rotational relaxation in ultracold co+he collisions

7
Rotational relaxation in ultracold CO+ He collisions P. M. Florian, M. Hoster, and R. C. Forrey Penn State University, Berks-Lehigh Valley College, Reading, Pennsylvania 19610-6009, USA Received 26 March 2004; published 22 September 2004 Cold and ultracold collisions involving rotationally hot CO molecules are investigated using quantum me- chanical coupled channel, coupled states, and effective potential scattering formulations. Quenching rate co- efficients are given for initial rotational levels near the dissociation threshold. The stability of the CO “super rotors” against collisional decay is compared to previous investigations involving homonuclear molecules. It is found that quasiresonant transitions provide a significantly stronger contribution to the total relaxation rate than in the comparable case of O 2 . As in the case of H 2 , sharp structures in the distribution of total quenching rate coefficients are found at rotational levels where quasiresonant scattering is not allowed. DOI: 10.1103/PhysRevA.70.032709 PACS number s : 34.50.Ez I. INTRODUCTION Experimental schemes to cool and trap neutral polar mol- ecules using a time-varying electric field have been proposed 1,2 and recently realized 3 . Meijer and co-workers have applied the so-called Stark decelerator to slow down meta- stable CO molecules 1 . Schemes to produce diatomic mol- ecules in highly excited rotational states have also been pro- posed 4,5 and recently realized 6 . Theoretical studies have suggested that the collisional dynamics of such rota- tionally hot molecules would be particularly interesting at low temperatures 7–11 . These studies concentrated on homonuclear diatomic molecules where it was found that quasiresonant vibration-rotation QRVR transitions contrib- uted significantly in quenching the highly rotationally ex- cited molecules. Another recent investigation showed that QRVR transitions have a neglible effect on the relaxation of rotationally hot oxygen molecules and that the quenching is very efficient for all rotational levels and dominated by pure rotational deexcitation 12 . Each of the theoretical investi- gations 7–12 assumed a helium atom collision partner. He- lium buffer gas cooling 13 has proven to be an effective technique for loading molecules into a magnetic trap 14 and it has recently been shown that the cooling technique may be applied to a beam of molecules 15 . Therefore, col- lisions involving helium atoms are of considerable interest in ultracold molecular physics. In this work, we perform relax- ation studies for helium collisions with CO. We compute an extensive amount of collisional data that may be used as a point of comparison to the molecular hydrogen and oxygen systems studied previously and investigate whether hetero- nuclear molecules introduce any interesting variations to the low temperature collisional dynamics seen in rotationally ex- cited homonuclear molecules. Because heteronuclear polar molecules like CO possess an electric dipole moment, the radiative decay signal would contain information about the collisions. With the rapid advances in experimental tech- niques mentioned above 1–6,13–15 it is possible that CO + He may turn out to be an ideal system for experimental investigations of rotational relaxation in ultracold atom- diatom collisions. Vibrational relaxation in ultracold CO+ He collisions has been studied for both isotopes of helium 16–18 . Strong resonances were predicted 16,17 and the relative efficiency of the processes involving exchange of a double or single quantum of vibrational energy was studied 18 . There have also been a number of theoretical 16–20 and experimental 21,22 investigations of vibrational relaxation for this sys- tem at higher temperatures. Excellent agreement between theory and experiment has been established for temperatures between 35 and 1500 K. The vibrational relaxation studies have considered vibrational levels as high as =2 18 and rotational levels as high as j =40 20 , where and j are the vibrational and rotational quantum numbers of the CO mol- ecule. Here, we consider all bound rotational levels within the first five vibrational manifolds. At these low vibrations, the molecule can support rotational levels up to j =230 or so before dissociating. It would be hopeless to attempt to per- form fully quantum mechanical coupled channel CC calcu- lations at such large values of j . Therefore, we will employ a decoupling approximation to obtain the desired large- j scat- tering data. It was shown in the case of H 2 and O 2 12 that both the coupled states CS and the effective potential EP approximations were adequate for obtaining qualitatively re- liable cross sections in the limit of ultracold collisions. By qualitatively reliable, we mean that the shape of a cross sec- tion or rate coefficient curve as a function of or j is correct, even though the overall magnitude of the curve may be off by a small factor 12 . This situation is entirely satisfactory considering that inaccuracies in the potential energy surface typically introduce a comparable amount of error. If more quantitative accuracy is desired, it is possible to renormalize the distributions using the CC results. In this work, we will again test the CS and EP approximations against the more accurate CC results in cases where it is possible to perform the computationally intensive CC calculations. After deter- mining the accuracy of the decoupling approximations, we compute cross sections and rate coefficients for ultracold He+ CO collisions with initial rotational levels ranging all the way to dissociation. For a few special cases of initial diatomic states, we extend the investigations to include a range of translational temperatures. II. THEORY The CC, CS, and EP formulations have been given previ- ously 23–26 so we provide only a brief review. The atom- PHYSICAL REVIEW A 70, 032709 2004 1050-2947/2004/70 3 /032709 7 /$22.50 ©2004 The American Physical Society 70 032709-1

Upload: others

Post on 30-Apr-2022

2 views

Category:

Documents


0 download

TRANSCRIPT

Page 1: Rotational relaxation in ultracold CO+He collisions

Rotational relaxation in ultracold CO+He collisions

P�. M. Florian,M. Hoster,andR. C. Forrey

Penn�

State University, Berks-Lehigh Valley College, Reading, Pennsylvania 19610-6009, USA�Received26 March 2004;published22 September2004�

Cold�

andultracoldcollisions involving rotationallyhot CO moleculesare investigatedusingquantumme-chanical� coupledchannel,coupledstates,andeffective potentialscatteringformulations.Quenchingrateco-efficients� aregiven for initial rotationallevelsnearthe dissociationthreshold.The stability of the CO “superrotors”� againstcollisionaldecayis comparedto previousinvestigationsinvolving homonuclearmolecules.It isfound�

thatquasiresonanttransitionsprovidea significantlystrongercontributionto thetotal relaxationratethanin the comparablecaseof O2. As in the caseof H2, sharpstructuresin the distributionof total quenchingratecoefficients� arefound at rotationallevelswherequasiresonantscatteringis not allowed.

