channel

    Downstream Upstream

    Super-frame preambleFrame preambleSCH and super-frame payload

    First frame of super-frame(CP= 1/8)

    BinDS Subchannel

    (= 4 Bins) BinUS Subchannel

    (= 4 Bins)

  • 8/14/2019 RRBA Presentation 29Nov07

    38/137

    PHY: OFDM Parameters

    WRAN frame parametersCyclicPrefix

    Number of symbols per frame 1

    Transmit-receiveturnaround gap 2 (TTG)

    Receive-transmitturnaround gap 3 (RTG)

    BW 6 MHz 7 MHz 8 MHz 6 MHz 7 MHz 8 MHz 6 MHz 7 MHz 8 MHz

    1/426

    3034

    210 s 83.33 s

    190 s 270 s

    1/8

    29

    3338

    210 s

    46 s

    286 s 214 s

    1/16 3035

    41210 s

    270 s 270 s

    32 s

    1/3231

    37

    42

    210 s 242 s

    22 s

    88 s Notes: 1. Includes the frame preamble and the FCH, DS/US-MAP and DCD/UCD symbols.

    2. Set to absorb the propagation delay for up to a 30 km and a CPE turnaround time of 10s. For larger distances, scheduling at the BS will allow for absorption of longer

    propagation delay.3. Portion of symbol left over to arrive at the 10 ms frame period.

  • 8/14/2019 RRBA Presentation 29Nov07

    39/137

    PHY: Preambles

    CP ST 4ST 3ST 2ST 1

    TSYM

    Superframe preamble format using short training sequences

    Frame preamble format using long training sequences

    LT1 LT 2

    TSYM

    CP

  • 8/14/2019 RRBA Presentation 29Nov07

    40/137

    PHY: Preambles (generation and performance)

    Binary frame preamble set with 114 sequences: Based on M-sequences Use of a single generator: x 10 + x 9 + x 7 + x 5 + x 4 + x 2 + 1 Simple shifts for each sequence.

    PAPR range : 4.78 to 5.57 dB (WiMAX: 4.29-4.92 dB)

    Frequency domain auto-correlation: 2.6 dB better than WiMAX over all lags 4.23 dB better than WiMAX over lags 0 to 200

    Low maximum cross-correlation among proposed

    sequences in both time and frequency domain. Time domain X-correlation: 3 dB better than WIMAX Frequency domain X-correlation: 6 dB better than WiMAX

    over 0-11 lags

  • 8/14/2019 RRBA Presentation 29Nov07

    41/137

    PHY: Preambles (simulation results)

  • 8/14/2019 RRBA Presentation 29Nov07

    42/137

    Coexistence Beacon Protocol

    CBP preamble format using a different short training sequence

    ST 1 ST 5 ST 4 ST 3 ST 2

    T SYM

    CBP PreambleCBP data

    (Symbol 1)CBP data

    (Symbol 2, optional)

    1 OFDM symbol(4 repetitions)

    1 OFDM symbolData + Pilots

    1 OFDM symbolData + Pilots

    CBP packet format

    1 3 4 5 6 7 82 9 10 11 12 13

    Preamble:

    Pilots:

    Data:

    ...

    ...

    ...

    0

    Frequency Bin Number

    Sub-carrier definition for CBP preamble and data symbols

  • 8/14/2019 RRBA Presentation 29Nov07

    43/137

    FEC => 1) Convolutional coding

    D DDDDD

    Output A

    Output B

    Data in

    +

    +

    Rate: convolutional coder with generator polynomials 171o, 133o.The delay element represents a delay of 1 bit.

    Code rate 2/3 5/6

    Convolutional coderoutput

    A1B1 A1B1A2B2 A1B1A2B2A3B3 A1B1A2B2A3B3A4B4A5B5

    Puncturer output/bit-inserter input

    A1B1 A1B1B2 A1B1B2A3 A1B1B2A3B4A5

    Decoder input A1B1 A1B10B 2 A1B10B 2A30 A 1B10B 2A300B 4A50

    Puncturing and bit-insertion for the different coding rates

  • 8/14/2019 RRBA Presentation 29Nov07

    44/137

    FEC => 2) CTC -optionalDuobinary Convolutional Turbo Coding

    Puncturing patterns for turbo codes (1= keep, 0= puncture)

    Code Rate Puncturing vector Y = [1 1 1 1 1 1]

    2/3 Y = [1 0 1 0 1 0] Y = [1 0 0 1 0 0]

    5/6 Y = [1 0 0 0 0]

    -

  • 8/14/2019 RRBA Presentation 29Nov07

    45/137

  • 8/14/2019 RRBA Presentation 29Nov07

    46/137

    FEC => 4) SBTC -optionalShortened block turbo codes

    Shortened BTC (SBTC) structure

  • 8/14/2019 RRBA Presentation 29Nov07

    47/137

    Compared FEC PerformanceBlock size = 384 bits, rate: 1/2, QPSK

    Packet Error Rate - WRAN-B Channel

    1E-05

    1E-04

    1E-03

    1E-02

    1E-01

    1E+00

    1 2 3 4 5 6 7SNR, dB

    P a c

    k e t

    E r r o r

    R a

    t e

    FT_ChB_CC_2b384FT_ChB_CTC_6b1728_802.16_CC_interleaver Moto_ChB_CC_2b384

    Moto_ChB_LDPC_2b384

    Moto_AWGN_LDPC_2b384

    I2R_ChB_CC_2b384I2R_ChB_SBTC_2b384

  • 8/14/2019 RRBA Presentation 29Nov07

    48/137

    Packet Error Rate - WRAN-B Channel

    1E-05

    1E-04

    1E-03

    1E-02

    1E-01

    1E+00

    1 2 3 4 5 6 7SNR, dB

    P a c

    k e t

    E r r o r

    R a

    t e

    FT_ChB_CC_2b576FT_ChB_CTC_6b1728_802.16_CC_interleaver

    FT_AWGN_CTC_2b576

    Moto_ChB_CC_2b576

    Moto_ChB_LDPC_2b576

    Moto_AWGN_LDPC_2b576

    Compared FEC PerformanceBlock size = 576 bits, rate: 1/2, QPSK

  • 8/14/2019 RRBA Presentation 29Nov07

    49/137

    Packet Error Rate - WRAN-B Channel

    1E-05

    1E-04

    1E-03

    1E-02

    1E-01

    1E+00

    15 16 17 18 19 20 21 22 23 24 25SNR, dB

    P a c

    k e t

    E r r o r

    R a

    t e

    FT_ChB_CC_6b1728FT_ChB_CTC_6b1728_802.16_CC_interleaver FT_ChB_CTC_6b1728_802.16_CTC_interleaver FT_AWGN_CTC_6b1728Moto_ChB_CC_6b1728Moto_ChB_LDPC_6b1728Moto_AWGN_LDPC_6b1728I2R_ChB_CC_6b1728I2R_ChB_SBTC_1728

    Compared FEC PerformanceBlock size = 1728 bits, rate: 3/4, 64-QAM

  • 8/14/2019 RRBA Presentation 29Nov07

    50/137

    PHY: Bit and subcarrier interleaving

    )t ( sn

    +

    IFFT

    Bi n

    ar yi n

    t er l e

    avi n

    g

    F E

    C c o d i n g

    S u b - c

    ar r i er M

    o d ul a

    t i on

    M ul t i p

    a t h ch

    ann

    el

    AWGN

    P i l o

    t i n

    s er t i on

    S/PT

    c pI n

    s

    er t i on

    km N FFT

    W

    ( N 1 )m FFT N FFT

    W

    0m N FFT

    W

    m( 1 )

