rotational motion 2009 7

Upload: julian-bermudez

Post on 14-Apr-2018

219 views

Category:

Documents


0 download

TRANSCRIPT

  • 7/30/2019 Rotational Motion 2009 7

    1/85

    18_12afig_PChem.jpg

    Rotational Motion

    Center of Mass

    Translational Motion

    r1

    r2

    2

    2H

    m

    2

    2H

    I

    L L

    22

    ( )2 2 eqk

    H

    r r

    Motion of Two Bodies

    Each type of motion is best represented

    in its own coordinate system best suited

    to solving the equations involved

    w

    k

    2 22 2

    1 2 1 2

    1 2

    ( , )2 2H Vm m r r

    RcInternalcoordinates

    Cartesian

    Internal motion (w.r.t CM)

    Motion of the C.M.

    2r

    1r

    Origin

    r

    Vibrational Motion

  • 7/30/2019 Rotational Motion 2009 7

    2/85

    Centre of Mass

    1 1 2 2 1 1 1 1 2 2 2 21 2

    , , , , , ,m m

    X Y Z x y z x y zm m

    r rR r r

    Weighted average of all positions

    1 1 2 2

    1 2

    m x m xX

    m m

    1 1 2 2

    1 2

    m y m yY

    m m

    1 1 2 2

    1 2

    m z m z Z

    m m

    2 22 2

    ( ) ( ) ( )2 2H H H VM R rR r r

    Motion of Two Bodies

    Internal Coordinates:

    1 1 2 2& r r R r r R 1 2 r r r

    1 2 1 2 r r R r R r r

    In C.M. Coordinates:

    ( , , )x y zr

  • 7/30/2019 Rotational Motion 2009 7

    3/85

    Kinetic Energy Terms

    2 22 2

    ( ) ( ) 2 2K K K M R rR r

    ? ?

    2 2 2 2 2

    22 2 2

    ( )2 2

    d d dKM M dX dY dZ

    RR

    2 2 2 2 22

    2 2 2 ( )

    2 2

    d d dK

    dx dy dz

    rr

    ? ? ?

    ? ? ?

  • 7/30/2019 Rotational Motion 2009 7

    4/85

    Centre of Mass Coordinates

    1 1 1

    d dX d dx d

    dx dx dX dx dx

    1 1 2 2 1 1

    1 1 1 2 1 2

    m x m x m mdX d

    dx dx m m m m M

    1 21 1

    1dx d

    x xdx dx

    1

    1

    md d d

    dx M dX dx

  • 7/30/2019 Rotational Motion 2009 7

    5/85

    Centre of Mass Coordinates

    2 2 2

    d dX d dx d

    dx dx dX dx dx

    1 1 2 2 2 2

    2 2 1 2 1 2

    m x m x m mdX d

    dx dx m m m m M

    1 22 2

    1dx d

    x xdx dx

    2

    2

    md d d

    dx M dX dx

  • 7/30/2019 Rotational Motion 2009 7

    6/85

    Centre of Mass Coordinates

    2

    1 12

    1

    m md d d d d

    dx M dX dx M dX dx

    2 2 2

    1 1 1

    2 2 2

    m m md d d d d d

    M dX M dX dx dx M dX dx

    22 2 2

    2 2

    2 2 2 2

    2

    2m md d d d

    dx M dX M dXdx dx

    Similarly

    2 2 2

    1 1

    2 2 2

    2m md d d

    M dX M dXdx dx

  • 7/30/2019 Rotational Motion 2009 7

    7/85

    Centre of Mass Coordinates

    2 2 2

    1

    2 2 2 2

    1 1 1

    1 2 1md d d d

    m dx M dX M dXdx m dx

    2 22 2 2 2

    1 2 2 2

    1 2 1 1 2 2

    1 1

    2 2x xx

    d dK m m m dx m dx

    2 2 2

    2

    2 2 2 2

    2 2 2

    1 2 1md d d d

    m dx M dX M dXdx m dx

    2 2 2 2 2 2

    1 2

    2 2 2 2 2 2 2 2

    1 1 2 2 2 1

    1 1 1 1m md d d d d d

    m dx m dx M dX M dX m dx m dx

  • 7/30/2019 Rotational Motion 2009 7

    8/85

    Centre of Mass Coordinates

    2 2 2 2

    1 2

    2 2 2 2 2 2

    1 1 2 2 1 2

    1 1 1 1m md d d d

    m dx m dx M M dX m m dx

    2 2

    2 2

    1 1d d

    M dX dx 1 2

    1 2 1 2

    1 1 1 m m

    m m m m

    Reduced mass2 2 2

    2 2

    1 1

    2x

    d dK

    M dX dx

    2

    2 2internal1 1

    2CMK K K

    M R r

    2 2 22

    2 2 2

    d d d

    dX dY dZ

    R

    2 2 22

    2 2 2

    d d d

    dx dy dz

    r

  • 7/30/2019 Rotational Motion 2009 7

    9/85

    Hamiltonian2 2

    2 2

    ( ) ( ) ( )2 2H H H VM R rR r r

    ( , ) ( ) ( ) ( ) ( ) ( ) ( )H H H E E R rR r R r R r R r

    ( ) ( ) ( )H E RR R R

    22 ( ) ( ) ( )

    2

    V E

    r rr r r

    22 ( ) ( )

    2E

    M R RR R

    ( ) ( ) ( )H E rr r r

    C.M. Motion

    3-D P.I.B

    Internal Motion

    Rotation

    Vibration

    Separable!