DOI:

10.1103/PhysRevA.70.032709 PACS number� s� : 34.50.Ez

I.

INTRODUCTION

Experimental�

schemesto cool andtrapneutralpolarmol-ecules� usinga time-varyingelectricfield havebeenproposed�1,2� and� recentlyrealized � 3��� . Meijer and co-workershave

applied� the so-calledStark deceleratorto slow down meta-stable� CO molecules� 1� . Schemesto producediatomicmol-ecules� in highly excitedrotationalstateshavealsobeenpro-posed� � 4,5� and� recently realized � 6��� . Theoretical studieshave

suggestedthat the collisional dynamicsof such rota-tionally!

hot moleculeswould be particularly interestingatlow temperatures" 7–1

#1$ . These studies concentratedon

homonucleardiatomic moleculeswhere it was found thatquasiresonant% vibration-rotation& QR

'VR( transitions

!contrib-

uted) significantly in quenchingthe highly rotationally ex-cited* molecules.Another recent investigationshowedthatQR'

VR transitionshavea neglibleeffect on the relaxationofrotationally+ hot oxygenmoleculesandthat the quenchingisvery, efficient for all rotationallevelsanddominatedby purerotationaldeexcitation - 12. . Eachof the theoreticalinvesti-gations/ 0 7–12

# 1assumed� a heliumatomcollision partner. He-

lium2

buffer gascooling 3 134 has

proven to be an effectivetechnique!

for loading moleculesinto a magnetictrap 5 146and� it has recently beenshown that the cooling techniquemay beappliedto a beamof molecules7 158 . Therefore,col-lisions2

involving heliumatomsareof considerableinterestinultracold) molecularphysics.In this work, we performrelax-ation� studiesfor helium collisionswith CO. We computeanextensive� amountof collisional datathat may be usedas apoint� of comparisonto the molecularhydrogenandoxygensystems� studiedpreviouslyand investigatewhetherhetero-nuclearmoleculesintroduceany interestingvariationsto thelow temperaturecollisionaldynamicsseenin rotationallyex-cited* homonuclearmolecules.Becauseheteronuclearpolarmolecules9 like CO possessan electric dipole moment,theradiativedecaysignal would contain information about thecollisions.* With the rapid advancesin experimentaltech-niques: mentionedabove ; 1–6,13–15< it

=is possiblethat CO

+> He may turn out to be an ideal systemfor experimentalinvestigationsof rotational relaxation in ultracold atom-diatom?

collisions.V@

ibrational relaxationin ultracoldCO+He collisionshasbeenA

studied for both isotopesof helium B 16–18C . Strong

resonances+ werepredictedD 16,17E and� therelativeefficiencyofF the processesinvolving exchangeof a double or singlequantum% of vibrationalenergy wasstudied G 18H . Therehavealso� beena numberof theoretical I 16–20J and� experimentalK21,22L M

investigations=

of vibrational relaxationfor this sys-tem!

at higher temperatures.Excellent agreementbetweentheory!

andexperimenthasbeenestablishedfor temperaturesbetweenA

35 and 1500K. The vibrational relaxationstudieshaveconsideredvibrational levels as high as N =2 O 18P and�rotational+ levelsashigh as j

Q=40 R 20

LTS,U where V and� j

Qare� the

vibrational, androtationalquantumnumbersof the CO mol-ecule.� Here, we considerall boundrotational levels withinthe!

first five vibrational manifolds.At theselow vibrations,the!

moleculecansupportrotationallevelsup to jQ

=230or sobeforeA

dissociating.It would be hopelessto attemptto per-form fully quantummechanicalcoupledchannelW CC

XZYcalcu-*

lationsat suchlargevaluesof jQ. Therefore,we will employa

decoupling?

approximationto obtain the desiredlarge-jQ

scat-�tering!

data.It wasshownin the caseof H2 and� O2 [ 12\ that!

bothA

the coupledstates] CSX_^

and� the effective potential ` EPaapproximations� wereadequatefor obtainingqualitativelyre-liable2

crosssectionsin the limit of ultracold collisions. Byqualitatively% reliable,we meanthat the shapeof a crosssec-tion!

or ratecoefficientcurveasa functionof b orF jQ

is correct,even� thoughthe overall magnitudeof the curvemay be offbyA

a small factor c 12d . This situationis entirely satisfactoryconsidering* that inaccuraciesin the potentialenergy surfacetypically!

introducea comparableamountof error. If morequantitative% accuracyis desired,it is possibleto renormalizethe!

distributionsusing the CC results.In this work, we willagain� test the CS and EP approximationsagainstthe moreaccurate� CC resultsin caseswhereit is possibleto performthe!

computationallyintensiveCC calculations.After deter-mining9 the accuracyof the decouplingapproximations,wecompute* cross sectionsand rate coefficients for ultracoldHe+CO collisions with initial rotational levels ranging allthe!

way to dissociation.For a few specialcasesof initialdiatomic?

states,we extend the investigationsto include arange+ of translationaltemperatures.