    X

    X

    X

    NFFT

    X

    Informationbinary Source

    G u ar d

    s u b - c

    ar r i er s

    D a t a s cr am

    b i n

    g

    P un

    c t ur i n

    g

    k

    s u b - c

    ar r i

    er

    I n t er l e

    avi n

    g

    I n ( k )

    Kd= a 1440

    Kd= b 1624

    ( )

    , ( ) j

    p q I k (2),

    ( ) p q

    I k

    I I Ik I

    , ( ) p q I k

    Kb bits

    permutation rulesselection

    ( j ) ( j ) p ,q p ,qk Max I ( k s ) I ( k )

    Binary interleaving patternsFEC constraints encountered

    Interleaving spreadingmaximization

  • 8/14/2019 RRBA Presentation 29Nov07

    51/137

    PHY: Subcarrier interleaving

    Interleaving parameter sets and interleaving spreadingSize K p q j DL(s=1) DL(s=2) DL(s=3) DL(s=4)

    Uplink: 1624 4 2 3 743 138 605 276

    Downlink: 1440 40 2 2 559 322 237 644

    IEEE 802.16e 92 82 127 207

    DL 16QAM 1/2 - BER Error Rate - WRANB Channel

    1E-06

    1E-05

    1E-04

    1E-03

    1E-02

    1E-01

    1E+00

    8 9 10 11 12 13 14

    SNR, dB

    B i t E r r o r

    R a

    t e

    DL_FT_fad_cc_4b576_PUSC

    DL_FT_fad_cc_4b576_New_Interleaver

    UL 16QAM 1/2 - BER Error Rate - WRANB Channel

    1E-06

    1E-05

    1E-04

    1E-03

    1E-02

    1E-01

    1E+00

    8 9 10 11 12 13 14 15 16 17 18

    SNR, dB

    B i t E r r o r

    R a

    t e

    UL_FT_fad_cc_4b576_PUSC

    UL_FT_fad_cc_4b576_1624

  • 8/14/2019 RRBA Presentation 29Nov07

    52/137

    PHY: Bit interleaving Interleaving parameter sets and interleaving spreading

    CodedBlock

    InterleaverParameters

    Interleaver Spreading(informative)

    K (bits) p q j L(s=1) L(s=2) L(s=3) L(s=4) L(s=6) L(s=8) 96 3 2 3 25 46 21 4 42 8

    192 3 2 3 71 50 21 92 42 8288 3 2 3 121 46 75 92 138 104336 16 2 3 95 146 75 100 102 88384 6 2 3 179 26 153 52 78 104480 16 2 3 191 98 93 196 186 88576 36 2 1 217 142 75 284 150 8768 3 2 3 313 142 171 284 342 200

    864 48 2 1 479 98 381 196 294 392960 6 2 3 589 358 231 716 306 88

    1008 36 2 1 361 286 75 436 150 1361056 48 2 1 769 286 483 572 294 3921056 16 2 3 671 866 476 831 198 881152 36 2 1 359 434 75 75 150 5681248 3 2 2 409 4 30 21 388 42 4721440 40 2 2 559 322 237 644 210 2001536 6 2 3 589 358 231 716 462 104

    1632 3 2 3 793 46 747 92 138 1841680 40 2 2 559 562 3 556 510 6801728 36 2 1 793 142 651 284 426 5681824 48 2 1 769 286 483 572 858 6801920 48 2 1 863 194 669 388 582 7762112 16 2 3 671 770 99 572 198 9682208 3 2 3 743 7 22 21 764 42 6802304 16 2 3 1055 194 861 388 582 776

  • 8/14/2019 RRBA Presentation 29Nov07

    53/137

    PHY: Bit and subcarrier interleaving

    Use of common algorithm Use of the same interleaving algorithm with different

    parameters for both bit and subcarrier interleaving Same bit interleaving can be used for the basic

    convolutional coding and other optional FEC schemes

    Can be implemented as algorithm for binaryinterleaving over various block lengths and astable lookup for DS and US subcarrier interleaving (fixed lengths: 1440 and1624)

    Gains over the 802.16 interleavers range from1 3 dB

  • 8/14/2019 RRBA Presentation 29Nov07

    54/137

    Relative performance of the different portions of the802.22 WRAN signal in an AWGN channel

    S I N R ( d B

    )

    - 2

    0

    2

    4

    6

    Super-framepreamble

    Binary4-repeat

    Super-framecontrol header QPSK rate: 1/2

    CC 4-repeat

    Frame preambleBinary

    2-repeat

    Frame controlheader

    QPSK rate: 1/2CC 2-repeat

    DS/US-MAPand DCD/UCDQPSK rate:1/2

    CC

    PayloadQPSK rate: 1/2

    CC

    PayloadQPSK rate: 1/2

    Advancedcoding

    - 6

    - 4

    r a t e : 1

    / 4 2 - r e p e a

    t

    4 - r e p e a

    t 2 - r e p e a t

    r a t e : 1

    / 4 2 - r e p e a

    t 3 8 4

    5 7 6

    O tli Rural and

  • 8/14/2019 RRBA Presentation 29Nov07

    55/137

    Outline

    1. Broadband Access in Canada2. Best frequency range for rural access3. Regulatory steps towards use of the TV bands4. The IEEE 802.22 WG5. The WRAN system concept6. The IEEE 802.22 Draft Standard

    a) PHYb) MACc) Cognitive radio capability

    i. Coexistenceii. Geolocationiii. Sensing

    7. Protection of broadcast incumbentsa) Protection of TV broadcastingb) Protection of wireless microphones (Part 74)

    8. Possible research areas9. Conclusion

    Rural andRemote

    B roadbandAccess

  • 8/14/2019 RRBA Presentation 29Nov07

    56/137

    MAC: Protocol Reference Model

    Convergence Sub-Layer Bridge(e.g.,802.1d)

    MLME

    PLME

    MAC

    PHY

    MLME-PLME SAPPHY SAP

    MAC SAP

    Higher Layers:IP,ATM,1394,etc.

    SME

    S ME -P L ME

    S AP

    S ME -ML ME

    S AP

    SpectrumManager(BS)

    /SpectrumAutomaton(CPE)

    Geo-Location

    SSF

    MAC_SAP: MAC Service Access PointPHY_SAP: PHY Service Access Point

    SME-MLME_SAP: Station Management Entity -MAC Layer Management Entity Service Access Point

    SME-PLME_SAP: Station Management Entity -PHY Layer Management Entity Service Access Point

    MLME-PLME_SAP: MAC Layer Management Entity -PHY Layer Management Entity Service Access Point

  • 8/14/2019 RRBA Presentation 29Nov07

    57/137

    f

  • 8/14/2019 RRBA Presentation 29Nov07

    58/137

    MAC: OFDM frame structure

    DS sub-frame T T G

    R T G

    US sub-frame(smallest US burst portion on a given subchannel= 7 symbols)

    26 to 42 symbols corresponding to bandwidths from 6 MHz to 8 MHz and cyclic prefixes from 1/4 to 1/32

    F r a m e

    P r e a m

    b l e

    F C H

    D S - M A P

    B u r s

    t 1 D

    C D

    B u r s

    t 2

    t i m e

    b u

    f f e r

    t i m e

    b u

    f f e r

    S e

    l f - c o e x

    i s t e n c e w

    i n d o w

    ( 4 o r

    5 s y m

    b o

    l s w

    h e n s c

    h e

    d u

    l e d )

    Burst 1

    6 0

    s u

    b c

    h a n n e

    l s

    Burst 2

    Burst 3

    more than 7 OFDMA symbols

    Burst

    Burst n

    Burst

    B u r s

    t m

    Ranging/BW request/UCS notification

    Burst

    Burst

    Bursts

    B u r s

    t s

    frame n-1 frame n frame n+1... Time...