II. THEORY

Thee

CC, CS,andEPformulationshavebeengivenprevi-ouslyF f 23–26

L gso� we provideonly a brief review. The atom-

PHYSICAL REVIEW A 70,h 032709 i 2004j

1050-2947/2004/70k 3l /032709m n

7oqp

/$22.50m

©2004TheAmericanPhysicalSociety70r

032709-1

Page 2: Rotational relaxation in ultracold CO+He collisions

diatom?

Hamiltonianin the centerof massframeis given by

H = −1

2msut r2v

−1

2wx

R2v

+ y{z r| + VI } r,U R,U�~�� ,U � 1�where� r is the distancebetweenthe carbonand oxygenat-oms,F R is the distancebetweenthe helium atom and thecenter* of massof themolecule, � is

=theanglebetweenr� and�

R�

,U ms is=

the reducedmassof the molecule,and � is=

thereducedmassof the helium atom with respectto the mol-ecule.� The three dimensionalpotential energy surface isseparated� into a diatomic potential ��� r��� and� an interactionpotential� VI � r ,U R ,U���� . The diatomicSchrödingerequation

1

2L

msd� 2

dr� 2 −

jQ��

jQ

+ 1�2L

m rs 2v − ��� r� + ��� j

� ���j��� r  = 0 ¡ 2¢

is solvedby expandingtherovibrationalwavefunction £�¤ j��¥ r¦

in=

a Sturmianbasisset.Eachscatteringformulationthenre-quires% the solutionof a setof coupledequationsof the form

d� 2v

dR� 2 −

l§m¨ª© l§ m¨ + 1«

R� 2 + 2¬ Em¨ Cm¨®­ R = °

n± Cn±³² R�µ³¶ m¨®·UI ¸º¹ n±¼» ,U½3��¾

where� E¿

m¨ is=

the translationalenergy and l§m¨ is=

the orbitalangular� momentumin the ms th

!channel.For theCC formula-

tion,!

the index on the channelfunction À m¨ is assumedtodenote?

somecombinationof the quantumnumbersÁà,U jQ ,U l§ÅÄ ,Uwhereas� for the CS and EP formulations,the index denotesonlyF ÆÃÇ ,U jQ�È . The reducedinteractionpotentialUI is expandedin=

Legendrepolynomials,

UIÉËÊ R� ,U r� ,U�Ì�Í = 2Î VI

ÉËÏ R� ,U r� ,U�Ð�Ñ = ÒÓ=0

ÔUÕ×Ö R� ,U r�ÙØ PÚªÛÝÜ cos* Þ�ß à 4á�â

and� the solutionto Eq. ã 3��ä is=

matchedasymptoticallyto freewaves� to obtainthescatteringmatrix.TheCSandEPformu-lations assumethat the orbital angular momentumof theatom� is decoupledfrom the rotationalangularmomentumofthe!

diatomduring thecollision.At low valuesof jQ

and� l§,U this

assumption� may not be valid, however, the approximationgenerally/ improvesas j

Qis increasedå 26æ . For a basissetof

rovibrationaleigenstatesç�è j� ,U the respectivematrix elements

ofF the reducedinteractionpotentialenergy aregiven by

é�êjlQìë

UIÉîí ï®ð jQòñ l§�óõô = ö÷

=0

ømaxùûú

− 1ü j�+j��ý

−Jþ�ÿ��

2L

jQ

+ 1>���� 2L jQ��

+ 1>�� 2L l§+ 1>��� 2L l

§� + 1>���� 1/2� J l

�j�

jQ��

l§�� j

Q����jQ

0�

0 0�

� l§����

0�

0 0� "!$# j

�"%U&(' )+*(, j�.- / ,U 0 5132

465jQ87:9

UIÉ<; =?> jQ�@BADC = EF

=0

Gmaxù�H

− 1I�JLK�M 2L jQ

+ 1>�N�O 2L jQ�P

+ 1>�Q�R 1/2

S jQ�T�U

jQ

0�

0 0� j

Q�VXWjQY

0 −� Z ["\$] j

��^U_(` a$b(c j�ed f ,Ug6�ih

j6kjQ$l

UIÉnm o?p jQ�qsr = tu

=0

vmaxù w

− 1x j�+j�.y

+ z j� −j�.{}|~

2Li�

+ 1>���� � 2jQ

+ 1��� 2jQ��

+ 1� 1/2

� jQ����

jQ

0�

0 0� �"�+� j

���U�(� �$�(� j�.� � � 7#3�for the CC, CS, and EP formulations.The � � denotes

?a

3-�

jQ

symbol� and � � denotes?

a 6-jQ

symbol.� The CS formu-lation requiresa set of calculationsfor each value of di-atomic� angular momentumprojection quantumnumber �whereas� the EP formulationpreaveragesover the projectionstates� andis independentof � . The respectiveCC, CS, andEPcrosssectionsaregiven by � 23–26� ¢¡

j�¤£¦¥(§

j�.¨ = ©

2ª E« j��¬ 2jQ

+ 1­ ®Jþ =0

¯�°2L

J�

+ 1>�±³²l´= µ Jþ −j

�.¶¶Jþ+j�"·¹¸

lº}»