    10 ms

    U S - M A P

    U S - M A P

    U C D

    Outline Rural and

  • 8/14/2019 RRBA Presentation 29Nov07

    59/137

    Outline

    1. Broadband Access in Canada2. Best frequency range for rural access3. Regulatory steps towards use of the TV bands4. The IEEE 802.22 WG5. The WRAN system concept6. The IEEE 802.22 Draft Standard

    a) PHYb) MACc) Cognitive radio capability

    i. Coexistenceii. Geolocationiii. Sensing

    7. Protection of broadcast incumbentsa) Protection of TV broadcastingb) Protection of wireless microphones (Part 74)

    8. Possible research areas9. Conclusion

    Rural andRemote

    B roadbandAccess

  • 8/14/2019 RRBA Presentation 29Nov07

    60/137

    Coexistence among WRAN systems

  • 8/14/2019 RRBA Presentation 29Nov07

    61/137

    Coexistence among WRAN systems

    CBP

    A d a p

    t i v e o n

    D e m a n

    d

    C h a n n e

    l

    C o n

    t e n

    t i o n

    D y n a m

    i c

    R e s o u r c e

    R e n

    t i n g

    /

    O f f e r i n g

    S p e c

    t r u m

    E t i q u e

    t t e

    I n t e r f e r e n c e -

    f r e e

    s c h e

    d u

    l i n g

    Preamble SCH CBP MAC PDU

    Coexistence Beacon Protocol (CBP) burst

    Outline Rural and

  • 8/14/2019 RRBA Presentation 29Nov07

    62/137

    Outline

    1. Broadband Access in Canada2. Best frequency range for rural access3. Regulatory steps towards use of the TV bands4. The IEEE 802.22 WG5. The WRAN system concept6. The IEEE 802.22 Draft Standard

    a) PHYb) MACc) Cognitive radio capability

    i. Coexistenceii. Geolocationiii. Sensing

    7. Protection of broadcast incumbentsa) Protection of TV broadcastingb) Protection of wireless microphones (Part 74)

    8. Possible research areas9. Conclusion

    Rural andRemote

    B roadbandAccess

  • 8/14/2019 RRBA Presentation 29Nov07

    63/137

    Geolocation of all CPEs

    GPS -based (requested by broadcasters)

    Terrestrial triangulation between BS and at

    least two benchmark CPEs using the highaccuracy ranging built-in the 802.22 standard

    Outline Rural and

  • 8/14/2019 RRBA Presentation 29Nov07

    64/137

    Outline

    1. Broadband Access in Canada2. Best frequency range for rural access3. Regulatory steps towards use of the TV bands4. The IEEE 802.22 WG5. The WRAN system concept6. The IEEE 802.22 Draft Standard

    a) PHYb) MACc) Cognitive radio capability

    i. Coexistenceii. Geolocationiii. Sensing

    7. Protection of broadcast incumbentsa) Protection of TV broadcastingb) Protection of wireless microphones (Part 74)

    8. Possible research areas9. Conclusion

    Rural andRemote

    B roadbandAccess

  • 8/14/2019 RRBA Presentation 29Nov07

    65/137

    Broadcast Incumbent Sensing Energy (Power) Detection Sensing Technique

    SNR Wall Power Wall

    0 dB -18.2 dB -113.4 dBm

    0.5 dB -6.4 dB -101.6 dBm

    1.0 dB -3.3 dB -98.5 dBm

    Impact of noise uncertainty

    Noise Power Spectral Density:-174 + 11 = -163 dBm/Hz

    Bandwidth = 6 MHz

    M = number of samples

  • 8/14/2019 RRBA Presentation 29Nov07

    66/137

    Energy (Power) Detection Sensing TechniqueRF sensing performance

    0.1%

    1.0%

    10.0%

    100.0%

    -26 -24 -22 -20 -18 -16 -14 -12 -10 -8 -6 -4 -2SNR (dB)

    P r o

    b a b

    i l i t y o

    f m

    i s d e t e c t i o n

    ( P m

    d )

    Energy - 1dB Pfa=10% 5 ms

    Energy - 0.5dB Pfa=10% 5 ms

    Energy - 0dB Pfa=10% 5ms

    Threshold =-116 dBm

  • 8/14/2019 RRBA Presentation 29Nov07

    67/137

    Broadcast Incumbent SensingMulti-resolution Sensing Technique (Gtech)

    Performance of MRSS

    N average 1 10 20 40 80 160

    Sensing Time (msec) 0.1 1 2 4 8 16

    PMD = 0.1 -3.19 -11.64 -14.00 -16.55 -19.67 -24.47Required SNR (dB) PMD = 0.01 -0.01 -8.98 -11.43 -13.83 -16.36 -19.88

  • 8/14/2019 RRBA Presentation 29Nov07

    68/137

    Broadcast Incumbent Sensing Covariance-based Sensing Technique (I2R)

    Required SNR for DTV signal detection (single channel)

    Method 4ms 8ms 16ms 32msMME -11.6dB -13.2dB -15dB -16.9dBEME -10.5dB -12.1dB -14dB -15.8dB

    Required SNR for wireless microphone signal detection

    Method 4ms 10msMME -21.0dB -23.1dB

    EME -16.4dB -18.4dB

    Required SNR for DTV signal detection (three consecutive channels)

    Method 4ms 16msMME -17.5dB -20.9dBEME -15.6dB -19.1dB

    MME: Maximum-minimum

    eigenvalue detectionEME: Energy with minimumeigenvalue detection

    Compute thesample covariancematrix using thecollected samples

    Decision: if themaximum eign>r*minimum eign,signal exists;Otherwise, signalnot exists.

    Computethe

    threshold r

    Compute themaximum eigenvalueand minimumeigenvalue of thecovariance matrix

    Collectsignalsamples

    Decision: if theenergy>r*minimum eign,signal exists;Otherwise, signalnot exists.

    MME

    EME

    B d t I b t S i

  • 8/14/2019 RRBA Presentation 29Nov07

    69/137

    Broadcast Incumbent SensingSpectrum Correlation Sensing Technique

    (Huawei)Sense

    antenna

    LNAcos2 f p t where f p : left edge freq. of the channel

    LPF ADC FFT detector

    Sensing receiver structure

    Sensing time, number of

    components for calculation

    Required SNR(dB),

    Prob. of detection of 0.9

    Required SNR(dB),

    Prob. of detectionof 0.99

    1/3 ms, 50 components - 7 - 3.52 ms, 100 components - 12 - 8

    10 ms, 200 components - 29 - 15.5

    Required SNRs vs Sensing Time/Number of components for correlation calculation

    B d t I b t S i

  • 8/14/2019 RRBA Presentation 29Nov07

    70/137

    Broadcast Incumbent Sensing ATSC PLL-based Pilot Sensing Technique

    (Philips)

    FTB1

    ADC

    FTB2

    SENSOR

    TV

    TUNER

    f

    f pilot

    ABS

  • 8/14/2019 RRBA Presentation 29Nov07

    71/137

    Broadcast Incumbent Sensing ATSC FFT-based Pilot Sensing Technique

    (Philips)

    1 ms sensing window will allow a32-point FFT while a 5 mswindow will allow a 256-point FFT

    0

    x(t)

    0

    y(t)

    53.8 kHz-53.8 kHz

    21.52 MHz-21.52 MHz

    Required SNR for DTV signal detection (Average over 12 signals)Method 5 ms (N = 1) 10 ms (N = 2) 30 ms (N = 6) 50 ms (N = 10)

    Pilot-Energy -18 dB -20.5 dB -23.5 dB -24.5 dBPilot-Location (NT = 2) - -18.5 dB -22.0 dB -24.0 dB