= ¼ Jþ −j�.½}¾

¾Jþ+j�.¿}ÀÂÁÄÃ

j j�ÆŤÇ

llº+ȤÉ�Ê6Ê(Ë

− SÌiÍ

jl�

;Î(Ï j�.Ð lºÒÑJþ Ó

2v,U Ô 8Õ3Ö

×¢Øj�}Ù¦Ú(Û

j�eÜ = Ý

2L$Þ

E¿àß

j�"á 2L jQ

+ 1>�âäãJþ=0

å�æ2J�

+ 1çéèê=0

ëmaxùíì

2 − î8ï 0ð�ñ�òÄó

j j�Æô¤õ�ö6ö(÷

− Søiù

j�;ú(û j�.üJ

þný þ2,U ÿ 9���

���j�����

j� � = �

2L��

E¿��

j��l�=0

���2l§+ 1����� j j

������ ! �" − S#%$

j�;&�' j�)(l

� *2. + 10,

Thee

quantummechanicalscatteringcalculationswerecarriedoutF for eachof the CC, EP, and CS formulationsusing thenonreactivescattering program MOLSCAT - 27. suitably�adapted� to the presentsystem.The interactionpotentialen-er� gy surfaceof Heijmenet/ al. 0 28

L21was� usedfor all calcula-

tions!

presentedin this work. This potentialallowsfor stretch-ing of the CO bondandis ableto reproducethe boundstateener� giesof the He-CO complex.For the diatomicmolecule,we� usedthe extendedRydberg potential 3 29

L24employed� by

Balakrishnan5

et/ al. 6 167 . A basissetconsistingof 50 Hermitepolynomials� for eachrotationalsymmetrywas usedto rep-resentthe rovibrationalwavefunctions.For the CS calcula-tions,!

we havefound it convenientto restrict the projectionquantum% number 8 to

!be zero. This allows a considerable

speedup� in efficiencywith computationtimes that arecom-parable� to theEPcalculations.As in thecaseof O2

v:9 12; this!

procedure� will typically shift the overall magnitudeof thecross* sectionor rate coefficientcurveswithout altering theshape� or anystructurethat theymaycontain.It alsodoesnotintroduce=

anysignificantlossof accuracybeyondthatwhichis=

already introducedby the decouplingapproximationtobeginA

with. We havealsoadoptedthe l<-labeledvariantof the

CSX

approximation originally proposed by McGuire and

FLORIAN, HOSTER,AND FORREY PHYSICAL REVIEW A 70, 032709 = 2004> ?

032709-2

Page 3: Rotational relaxation in ultracold CO+He collisions

Khouri @ 24A which� assumesthat the diagonaleigenvalueof

the!

orbital angularmomentumoperatorl< 2v is=

approximatedbyl<CB

l<+1D where� l

<is a conservedquantumnumber. The colli-

sional� ratecoefficientsmay be obtainedfrom the usualther-mal9 averagingprocedure

RE jFHGI�J

jF)K�L TM = N 8Õ k

OBP T/QHRTS�U 1/2 1V

kO

BTWYX 2v

0Z[]\ ^ ,j

FH_`�a,jF)b�c Ek

dfeg

exp�ih − Ekd /Q kO BP Tj Ek

d dE�

kd ,U k 11l

where� TW

is=

thetemperatureandkO

B is=

theBoltzmannconstant.The total quenchingratecoefficientsRm j

Fon Tp are� given by

R��q

jFor TWYs = t u�v

jF)w R��x j

FHyz�{jF)|�} TWY~ . � 12�

Thee

sumin Eq. � 12� includes=

contributionsfrom all possibleexit� channels.The total quenchingratecoefficientis an im-portant� quantity in cooling and trapping experiments.Anytype!

of deexcitationprocesswill leadto unwantedheatingofthe!

gasandlimit furthercoolingefforts. In thecaseof heliumcollisions* with O2,U the total quenchingratecoefficientsweredominated?

for all � and� jQ

byA

pure rotational de-excitationcontributions* j

Q��= jQ

−2. QRVR transitions,which typically oc-cur* at initial j

Q-valueswhererotationalandvibrationalmotion

ofF the diatom are near resonanceand are characterizedbypropensity� rules relating the changein � to

!the changein j

Q�30�2�

,U werefoundto beof inconsequentialimportancefor thissystem� � 12� . By contrast,the energetically allowed QRVR�

jQ

=−2��� transitions!

for He+H2 were� foundto dominatethepure� rotationalcontributionsby about5 ordersof magnitude�9,1�

1� . It is suchcases,wherethe efficiencyof rovibrationaltransitions!

is comparableto or greaterthan pure rotationaldeexcitation,?

that we would expectto seeinterestingstruc-ture!

in the distribution of total quenchingrate coefficientwith� j

Q. This is due not only to the competitivebalancebe-

tween!

the two relaxationpathways,but alsoto theclosingofQR'

VR transitionsthat canoccurfor specific jQ

values, at lowtemperatures.!

III. RESULTS

Figure�

1 comparesthetotal quenchingratecoefficientsforzero-temperature� collisions calculatedwith the CC, EP, andCSX

scatteringformulations.The moleculeis initially in the� =0 level for eachcalculationwith thebasissetrestrictedtojQ

−10 � jQY���

jQ

+> 2 and � max� =1. Theanisotropyof thepotentialener� gy surfacerequires� max� =20 with 40 integrationnodesfor theanglebetweenthediatomandthe line connectingtheatom� to the centerof massof the diatom.Theseparametersare� twice those used for He+O2

v�� 12� which� allowed CCcalculations* for j

Q �40á

before becomingintractable.In thepresent� case, the CC calculationsbecomeintractable forjQ ¡

20 and a decouplingapproximationsuch as EP or CSmust9 be used.As in the caseof He+O2

v ,U it appearsthat suchapproximations� will provide estimatesfor large j

Qthat!

arereliableto within a factor of 2.

Figure 2 showsthe energy gapsbetweenthe initial andfinal¢

rovibrational statesof CO£¥¤ =1,jQ§¦

as� a function of jQ.

Thee

boxed region on the right shows where ¨ jQ

=−2©�ªQR'

VR transitionsarelikely to takeplace.Unlike thecaseofO«

2,U thereexistsa positivecrossingpoint for the upwardanddownward?

curves.Therealsoexist QRVR ¬ jQ

=−3­�® transi-!

tions! ¯

leftmost2

boxedregion° that!

wereabsentin the homo-nuclear: O2 and� H2 cases* studied previously. The positivecrossing* pointsin theboxedregionsrepresentj

Qvalues, where

classical* trajectorycalculationswould generallypredict thestrongest� correlationbetween±² and� ³ j

Qand� thereforethe

FIG. 1. Total quenchingratecoefficentsfor He+CO ´¶µ =0,j· ¸

inthe limit of zerotemperature.The curveswerecomputedusingtheCC ¹ solid lineº , Eh P » short¼ dashedline½ , andCS ¾ long dashedline¿scatteringformulations.For j

·ÁÀ20, the CC calculationsbecomein-

tractableanda decouplingapproximationsuchasEPor CSmustbeused.Fromthefigure, it appearsthatsuchapproximationswill pro-vide estimatesfor large-j

·that arereliableto within a factor of 2.

FIG. 2. Energy gapsbetweeninitial andfinal rovibrationalstatesfor COÂÄÃ =1,j

·)Å. The boxedregionsshowwhereQRVR transitions

typically occur. In both cases,the energy gap is positive at thecrossingpoint betweenthe two curves.Interestingthresholdbehav-ior may be expectedfor cold collisions near these j

·values.The

respectiveenergy gapsfor the crossingpoints are 12.8cm−1 andÆ4.2 cm−1 for

�the Ç j

·=−3È�É and Ê j

·=−2Ë�Ì curves.

ROTATIONAL RELAXATION IN ULTRACOLD CO+HeÍ PHYSICAL REVIEW A 70, 032709 Î 2004Ï

032709-3

Page 4: Rotational relaxation in ultracold CO+He collisions

largest and most specific transition efficiency Ð 7,8,30# Ñ

. AtordinaryF temperatures,thesmall positiveenergy gapsdo notsuppress� the efficiencyof the QRVR transitionsbecausethemoleculecan borrow energy from the translationalmotion.At ultracoldtemperatures,however, thesetransitionsareen-er� getically closed.Becauseneighboringj

Qvalues, havesmall

negative: energy gaps that allow QRVR transitionsto takeplace,� we shouldexpectto seestructurein thedistributionofratecoefficientsfor the j

Qvalues, neara crossingpoint.

Thee

crosssectionshave beenobtainedfor Ò =0−5 andjQ Ó

100usingtheCSformulation.Thecalculationswerecon-ver, ged to within a few percentfor ÔTÕ 0

�using basis sets

restricted to Ö −1 ×ÙØ Ú�ÛÝÜ +1 and jQ

−10 Þ jQYß�à

jQ

+10. Thezero-temperature� ratecoefficientsareshownin Figs.3–5. InFig.�

3, the state-to-staterate coefficientsare plotted as afunction of j

Qfor He+COá¥â =0,j

Q�ãin the limit of zero tem-

perature.� The pure rotational deexcitation curves aresmoothly� varying with an upturn at j

Qvalues, neardissocia-

tion.!

The curves representingrovibrational transitionsarepeaked� at the j

Qvalues, where vibrationally upward QRVR

transitions!

first becomeenergetically allowed. Becausetheefficiencies� of rovibrational and pure rotational transitionsare� comparablein magnitude,thesepeakswill appearas“steps” in the total quenchingrate coefficient distribution.Similarä

behaviorwas found in the state-to-staterate coeffi-cients* for H2

v and� O2v . In the caseof O2

v ,U however, the effi-ciency* of pure rotational relaxation was too large for thesteps� to be observedin the total quenchingrate coefficientdistribution? å

12æ . Figure4 showsthestate-to-statecurvesforç =1. The rovibrationalcurvesappearto have“holes” at thejQ

values, wherethe classicallyallowedQRVR transitionsareener� getically closedè i.e.,

=at the crossingpoints in the boxed

regionsof Fig. 2é . The magnitudeof the rovibrational ratecoefficient* on eithersideof a holeis comparableto or greaterthan!

that of the pure rotationaldeexcitationratecoefficient.Therefore,e

when all of the possibledeexcitationrate coeffi-cients* areaddedtogether, the distributionof total quenchingratecoefficientswill alsoappearto containtheholes.Figure51

showsthe total quenchingratecoefficientsasa functionofê and� jQ. Thestepsin the ë =0 curveandtheholesin the ìTí 0

�curves* are labeledaccordingto their QRVR propensityruleî30�2ï

. Thefigureshowsthat theholestendto increasein sizeand� shift downwardin j

Qas�ñð is

=increased.

Atò

jQ

values, very closeto dissociation,we find anupturninthe!

zero-temperatureratecoefficientswith jQôó

see� Fig. 6õ . ThisbehaviorA

differs from the casesof H2v and� O2

v studied� previ-ouslyF . In orderto makesenseof this result,we speculatethatthere!

maybea strongercompetitionbetweenenergy gapandangular� momentumgapminimizationfor thepresentsystem.In previouswork ö 12÷ ,U it wasshownthat theratecoefficientsfollowedø

an exponentialenergy gapfit. Here,we attempttofit¢

the numericalCS resultsusing

FIG. 3. State-to-stateratecoefficientsfor He+COùÄú =0,j·)û

in thelimit of zero temperature.“Steps” occur at j

·valuesü wherethe vi-

brationallyupwardQRVR transitionsbecomeenergetically open.

FIG. 4. State-to-stateratecoefficientsfor He+COýÄþ =1,j·)ÿ

in thelimit of zero temperature.“Holes” occur at j

·valuesü whereQRVR

transitionsareenergetically closed.