    FFT applied around the pilot carrier

    Broadcast Inc mbent Sensing

  • 8/14/2019 RRBA Presentation 29Nov07

    72/137

    Broadcast Incumbent SensingSegment synch autocorrelation Sensing Technique

    (Thomson)

    y[n]

    832 2Sample Delay

    Conjugate

    8-SampleSliding Window

    Addition

    Compare withthreshold

    Accumulator Select Maximum

    over 832 2Sampling Instances

    ComputeMagnitude

    832 2Sample Delay

    Required SNR for the Segment-Sync based detector.=0dB =0.5dB =1dB Sensing Time

    Required SNR (dB)4.06 ms -7 -6.5 -69.25 ms -8 -7.5 -792.5 ms -13 -12.5 -12

  • 8/14/2019 RRBA Presentation 29Nov07

    73/137

    Sensing techniques performance comparisonRF sensing performance

    0.1%

    1.0%

    10.0%

    100.0%

    -26 -24 -22 -20 -18 -16 -14 -12 -10 -8 -6 -4 -2SNR (dB)

    P r o

    b a b

    i l i t y o

    f m

    i s d e t e c t

    i o n

    ( P m

    d )

    Energy - 1dB Pfa=10% 5 ms

    Energy - 0.5dB Pfa=10% 5 ms

    Energy - 0dB Pfa=10% 5ms

    I2R Pfa=0.1% 4ms

    I2R Pfa= 1% 4msI2R Pfa=10% 4 ms

  • 8/14/2019 RRBA Presentation 29Nov07

    74/137

    Sensing techniques performance comparison

    RF sensing performance

    0.1%

    1.0%

    10.0%

    100.0%

    -26 -24 -22 -20 -18 -16 -14 -12 -10 -8 -6 -4 -2SNR (dB)

    P r o

    b a b

    i l i t y o

    f m

    i s d e t e c t

    i o n

    ( P m

    d )

    Energy - 1dB Pfa=10% 5 ms

    Energy - 0.5dB Pfa=10% 5 ms

    Energy - 0dB Pfa=10% 5ms

    Thomson-Segment Pfa=10% 4 ms

    I2R Pfa=0.1% 4ms

    I2R Pfa= 1% 4ms

    I2R Pfa=10% 4 ms

    Qualcomm Field Pfa=10% 24 msQualcom Field Pfa=1% 24 ms

    Thomson Field Pfa=10% 24 ms

    Thomson Field Pfa=1% 24ms

    I2R EME Pfa=2.9% 18.6 ms

    I2R MME Pfa=7.7% 18.6 ms

  • 8/14/2019 RRBA Presentation 29Nov07

    75/137

  • 8/14/2019 RRBA Presentation 29Nov07

    76/137

    0%

    1%

    2%

    3%

    4%

    5%

    6%

    -26 -22 -18 -14 -10 -6 -2 2 6 10 14SNR (dB)

    L o g - n o r m a

    l P D F

    Log-normal PDF

    Sensing technique performance(Thomson DTV segment detector)

    Sensor RF sensing performa nce

    0

    0.2

    0.4

    0.6

    0.8

    1

    -26 -22 -18 -14 -10 -6 -2SNR (dB)

    P r o

    b a b

    i l i t y o

    f m

    i s d e t e c

    t i o n

    ( P m

    d ) Sampling= 4.06 ms

    Pfa= 10 %

    = 8.9 dB = 7.08 dB

    DTV signal levelat edge of contour

  • 8/14/2019 RRBA Presentation 29Nov07

    77/137

    Sensing technique performance(Thomson DTV segment detector)

    0%

    1%

    2%

    3%

    4%

    5%

    6%

    -26 -22 -18 -14 -10 -6 -2 2 6 10 14SNR (dB)

    L o g - n o r m a

    l P D F

    Log-normal PDF

    10 * (Pmd * PDF)

    Sensor RF sensing performa nce

    0

    0.2

    0.4

    0.6

    0.8

    1

    -26 -22 -18 -14 -10 -6 -2SNR (dB)

    P r o

    b a b

    i l i t y o

    f m

    i s d e t e c

    t i o n

    ( P m

    d ) Sampling= 4.06 ms

    Pfa= 10 %

    DTV signal levelat edge of contour

  • 8/14/2019 RRBA Presentation 29Nov07

    78/137

    Sensing technique performance(Thomson DTV segment detector)

    0%

    1%

    2%

    3%

    4%

    5%

    6%

    -26 -22 -18 -14 -10 -6 -2 2 6 10 14SNR (dB)

    L o g - n o r m a

    l P D F

    Log-normal PDF

    10 * (Pmd * PDF)

    Sensor RF sensing performa nce

    0

    0.2

    0.4

    0.6

    0.8

    1

    -26 -22 -18 -14 -10 -6 -2SNR (dB)

    P r o

    b a b

    i l i t y o

    f m

    i s d e t e c

    t i o n

    ( P m

    d ) Sampling= 4.06 ms

    Pfa= 10 %

    P detection = 99.482%

    DTV signal levelat edge of contour

  • 8/14/2019 RRBA Presentation 29Nov07

    79/137

    0%

    1%

    2%

    3%

    4%

    5%

    6%

    -26 -22 -18 -14 -10 -6 -2 2 6 10 14SNR (dB)

    L o g - n o r m a l

    P D F

    Log-normal PDF

    10 * (Pmd * PDF)

    Sensing technique performance(I2R covariance absolute value detector)

    Sampling= 4 msPfa= 1 %

    P detection = 99.843%

    Sensor RF sensing pe rformance

    0

    0.2

    0.4

    0.6

    0.8

    1

    -26 -22 -18 -14 -10 -6 -2SNR (dB)

    P r o

    b a b

    i l i t y o

    f m

    i s d e t e c

    t i o n

    ( P m

    d )

    DTV signal levelat edge of contour

  • 8/14/2019 RRBA Presentation 29Nov07

    80/137

    Sensing techniques performance comparisonRF sensing performance

    0.1%

    1.0%

    10.0%

    100.0%

    -26 -24 -22 -20 -18 -16 -14 -12 -10 -8 -6 -4 -2SNR (dB)

    P r o

    b a b

    i l i t y o

    f m

    i s d e t e c t

    i o n

    ( P m

    d )

    Energy - 1dB Pfa=10% 5 ms

    Energy - 0.5dB Pfa=10% 5 ms

    Energy - 0dB Pfa=10% 5ms

    Note: at -116 dBmPd= 99.9986%

    Pd=98.535%

    Pd=95.953%

  • 8/14/2019 RRBA Presentation 29Nov07

    81/137

    RF sensing performance

    0.1%

    1.0%

    10.0%

    100.0%

    -26 -24 -22 -20 -18 -16 -14 -12 -10 -8 -6 -4 -2SNR (dB)

    P r o

    b a b

    i l i t y o

    f m

    i s d e t e c t

    i o n

    ( P m

    d )

    Energy - 1dB Pfa=10% 5 ms

    Energy - 0.5dB Pfa=10% 5 ms

    Energy - 0dB Pfa=10% 5ms

    Thomson-Segment Pfa=10% 4 ms

    I2R Covariance Pfa=1% 4 ms

    Sensing techniques performance comparison

    Pd=98.535%

    Pd=95.953%

    Pd=99.482%

    Pd=99.843%

    Co-channel sensing of DTV

  • 8/14/2019 RRBA Presentation 29Nov07

    82/137

    incumbent

    DTVTX

    135 km

    DTV protectednoise-limited contour

    41 dB(uV/m) F(50, 90)

    Required DTV sensingthreshold= -116 dBm to

    compensate for blockage

    SensingCPE

    Equivalent to 17 dB(uV/m) for0 dBi omni sensing antenna

    Sensing threshold= 24 dB belowprotected field strength level

    Sensing threshold:S/N = -21 dB

    at sensing detector

    Probability of signal exceeding17 dB(uV/m) = 99.9986%

    F(50,1)460 km

    F(50,10)380 km

    F(10,10)457 km

    F(10,1)544 km

    F(1,1)612 km

  • 8/14/2019 RRBA Presentation 29Nov07

    83/137

    Collaborative sensing

    P L F A : Probability of a local false alarm at a CPE

    P LM D : Probability of a local misdetection at a CPEP GF A : Probability of a global false alarm at the BS

    P GM D : Probability of global misdetection at the BSL : number of statistically independent CPEs

    Any local false alarm causes a global false alarm

    Any local detection causes a global detection (OR)

    LGFA LFA P P

    /1)1(1

    L LMDGMD P P

  • 8/14/2019 RRBA Presentation 29Nov07

    84/137

    Impact of multiple sensors on log-normal curve

    Composite log-normal for multiple sensors

    0%

    2%

    4%

    6%

    8%

    10%

    12%

    14%

    16%

    18%

    -20 -15 -10 -5 0 5 10 15 20 25 30SNR (dB)

    P r o

    b a b i l i t y

    1 sensor 2 sensors3 sensors4 sensors6 sensors10 sensors16 sensors30 sensors

  • 8/14/2019 RRBA Presentation 29Nov07

    85/137

    0%

    1%

    2%

    3%

    4%

    5%

    6%

    -26 -22 -18 -14 -10 -6 -2 2 6 10 14SNR (dB)

    L o g - n o r m a l

    P D F

    Log-normal PDF

    10 * (Pmd * PDF)

    Sensing technique performance(I2R covariance absolute value detector)

    Sampling= 4 msPfa= 1 %

    P detection = 99.843%

    Sensor RF sensing pe rformance

    0

    0.2

    0.4

    0.6

    0.8

    1

    -26 -22 -18 -14 -10 -6 -2SNR (dB)

    P r o

    b a b

    i l i t y o

    f m

    i s d e t e c

    t i o n

    ( P m

    d )

  • 8/14/2019 RRBA Presentation 29Nov07

    86/137

    Collaborative sensingSpecial considerations

    With simple OR gating of sensor reports, the P fa willtend to increase rapidly with the number of sensors

    Pfa for individual sensors can be controlled by asking for

    repeated sensing times before reporting (each sensingwindow is independent statistically since it works againstthermal noise)

    Data fusion at the base station should be based onmajority vote (e.g., 2 out of 6 sensors) from a small

    number of well selected statistically independent CPEs(e.g., 6 sensors in the same topographic area located atmore than 500 m) to provide a high level of probabilityof detection while keeping P fa low.

    Outline Rural andR t

  • 8/14/2019 RRBA Presentation 29Nov07

    87/137

    1. Broadband Access in Canada2. Best frequency range for rural access3. Regulatory steps towards use of the TV bands4. The IEEE 802.22 WG5. The WRAN system concept6. The IEEE 802.22 Draft Standard

    a) PHYb) MACc) Cognitive radio capability

    i. Coexistenceii. Geolocationiii. Sensing

    7. Protection of broadcast incumbentsa) Protection of TV broadcastingb) Protection of wireless microphones (Part 74)

    8. Possible research areas9. Conclusion

    RemoteB roadband

    Access

    Co-channel keep-out distancebetween DTV and 32.9 dB(uV/m)

  • 8/14/2019 RRBA Presentation 29Nov07

    88/137

    between DTV and802.22 WRAN

    DTV TX

    100 WWRAN

    BaseStation

    31.33 km

    3.11 km

    30.76 km135 km

    CPEkeep-outdistance

    WRANbase station

    keep-outdistance

    166.4 km

    32.9 dB(uV/m)

    41 dB(uV/m)

    40.2 dB(uV/m)

    138.2 km

    AssumingDTV into DTVco-channel

    protection ratio

    DTV station

    Keep-out distancebetween DTV and

    DTV signal: 30dB above noise

    level F(50,1)

  • 8/14/2019 RRBA Presentation 29Nov07

    89/137

    between DTV and802.22 WRAN:

    30 km23 km

    15 km

    QPSK

    16-QAM64-QAM

    Max throughput per 6 MHz:4.2 Mbit/s downstream

    384 kbit/s upstream

    Max throughput per 6 MHz:23 Mbit/s

    Minimum service availability:location= 50%time= 99.9%

    Base station power: 100 WAntenna height: 75 m

    User terminal (CPE) power: 4 Wantenna height: 10 m

    CPE keep-out distance:Co-channel: 3.1 km

    Adjacent channel: 130 m

    BS keep-out distance:Co-channel: 31 km

    Adjacent channel: 1 km

    ( , )

    DTV signal: 15dB above noise

    level F(50,1)

    Alternate channels interference case when

  • 8/14/2019 RRBA Presentation 29Nov07

    90/137

  • 8/14/2019 RRBA Presentation 29Nov07

    91/137

    WRAN TX antenna and TV RX antenna coupling

    10 m

    Winegard PR 4400 Channel Master 3018

    Improvementthrough polarization

    discrimination

    TV: horizontalWRAN: Vertical

  • 8/14/2019 RRBA Presentation 29Nov07

    92/137

    WRAN TX antenna and TV RX antenna coupling

  • 8/14/2019 RRBA Presentation 29Nov07

    93/137

    Antenna co-polar and cross-polar maximum coupling for 4 W EIRP

    -50

    -45

    -40

    -35

    -30

    -25

    -20

    -15

    -10

    -5

    0

    -180 -150 -120 -90 -60 -30 0 30 60 90 120 150 180Azimuth (deg.)

    R e s u

    l t i n g p o w e r a

    t i n p u

    t o f T V r e c e i v e r

    ( d B m

    )

    Co-473

    Co-617

    Co-695

    X-473

    X-617

    X-695

    WRAN TX antenna and TV RX antenna coupling (W4400=>CM4248)

    -8 dBm RX saturation

    DTV Receiver RF front-end Performance

  • 8/14/2019 RRBA Presentation 29Nov07

    94/137

    Allowable WRAN transmit power in the UHF TV band

  • 8/14/2019 RRBA Presentation 29Nov07

    95/137

    Because of the limited performance of the DTV receiver RF front-end, theWhite Space available to WRAN is reduced (Assuming 14 dB antenna discrimination).

    (Linear extrapolation of the ATSC A- 74 D/U values from the weak desired signal level)

    M a x

    i m u m a l

    l o w e d

    C P E E I R P ( d B W )

    24 km

    15 km

    8.6 km

    4.6 km

    UHF TV channels

    -30

    -25

    -20

    -15

    -10

    -5

    0

    5

    10

    15

    20

    14 16 18 20 22 24 26 28 30 32 34 36 38 40 42 44 46 48 50

    DTV RXSaturation- 8 dBm

    Max. EIRP4 Watts31 km

    WRAN CPE EIRP Profilet t t NTSC i

  • 8/14/2019 RRBA Presentation 29Nov07

    96/137

    to protect NTSC receiversEIRP Profile

    -30

    -25

    -20

    -15

    -10

    -5

    0

    5

    10

    15

    20

    -20 -15 -10 -5 0 5 10 15 20Channel Spacing

    C P E E I R P ( d B W )

    Allow ed EIRP

    Allow ed EIRP up to max.permitted

    Situation is more difficult with NTSC

    Example of a CPE surrounded

  • 8/14/2019 RRBA Presentation 29Nov07

    97/137

    by DTV stations

    Ch 26

    Ch 44

    Ch 34

    Ch 16

    CPE

    BS

  • 8/14/2019 RRBA Presentation 29Nov07

    98/137

    DTV incumbent environment

    Channels on wich TV transmittersexist within interference distance

    16 26 34 44

    TX Latitude (deg.) 44.2 44.2 45.7 47.1

    TX Longitude (deg.) -78.1 -82.2 -80.4 -82.1

    TX ERP (dBW)60 50 55 60

    TX Antenna height (m) 300 275 250 280

    Distance to closest DTV TX 210 km 140 km 10 km 132 kmField strength level producedat device