FIG. 5. Total quenchingratecoefficientsfor He+CO��� , j·��

in thelimit of zero temperature.The curvesare given for � =0,1,2,3,4,5andareincreasingin orderon the left sideof the figure.The struc-tures are labeled according to the nearest available QRVRtransitions.

FLORIAN, HOSTER,AND FORREY PHYSICAL REVIEW A 70, 032709 � 2004> �

032709-4

Page 5: Rotational relaxation in ultracold CO+He collisions

�E −

jQI and� � � jQ ����� − 1 −

1

jQ 2v

⇒� lim2T� 0Z R��� TW���� c� 1 exp��� − � j

Q��+> c� 2

v exp� − ! /QjQ 2" # 13$

with� “best-fit” parametersgiven in TableI. The solid curvesin=

Fig. 6 showthat this type of balancebetweenthe energyand� angularmomentumgapscangive qualitativefits to thedata.?

This situationis not entirely satisfactory, however, andwe� look for otherwaysto analyzetheneardissociationdata.One«

possibilityis to applytheBornapproximation.TheBornapproximation� may be usedwhen both the initial and finaltranslational!

energies tend to zero.This situationcan occurforø

transitionsbetweenstatesthat havea very small energygap./ Figure2 showsthat theenergy gapsfor % j

Q=−2&(' tran-

)sitions* arenearzerowhen + =1 and j

,.-230.In this case,the

leading order behaviorof the zero-temperaturerate coeffi-cient/ is given by the Born approximationto be

limT0 0Z R 1 T2 = O

3 4�5E6 5/27

. 8 149

Figure7 showstheratecoefficientsfor : j,

=−2;(< transitions)

for He+CO=?> =1,j,�@

in the limit of zero temperature.The

solid* curvesattemptto fit the datato Eq. A 14B . Apart fromoneC anomolousdatapoint, it appearsthat the Born approxi-mation is able to fit the dataas the energy gap approacheszero.D The anomolousdatapoint at j

,=230 is most likely the

resultE of a boundor virtual stateof the three-bodysystemthat)

is too closeto zero F 31GIH

.The resultspresentedabovehave beenrestrictedto the

limitJ

of zerotemperature.It would be interestingto seehowthe)

holesin theratecoefficientdistributionsbecomefilled asthe)

temperatureis increased.Tabulationof temperaturede-pendentK rate coefficientsfor all values of L andM j

,wouldN

requireE extensivecomputationaleffort and is not the pathpursuedK here. Instead,we focus our attention on the O j

,=−3P(Q hole thatexistsin theratecoefficientdistributionforR =1 and j

,betweenS

170and174 T see* Fig. 5U . In orderto seehowV

this hole in the distribution becomesfilled as the tem-peratureK is increased,it is necessaryto computecrosssec-tions)

for a largerangeof translationalenergies.Figures8–10show* the dominantenergy-dependentcrosssectionsmulti-pliedK by collision velocity in orderto providethedimensionsofC a ratecoefficient.The curvesin Figs. 8 and9 arefor theupwardW and downwardQRVR transitions,whereasthoseinFig. 10 are for the pure rotational transitions.The resonantstructure* in the crosssectionsthat is seenin eachcurveoc-curs/ at energy valuesthat are similar to thosefound at lowrotational levels by BalakrishnanetX al. Y 16Z usingW the CCformulation.Thetranslationalenergy rangefor resonancesinweaklyN interactingatom-diatomsystems,such as thosein-volving[ helium, is not strongly affectedby the internal di-atomicM state,so it is typical for thesesystemsto possessalargenumberof resonancesthatareeachassociatedwith thesame* orbital angularmomentum \ 32

GI]. Figure 8 showsthat

the)

j,

=170 curve extendsall the way to ultracold energies.Likewise, the j

,=174 curve in Fig. 9 is nonzerofor the low

ener^ gy limit. The approximateenergieswherethe remainingcurves/ becomenonzeroareindicatedin thefigures.ThermalrateE coefficientsmay be obtainedby convolutingthe results

FIG._

6. Ratecoefficientsfor `ba =0, c j·

=−1 transitionsin thelimit of zero temperature.The solid lines attempt to fit the datausing a balancebetweenthe energy and angularmomentumgapsdseeTableI e .f

TABLE I. Fitting parametersfor gbh =0, i j·

=−1 ratecoefficientsin the limit of zerotemperature:R=c1 expjlk − m j

·�n+c2o expjlp −q /

rj· 2s .f

t cu 1 v cmw 3x

s−1y cu 2 z cmw 3x

s{ −1| } ~0 9.80336� 10−12 6.67083� 10−12 0.026638 176777

1 9.15125� 10−12 3.08254� 10−11 0.025021 235517

2 8.32866� 10−12 2.54698� 10−10 0.023285 322256

3 8.40136� 10−12 5.24745� 10−10 0.022427 340188

4 1.19161� 10−11 2.54660� 10−11 0.024494 187721

5 2.16808� 10−11 2.51188� 10−12 0.028880 80936

FIG. 7. Rate coefficients for � j·

=−2�b� transitions�

for He+CO��� =1,j

·��in�

the limit of zero temperature.The solid curvesattemptto fit thedatato the leadingorderbehaviorpredictedby theBorn approximation.