    30dBuV/m

    40dBuV/m

    137dBuV/m

    45dBuV/m

    Inside protected contour? No No Yes YesDistance to contour if outside 15 km 1 km --- ---

    Maximum CPE EIRP in various UHF channels

  • 8/14/2019 RRBA Presentation 29Nov07

    99/137

    -30

    -20

    -10

    0

    10

    20

    30

    40

    50

    14 16 18 20 22 24 26 28 30 32 34 36 38 40 42 44 46 48 50

    UHF TV channels

    M a x

    i m u m a l

    l o w e d

    C P E E I R P ( d B m

    )Max. EIRP4 Watts31 km

    DTV RXSaturation- 8 dBm

    24 km

    15 km

    8.6 km

    4.6 km

    Maximum CPE EIRP in various UHF channels4 watt EIRP limit and co-channel consideration

  • 8/14/2019 RRBA Presentation 29Nov07

    100/137

    Maximum CPE EIRP in various UHF channels

  • 8/14/2019 RRBA Presentation 29Nov07

    101/137

    -30

    -20

    -10

    0

    10

    20

    30

    40

    50

    14 16 18 20 22 24 26 28 30 32 34 36 38 40 42 44 46 48 50

    UHF TV channels

    M a x

    i m u m a l

    l o w e d

    C P E E I R P ( d B m

    )Max. EIRP4 Watts31 km

    DTV RXSaturation

    - 8 dBm

    24 km

    15 km

    8.6 km

    4.6 km

    Co-channel, taboo and 3rd intermod consideration

    3rd order intermodfrom Ch 34 into Ch 44

    Maximum CPE EIRP in various UHF channels

  • 8/14/2019 RRBA Presentation 29Nov07

    102/137

    -30

    -20

    -10

    0

    10

    20

    30

    40

    50

    14 16 18 20 22 24 26 28 30 32 34 36 38 40 42 44 46 48 50

    UHF TV channels

    M a x

    i m u m a l

    l o w e d

    C P E E I R P ( d B m

    )Max. EIRP4 Watts31 km

    DTV RXSaturation

    - 8 dBm

    24 km

    15 km

    8.6 km

    4.6 km

    Co-channel, taboo, 3rd intermod and direct pickup

    Protection of cable-readyconsumer electronic equipment

    (Direct pickup interference)

    Maximum EIRP for personal/portable

  • 8/14/2019 RRBA Presentation 29Nov07

    103/137

    -30

    -20

    -10

    0

    10

    20

    30

    40

    50

    14 16 18 20 22 24 26 28 30 32 34 36 38 40 42 44 46 48 50

    UHF TV channels

    M a x

    i m u m a l

    l o w e d

    C P E E I R P ( d B m

    )

    DTV RXSaturation

    - 8 dBm

    p pCo-channel and taboo channels consideration

    1st adjacent channelinside contour

    1st adjacent channeloutside contour

    (No CPE antenna backlobe and po lar izat ion discr im inat ion and sh orter reference dis tance: 3 m instead of 10 m)

  • 8/14/2019 RRBA Presentation 29Nov07

    104/137

    Maximum EIRP for personal/portable

  • 8/14/2019 RRBA Presentation 29Nov07

    105/137

    -30

    -20

    -10

    0

    10

    20

    30

    40

    50

    14 16 18 20 22 24 26 28 30 32 34 36 38 40 42 44 46 48 50

    UHF TV channels

    M a x

    i m u m a l

    l o w e d

    C P E E I R P ( d B m

    )

    DTV RXSaturation

    - 8 dBm

    p pCo-channel, taboo, 3rd intermod and direct pickup

    Protection of cable-readyconsumer electronic equipment

    (Direct pickup interference)

    (No CPE antenna backlobe and po lar izat ion discr im inat ion and sh orter reference dis tance: 3 m instead of 10 m)

    Outline Rural andRemote

  • 8/14/2019 RRBA Presentation 29Nov07

    106/137

    1. Extent of Broadband Accessin Canada

    2. Best frequency range for rural areas3. Regulatory steps towards use of the TV bands4. The WRAN system concept

    5. The IEEE 802.22 WG6. DTV interference considerations7. Protection of Part 74 wireless microphones8. Possible research areas9. Conclusion

    RemoteB roadband

    Access

    Out-of-Band emission limit for WRAN devices

  • 8/14/2019 RRBA Presentation 29Nov07

    107/137

    F i e l

    d S t r e n g t h a t

    3 m

    i n 1 2 0 k H z

    ( d B u V

    / m )

    UHF TV channels

    0

    20

    40

    60

    80

    100

    120

    14 16 18 20 22 24 26 28 30 32 34 36 38 40 42 44 46 48 50

    4 Watts

    To limit DTV receiver desensitization to 1 dB at the noise -limited contour (41 dB uV/m),the Out-of-Band (OOB) field strength generated at 3 m in a 120 kHz bandwidth has to bekept below 13.4 dB(uV/m), that is 4.8 uV/m, 32.6 dB lower than the Part 15.209a limit.

    Part 15.209a

    1 0 1 d B

    46

    13.4 4.8uV/m

    200uV/m

    Out-of-Band emission limit for WRAN devices

  • 8/14/2019 RRBA Presentation 29Nov07

    108/137

    F i e l

    d S t r e n g t h a t

    3 m

    i n 1 2 0 k H z

    ( d B u V

    / m )

    UHF TV channels

    0

    20

    40

    60

    80

    100

    120

    14 16 18 20 22 24 26 28 30 32 34 36 38 40 42 44 46 48 50

    4 Watts

    If 14 dB polarization discrimination can be relied upon because of vertically polarizedWRAN operation, the OOB emission level can be raised at 27.4 dB(uV/m), 18.6 dB lower than Part 15.209a limit. This corresponds to 87 dB rejection for a 4 Watt EIRP transmitter.

    Part 15.209a

    1 0 1 d B

    46

    8 7 d B

    27.4

    13.4 4.8uV/m

    200uV/m

    1 8 . 6 d

    B

    802.22 RF Mask

  • 8/14/2019 RRBA Presentation 29Nov07

    109/137

    CPE RF Emission Masks

    -110

    -100

    -90

    -80

    -70

    -60

    -50

    -40

    -30

    -20

    -10

    0

    -2.5 -1.5 -0.5 0.5 1.5 2.5Channel Spacing

    L e v e

    l r e l a t

    i v e

    t o i n - b a n

    d p o w e r

    d e n s

    i t y ( d B )

    802.22 Relaxed

    802.22 Relaxed Ext.

    802.22802.22 Micro

    802.22 Ext.

    Part 15.209a

    Center line

    1 dB DTV RXdesensitization

    4 Watt EIRP

    14 dB relaxation becauseof CPE TX antenna back lobe rejection and main

    lobe X-pol discrimination

    Rejection if microphones

    in 1st adjacent channel

    802.22 RF Mask

  • 8/14/2019 RRBA Presentation 29Nov07

    110/137

    CPE RF Emission Masks

    -110

    -100

    -90

    -80

    -70

    -60

    -50

    -40

    -30

    -20

    -10

    0

    -2.5 -1.5 -0.5 0.5 1.5 2.5Channel Spacing

    L e v e

    l r e l a t

    i v e

    t o i n - b a n

    d p o w e r

    d e n s

    i t y ( d B )

    802.22

    802.22 Micro

    802.22 Ext.

    CDN Mask

    CDN Relaxed Mask

    FCC Mask

    Part 15.209a

    Center line

    1 dB DTV RXdesensitization

    4 Watt EIRP

    Rejection if microphones

    in 1st adjacent channel

    802.22 RF Mask

  • 8/14/2019 RRBA Presentation 29Nov07

    111/137

    CPE RF Emission Masks

    -110

    -100

    -90

    -80

    -70

    -60

    -50

    -40

    -30

    -20

    -10

    0

    -2.5 -1.5 -0.5 0.5 1.5 2.5Channel Spacing

    L e v e

    l r e l a t

    i v e

    t o i n - b a n

    d p o w e r

    d e n s

    i t y ( d B )

    802.22

    802.22 Micro

    802.22 Ext.

    CDN MaskCDN Relaxed Mask

    802.16

    FCC Mask

    Part 15.209a

    Center line

    1 dB DTV RXdesensitization

    4 Watt EIRP

    Rejection if microphones

    in 1st adjacent channel

    Equivalent Personal/Portable RF Mask

  • 8/14/2019 RRBA Presentation 29Nov07

    112/137

    Personal/Portable RF Emission Masks

    -110

    -100

    -90

    -80

    -70

    -60

    -50

    -40

    -30

    -20

    -10

    0

    -2.5 -1.5 -0.5 0.5 1.5 2.5Channel Spacing

    L e v e

    l r e l a t

    i v e

    t o i n - b a n

    d p o w e r

    d e n s

    i t y ( d B )

    Portable

    Portable Micro

    Portable Ext.802.16

    FCC Mask

    Part 15.209a

    Center line

    1 dB DTV RXdesensitization

    0.1 Watt EIRP

    Rejection if microphonesin 1st adjacent channel

    Outline Rural andRemote

  • 8/14/2019 RRBA Presentation 29Nov07

    113/137

    1. Broadband Access in Canada2. Best frequency range for rural access

    3. Regulatory steps towards use of the TV bands4. The IEEE 802.22 WG5. The WRAN system concept6. The IEEE 802.22 Draft Standard

    a) PHYb) MACc) Cognitive radio capability

    i. Coexistenceii. Geolocationiii. Sensing

    7. Protection of broadcast incumbentsa) Protection of TV broadcastingb) Protection of wireless microphones (Part 74)

    8. Possible research areas9. Conclusion

    B roadbandAccess

    Part 74 wireless microphone protection

  • 8/14/2019 RRBA Presentation 29Nov07

    114/137

    p p Large variability of the microphone signal power will not offer a

    reliable signal to be monitored

    A signal beacon is being developed and standardized by802.22.1 Task Group

    Protection of wireless microphones is 12.7 dB less stringent thanthe interference level for the 1 dB DTV receiver desensitization(32.7 uV/m based on -95 dBm and 20 dB PR)

    Sensing repetition time: Sensing of operational channel: within 2 seconds Sensing of backup channels: within 6 seconds

    Channel availability check time: a candidate channel needs tohave been available for 30 s before becoming a backup channel

    If presence of incumbent is detected by BS or CPEs andconfirmed by the BS, the entire cell moves to the first backupchannel if microphone operation is sufficiently close to the BS,or the CPEs within given radius of the microphone operation aredissallowed from the network (TG1 beacon carries Lat. & Long.)

    T k G 1 B D i

  • 8/14/2019 RRBA Presentation 29Nov07

    115/137

    Task Group 1 Beacon Design

    TG1 MAC P t l D t U it (MPDU)

  • 8/14/2019 RRBA Presentation 29Nov07

    116/137

    TG1 MAC Protocol Data Unit (MPDU)

    TG1 Sync Performance illustration

  • 8/14/2019 RRBA Presentation 29Nov07

    117/137

    TG1 Sync Performance illustration

    WRAN coverage and co-channeloperation with wireless microphones

  • 8/14/2019 RRBA Presentation 29Nov07

    118/137

    operation with wireless microphones

    Minimum WRAN fieldstrength: 28.8 dB(uV/m)

    32.7 + att_1.5m/10m dB(uV/m)

    Area where, if

    wireless microphonesare present, the BScannot operate on the

    same TV channel

    Area where, if wirelessmicrophones are present,the nearby CPEs need to

    either change frequency orreduce their transmit power

    Edge of coverage of theWRAN BS (e.g., 17 km for 4 W

    EIRP, 31 km for 100 W EIRP)

    Area where CPEsneed to change

    frequency

    Area where CPEs needto reduce their transmitpower as a function of

    their distance to thewireless microphoneoperation

    Wireless microphoneoperation

    R1

    R2

    F (50, 99.9)

    F( 50, 10)

    802.22 RF Mask

  • 8/14/2019 RRBA Presentation 29Nov07

    119/137

    CPE RF Emission Masks

    -110

    -100

    -90

    -80

    -70

    -60

    -50

    -40

    -30

    -20

    -10

    0

    -2.5 -1.5 -0.5 0.5 1.5 2.5Channel Spacing

    L e v e l r e

    l a t i v e

    t o i n - b a n

    d p o w e r

    d e n s i

    t y ( d B )

    802.22

    802.22 Micro

    802.22 Ext.

    CDN MaskCDN Relaxed Mask

    802.16

    FCC Mask

    Part 15.209a

    Center line

    1 dB DTV RXdesensitization

    4 Watt EIRP

    Rejection if microphones

    in 1st adjacent channel

    33 dB

    WRAN coverage and adjacent-channeloperation with wireless microphones

  • 8/14/2019 RRBA Presentation 29Nov07

    120/137

    operation with wireless microphones

    28.8dB(uV/m)

    32.7 + 33 + att _1.5m/10m

    dB(uV/m)

    Area where, if wireless microphonesare detected, the BS

    cannot operate on theadjacent TV channel

    Area where, if wirelessmicrophones are detected,the nearby CPEs need to

    either change frequency orreduce their transmit power

    Edge of coverage edge of theWRAN BS (e.g., 17 km for 4 W

    EIRP, 31 km for 100 W EIRP)

    Area where CPEs needto reduce their transmitpower as a function of

    their distance to thewireless microphoneoperation or change

    frequency

    Wireless microphoneoperation

    Assuming33 dB as for

    the FCCMask

    R4

    R3

    Outline Rural andRemote

    B db d

  • 8/14/2019 RRBA Presentation 29Nov07

    121/137

    1. Broadband Access in Canada2. Best frequency range for rural access

    3. Regulatory steps towards use of the TV bands4. The IEEE 802.22 WG5. The WRAN system concept6. The IEEE 802.22 Draft Standard

    a) PHYb) MACc) Cognitive radio capability

    i. Coexistenceii. Geolocationiii. Sensing

    7. Protection of broadcast incumbentsa) Protection of TV broadcastingb) Protection of wireless microphones (Part 74)

    8. Possible research areas9. Conclusion

    B roadbandAccess

    Possible research areas

  • 8/14/2019 RRBA Presentation 29Nov07

    122/137

    1. Antenna and RF front-end:a. Antenna

    i. design of a combo including the TX/RX WRAN antenna,sensing omni-directional antenna and possibly a GPSantenna

    ii. characterization of their performance (gain, directivity andimpedance) over the UHF spectrum (Ch14 to Ch 51)

    (eventually also for the low-VHF and high-VHF bands)b. RF low-noise amplifier:

    i. sensitivity (noise performance),ii. amplitude and phase variation over the UHF range,iii. non-linearity performance (IP3 intercept point, see FCC-

    OET report FCC/OET 07-TR-1003 on DTV receivers)c. HPA performance and antenna load adaptationd. Outdoor/indoor interface and lightning arrestor