ROTATIONAL RELAXATION IN ULTRACOLD CO+He� PHYSICAL REVIEW A 70, 032709 � 2004�

032709-5

Page 6: Rotational relaxation in ultracold CO+He collisions

ofC Figs.8–10with a Maxwell-Boltzmanndistributionof col-lisionJ

velocitiesas in Eq. � 11� . The resultsaregiven in Fig.11 for severaltemperatures.The T

W=0.1 K curve nearly ap-

proachesK the ultracoldT � 0�

limit shownin Fig. 5. As tem-peratureK increasestoward 1 K, the hole in the distributionbeginsS

to shrink.At TW

=30 K, theholehascompletelydisap-pearedK andthedistributionis smoothlyvaryingwith j

,. These

results suggest that a buffer gas with a temperatureof300G

–500 mK would be sufficient to experimentallytest theexistence^ of suchholesin thedistributionof ratecoefficients.

The�

presentresults also suggestthat apart from odd-integerQRVR transitionsthat are allowed in heteronuclearsystems,* theredoesnot appearto beany fundamentaldiffer-ences^ betweenhomonuclearand heteronucleardiatomic re-laxationJ

at ultracold temperatures.Each system studiedshows* sharpstructurein the state-to-statecrosssectionsat j

,

values[ where quasiresonantscattering is not allowed.Whether�

or not this structureappearsin the total relaxationrateE dependson the relative efficiency of the rovibrationalandM pure rotational deexcitation.For ultracold He+O2,� thepureK rotationaltransitionsarealwaysdominant,whereasthetotal)

relaxationratesfor ultracoldhelium collisionswith H2�

andM CO are strongly influencedby the rovibrational transi-tions.)

One important differencebetweenhomonuclearandheteronuclearsystemsis that heteronuclearpolar moleculespossessK an electric dipole moment.The emitted radiationfrom�

such moleculeswould contain information about thecollisions./ Therefore,it shouldbepossibleto seeevidenceof

FIG. 8. Cross section times collision velocity for He+CO�� =1,j

·¢¡as a function of translationalenergy. The crosssectionsare

for £¥¤ =−1, ¦ j·

=3 transitions.

FIG. 9. Cross section times collision velocity for He+CO§�¨=1,j

ᢩas a function of translationalenergy. The crosssectionsare

for ª¥« =1, ¬ j·

=−3 transitions.

FIG. 10. Crosssectiontimes collision velocity for He+CO ­¯®=1,j

·¢°as a function of translationalenergy. The crosssectionsare

for ±¥² =0, ³ j·

=−1 transitions.

FIG. 11. Thermal rate coefficients for He+CO ´¯µ =1,j·¢¶

as afunctionof temperatureandthefive rotationallevelsshownin Figs.8–10.The ratecoefficientsincludedeexcitationto all possiblefinalstatesof CO. WhenT · 10 K, the ¸ j

·=−3¹¥º transitions

�aredomi-

nant for all five rotational levels. As the temperatureis reducedbelow1 K, theseQRVR transitionsbecomeenergeticallyclosedforj·

=171–173 and the distribution of rate coefficientsbeginsto ap-proachthe limiting ultracoldresult.

FLORIAN, HOSTER,AND FORREY PHYSICAL REVIEW A 70, 032709 » 2004¼ ½

032709-6

Page 7: Rotational relaxation in ultracold CO+He collisions

QR¾

VR transitionsandtheassociatedj,-dependentstructurein

the)

emissionspectrum¿ 33GIÀ

for thesesystems.

IV. CONCLUSIONS

W�

e haveinvestigatedcold andultracoldcollisionsinvolv-ingÁ

rotationallyexcitedCO moleculesusingCC, CS,andEPscattering* formulations.Like in thecasesof H2 andM O2 stud-*ied previously  12à ,� the decouplingapproximationsyield re-sults* that appearto be qualitatively correctas a function ofthe)

initial j,

levelJ

when j,

isÁ

larger than 20 or so. It is theselarge j

,values[ wherethe numericallyexactCC methodbe-

comes/ too slow to be of any practicaluse.In caseswherecomparisons/ can be made, the decouplingapproximationswereN found to bequantitativelyaccurateto within anoverallfactorof 2, which is acceptableconsideringthe lossof accu-racy introducedby a typical potentialenergy surfacewhenappliedM to ultracold collisions.More importantly, the calcu-

lationsrevealthepresenceof significantrovibrationaltransi-tions)

arising from QRVR energy transfer. ThesetransitionsgiveÄ rise to sharpstructurein the total quenchingratecoef-ficientsÅ

asa function of j,. WhenQRVR transitionsareener-

geticallyÄ closed,the structureappearsasa “hole” in the dis-tribution)

of rate coefficients. The holes in the zero-temperature)

distributionswerefoundto persistall theway upto)

temperaturesthat are typical of buffer gascooling Æ e.g.,^300G

–500 mKÇ . Therefore,it shouldbe possibleto performexperimental^ testsof QRVR energy transferusing a buffergasÄ setup È 13É withoutN the need for magnetictrapping.ApolarK moleculesuchas CO would be an ideal candidatetoperformK suchmeasurementsdueto the strongsignalarisingfrom�

the radiatingelectricdipole moment.

ACKNOWLEDGMENTSÊ

This work was fundedby the National ScienceFounda-tion,)

GrantNos.PHY-0331073andPHY-0244066.

Ë1Ì H. L. Bethlem,G. Berden,andG. Meijer, Phys.Rev. Lett. 83

Í,

1558 Î 1999Ï .fÐ2Ñ J.Ò

A. Maddi, T. P. Dinneen,and H. Gould, Phys.Rev. A 60,3882Ó Ô

1999Õ .fÖ3× H. L. Bethlem, G. Berden, A. J. A. van Roij, F. M. H.