    1.a UHF Antennas

  • 8/14/2019 RRBA Presentation 29Nov07

    123/137

    0

    2

    4

    6

    8

    10

    12

    14

    16

    18

    1 4 1 8 2 2 2 6 3 0 3 4 3 8 4 2 4 6 5 0 5 4 5 8 6 2 6 6 7 0

    TV channels

    A n

    t e n n a g a i n

    ( d B i )

    CM-4248PR-4400

    -400

    -300

    -200

    -100

    0

    100

    200

    300

    400

    0 100 200 300 400 500 600

    Real impedance (ohms )

    I m a g

    i n a r y

    i m p e d e n c e

    ( o h m s )

    CM-4248

    PR 4400

    70

    68

    14

    70

    14

    16

    16

    Channel Master 4248

    Winegard PR-4400

    Possible research areas (contd)

  • 8/14/2019 RRBA Presentation 29Nov07

    124/137

    2. WRAN PHY parameters verificationa. simulation of OFDM parameters and proposed

    modulation schemes with WRAN channel modelsb. Simulation of the proposed preamble bursts and

    their performancec. FEC schemes performance with different

    modulation levels and block sizesd. performance of proposed interleaving with

    various FEC codese. performance of proposed geolocation carrier sets

    and accuracy in noise and multipath conditions

  • 8/14/2019 RRBA Presentation 29Nov07

    125/137

    Possible research areas (contd)

  • 8/14/2019 RRBA Presentation 29Nov07

    126/137

    2.a WRAN PHY parameters verification

    PHY Mode dependent parameters. Data rates derived basedon 2K sub-carriers and a T CP to T FFT ratio of 1/16

    PHYMode Modulation CodingRate SpreadingFactor

    Datarate

    (Mb/s)

    Spectral Efficiency(for 6 MHzbandwidth)

    NormalizedSNR

    0 1 QPSK 4 1.13 0.191 2 BPSK Uncoded 1 4.54 0.76 3 2 3 QPSK 3 1.51 0.254 QPSK 1 4.54 0.76 6 5 QPSK 2/3 1 6.05 1.01 7.5 7 QPSK 1 6.81 1.13 9 8 QPSK 5/6 1 7.56 1.269 16-QAM 1 9.08 1.51 12

    10 16-QAM 2/3 1 12.10 2.02 14.5 11 16-QAM 1 13.61 2.27 15 12 16-QAM 5/6 1 15.13 2.52 17.5 13 64-QAM 1 13.61 2.27 18 14 64-QAM 2/3 1 18.15 3.03 20 15 64-QAM 1 20.42 3.40 21 16 64-QAM 5/6 1 22.69 3.78 23

    Note 1: Mode 0 is only used for SCHNote 2: Mode 1 is only used for CDMA opportunistic burstsNote3: Mode 2 is only used for CBP burst transmission

    Possible research areas (contd)

  • 8/14/2019 RRBA Presentation 29Nov07

    127/137

    2.b WRAN PHY parameters verification

    Verification of the PAPR of the proposed sequences Verification of frequency autocorrelation and cross-correlation for various lags

    Verification of time cross-correlation for various lags

    CP ST 4ST 3ST 2ST 1

    TSYM

    Superframe preamble Frame preamble

    LT1 LT 2

    TSYM

    CP CP ST 4ST 3ST2ST 1

    TSYM

    CBP preamble

    Possible research areas (contd)

  • 8/14/2019 RRBA Presentation 29Nov07

    128/137

    2.c FEC codecs:Performance comparison and block size adaptability

    1. Convolutional encoding and Viterbi soft decoding2. Duo-binary convolutional turbo coding3. Low density parity check codes (LDPC)

    4. Shortened block turbo codes (SBTC)

    Possible research areas (contd) d d b l

  • 8/14/2019 RRBA Presentation 29Nov07

    129/137

    2.d Bit and subcarrier interleavingStudy the proposed interleaving scheme

    )t ( sn

    +

    IFFT

    Bi n

    ar yi n

    t er l e avi n

    g

    F E

    C

    c o d i n

    g

    S u b - c

    ar r i er M

    o d ul a

    t i on

    M ul t i p

    a t h ch

    ann

    el

    AWGN

    P i l o

    t i n

    s er t i on

    S/PT

    c

    pI n s er t i on

    km N FFT

    W

    ( N 1 )m FFT N FFT

    W

    0m N FFT

    W

    m( 1)

    X

    X

    X

    NFFT

    X

    InformationbinarySource

    G u ar d

    s u

    b - c ar r i er s

    D a t a s cr am

    b i n

    g

    P un

    c t ur i n

    gk

    s u b - c

    ar r i er

    I n t er l e

    avi n

    gI n

    ( k )

    Kd= a 1440Kd= b 1624

    ( )

    , ( )

    j

    p q I k (2), ( ) p q I k

    I I Ik I

    , ( ) p q I k

    Kb bits

    permutation rulesselection

    ( j ) ( j ) p,q p,q

    k Max I ( k s ) I ( k )

    Binary interleaving patternsFEC constraints encountered

    Interleaving spreadingmaximization

    Possible research areas (contd) l

  • 8/14/2019 RRBA Presentation 29Nov07

    130/137

    2.e Geolocation:

    Study of the use of the phase of a set of carriers spread over the 6 MHz channel toevaluate the distance between a user terminal and the base station as well as

    between user terminals with a few metresaccuracy to carry out triangulationcalculations to geo-locate the user terminals.

  • 8/14/2019 RRBA Presentation 29Nov07

    131/137

    Possible research areas (contd) 5 C i t h i

  • 8/14/2019 RRBA Presentation 29Nov07

    132/137

    5. Co-existence mechanism:a. Simulate Coexistence Beacon Protocol (CBP)

    burst scheme and collision impact and probabilityfor local CPE to CPE communications to definecoexistence patterns among multiple overlappingWRAN cells sharing the same channel

    b. Simulate CBP burst scheme and collisionprobability for large-area WRAN cell coordinationwith CBP burst transmitted by BS to definecoexistence patterns among multiple overlappingWRAN cells sharing the same channel

    c. CBP burst coordination between adjacentchannel cells to avoid adjacent channelinterference

    Possible research areas (contd) 6 Spectr m Manager

  • 8/14/2019 RRBA Presentation 29Nov07

    133/137

    6. Spectrum Manager Study the feasibility of maintaining an up-to-date local

    database of possible interference for channels potentiallycreating interference to TV reception considering the "EIRPprofile" (or TV taboo channels) and 3rd order intermodulation caused by RF front-end non-linear distortion in TV receivers

    Study the feasibility of maintaining an up-to-date localdatabase of potential interference to wireless microphones

    Study the data fusion and centralized control at the basestation, augmented by geo-location data and incumbentdatabase

    Study the mechanism for appropriate change in frequency(e.g., Dynamic Frequency Selection, DFS), (channelvacation time: 2 s).

    Conclusions

  • 8/14/2019 RRBA Presentation 29Nov07

    134/137

    The 802.22 WRAN is a standard in the making: theprocess can be influenced

    A number of research studies would be useful tooptimize the standard

    About one year is left in refining the standard Main areas of research are:

    Antenna and RF front-end PHY modulation, interleaving and FEC OFDM and OFDMA structure Geolocation as part of the system capabilities Sensing techniques and collaborative sensing Spectrum manager for optimum protection of incumbents Coexistence mechanism such as the coexistence beacon

    protocol

  • 8/14/2019 RRBA Presentation 29Nov07

    135/137

    www.crc.ca/broadband

  • 8/14/2019 RRBA Presentation 29Nov07

    136/137

    Please visit:

    www.crc.ca

  • 8/14/2019 RRBA Presentation 29Nov07

    137/137