Crompvoets,Ø

andG. Meijer, Phys.Rev. Lett. 84Í

,Ù 5744 Ú 2000Û ;ÜH.Ý

L. Bethlem, G. Berden, F. M. H. Crompvoets,R. T.Jongma,Ò

A. J. A. van Roij, and G. Meijer, Nature Þ Londonß à

406, 491 á 2000â .fã4ä J.Ò

Karczmarek,J. Wright, P. Corkum, and M. Ivanov, Phys.Revå

. Lett. 82Í

,Ù 3420 æ 1999ç .fè5é J.Ò

Li, J. T. Bahns,and W. C. Stwalley, J. Chem.Phys. 11ê

2,6255ë ì

2000í .fî6ï D. M. Villeneuve,S.A. Aseyev,P. Dietrich,M. Spanner,M. Y.

Ivanov,ð

andP. B. Corkum,Phys.Rev. Lett. 85, 542 ñ 2000¼ ò

.ó7ô R.å

C. Forrey,N. Balakrishnan,A. Dalgarno,M. Haggerty,andE. J. Heller, Phys.Rev. Lett. 82,Ù 2657 õ 1999ö .÷

8ø R. C. Forrey,N. Balakrishnan,A. Dalgarno,M. Haggerty,andE.ù

J. Heller, Phys.Rev. A 64ú

,Ù 022706 û 2001ü .fý9þ R.å

C. Forrey,Phys.Rev. A 63ú

,Ù 051403 ÿ 2001� .f�10� A. J. McCaffery, J. Chem.Phys. 113,Ù 10947 � 2000� .f�11� R. C. Forrey,Phys.Rev. A 66

ú,Ù 023411 � 2002� .

12 K.�

Tilford, M. Hoster,P. Florian,andR. C. Forrey,Phys.Rev.A�

69ú

, 052705 2004¼ �

.�13� J.

ÒM. Doyle,B. Friedrich,J.Kim, andD. Patterson,Phys.Rev.

A 52�

, R2515 � 1995� .�14� J.

ÒD. Weinstein,R. deCarvalho,T. Guillet, B. Friedrich,andJ.

M.�

Doyle, Nature � Londonß �

395,Ù 148 � 1998� .�15� D. Egorov,T. Lahaye,W. Schollkopf,B. Friedrich,andJ. M.

Doyle, Phys.Rev. A 66ú

, 043401 � 2002� .�16 N.!

Balakrishnan,A. Dalgarno,and R. C. Forrey, J. Chem.Phys."

11ê

3,Ù 621 # 2000$ .f%17& C.

ØZhu, N. Balakrishnan,and A. Dalgarno,J. Chem. Phys.

115,Ù 1335 ' 2001( .f)18* E.

ùBodo,F. A. Gianturco,andA. Dalgarno,Chem.Phys.Lett.

353,Ù 127 + 2002, .-19. J. P. Reid, C. J. S. M. Simpson,and H. M. Quiney, Chem.

Phys.Lett. 246,Ù 562 / 19950 ;Ü J. Chem.Phys.107ê

,Ù 9929 1 19972 ;J.P. ReidandC. J.S.M. Simpson,Chem.Phys.Lett. 280,Ù 367319974 .f5

206 R. V. Krems,J.Chem.Phys. 116, 4517 7 20028 ;Ü J. Chem.Phys.116,Ù 4525 9 2002

¼ :.;

21¼=<

J. P. Reid, C. J. S. M. Simpson,H. M. Quiney, and J. M.Hutson,J. Chem.Phys. 103,Ù 2528 > 1995? .f@

22A G. J. Wilson, M. L. Turnidge,A. S. Solodukhin,andC. J. S.M. Simpson,Chem.Phys.Lett. 207

B, 521 C 1993D .fE

23¼=F

A. M. Arthurs andA. Dalgarno,Proc.R. Soc.London,Ser. A256,Ù 540 G 1963H .I

24J P. McGuire andD. J. Kouri, J. Chem.Phys. 60,Ù 2488 K 1974L ;P. McGuire, ibid.

M62ú

,Ù 525 N 1975O .P25¼=Q

R. T. Pack,J. Chem.Phys. 60ú

,Ù 633 R 1974S .fT26U H. Rabitz,J. Chem.Phys. 57,Ù 1718 V 1972W ; G. Zarur and H.

Rabitz,ibid.M

59�

,Ù 943 X 1973Y .Z27¼=[

J. M. Hutsonand S. Green,MOLSCAT computercode,ver-sion 14 \ 1994] ,Ù distributed by CollaborativeComputationalProject No. 6 of the Engineeringand PhysicalSciencesRe-searchCouncil ^ UK

_a`.b

28¼=c

T. G. A. Heijmen,R. Moszynski,P. E. S. Wormer,andA. vander Avoird, J. Chem.Phys. 107

ê,Ù 9921 d 1997e .ff

29g J. N. Murrel eth al.,Ù Molecular Potential Energy FunctionsiWiley, New York, 1984j .fk

30Ó=l

B. Stewart,P. D. Magill, T. P. Scott, J. Derouard,and D. E.Pritchard,Phys.Rev. Lett. 60

ú,Ù 282 m 1988n ;Ü P. D. Magill, B.

Stewart,N. Smith,andD. E. Pritchard,ibid.M

60, 1943 o 1988p .fq31Ó=r

J. C. Flasherand R. C. Forrey, Phys. Rev. A 65, 032710s2002t .fu

32Ó=v

R. C. Forrey, N. Balakrishnan,V. Kharchenko,and A. Dal-garno,Phys.Rev. A 58

�,Ù R2645 w 1998x .fy

33Ó=z

R. C. Forrey,Eur. Phys.J.D { 2004| , DOI 10.1140/epjd/e2004-00101-8.

ROTATIONAL RELAXATION IN ULTRACOLD CO+He} PHYSICAL REVIEW A 70,Ù 032709 ~ 2004�

032709-7