  • 7/30/2019 Rotational Motion 2009 7

    10/85

    Rotational Motion and Angular Momentum2

    2 ( ) ( )

    2

    K

    rr r We rotational motion to internal coordinates

    i i

    i

    p m v

    Linear momentum of a rotating Body

    i ii

    p m rw

    i i

    dv r

    dt

    Ds

    is r D Didsvdt

    i iv rw

    d

    dt

    w

    f

    Angular Velocity

    Parallel to moving body

    p(t1)

    p(t2)

    Always changing direction with time???

    Always perpendicular to r

  • 7/30/2019 Rotational Motion 2009 7

    11/85

    Angular Momentum

    L r p

    v

    m

    r

    p

    L

    L r p

    f

    sinf r p r p

    Perpendicular to R and p

    Orientation remains constant with time

  • 7/30/2019 Rotational Motion 2009 7

    12/85

    Rotational Motion and Angular Momentum

    i ii

    L r p

    IwL

    2

    i i

    i

    m w r

    2i i

    i

    m w

    r

    2

    i i

    i

    I m rMoment of inertia

    As p is always perpendicular to r

    2 r r r r r

    r

    Center

    of mass

    R

    1r

    2r

  • 7/30/2019 Rotational Motion 2009 7

    13/85

    Rotational Motion and Angular Momentum

    1 2 1 2 r r r r r

    2 2

    1 1 2 2I m m r r

    r

    Center

    of mass

    R

    1r

    2r

    2 2

    1 1 2 2m m r R r R

    2 21 2m m

    M M r r r

    1 1 2 21 1 1 1 2 1 1 1 2 2

    1m mMm m m m

    M M M

    r rr R r r r r r

    2

    21 2

    1 2

    1 1 m mm m M

    r

    2 221

    r r

    1 12 2 1m m

    M M r R r r r

    2 22 22 1

    1 2

    m mI m m

    M M

    r r

  • 7/30/2019 Rotational Motion 2009 7

    14/85

    Rotational Motion and Angular Momentum

    Classical Kinetic Energy

    2

    . .2

    i

    i i

    pK E

    m

    22

    2 2

    i ii i

    i i

    m rm v w

    222

    2 2 2

    LII

    I I

    ww

    2 22 2

    2 2i i

    i

    m rw w

    r

    r

    Centerof mass

    R

    1

    r

    2r

  • 7/30/2019 Rotational Motion 2009 7

    15/85

    Rotational Motion and Angular Momentum

    2

    . . 2

    L

    K E I

    21 2

    K LI

    22

    2K

    r

    2

    ( ) ( )2

    LK

    I r r

    22 ( ) ( )

    2K

    rr r

    L i r r

    2 r rr r Sincer and p areperpendicular

    r

    Center

    of mass

    R

    1r

    2r

    2 2

    2 2 2 2 IL

    r r r rr r r r

  • 7/30/2019 Rotational Motion 2009 7

    16/85

    Momentum Summary

    21

    2K r p

    I

    22

    2K

    L i r

    Linear

    Classical QM

    Rotational

    (Angular)

    Momentum

    Energy

    Momentum

    Energy 2

    2

    2K r

    I

    p i

    L r p

    drp mv m

    dt

    2 2

    22 2

    p m d r

    K m dt

  • 7/30/2019 Rotational Motion 2009 7

    17/85

    Angular Momentum

    L r p

    x y zx y z p p p L

    x y z

    x y z

    p p p

    i j k

    L

  • 7/30/2019 Rotational Motion 2009 7

    18/85

    Angular Momentum

    x y zL L L L i j k

    x z y

    y x z

    z y x

    L yp zp

    L zp xp

    L xp yp

  • 7/30/2019 Rotational Motion 2009 7

    19/85

    Angular Momentum in QM

    ( ) ( ) ( ) ( )

    ( ) ( )

    x x z y

    y y x z

    z z y x

    L L yp zp

    L L zp xp

    L L xp yp

    r r

    r r

    r r

    x

    y

    z

    d dL i y z

    dz dy

    d dL i z xdx dz

    d dL i x y

    dy dx

    x y zL L L

    L i j k

  • 7/30/2019 Rotational Motion 2009 7

    20/85

    Angular Momentum

    i L r p r

    d d d

    x y z i dx dy dz

    L

    i x y z

    d d d

    dx dy dz

    i j k

    L

  • 7/30/2019 Rotational Motion 2009 7

    21/85

    Angular Momentum

    x y zL L L L i j k

    x

    y

    z

    d dL i y zdz dy

    d dL i z x

    dx dz

    d dL i x y

    dy dx

  • 7/30/2019 Rotational Motion 2009 7

    22/85

    Two-Dimensional Rotational Motion

    cos( )x r f

    x

    y

    fr

    sin( )y r f

    d d

    dx dy

    i j

    How to we get:

    ( , ) ( , )d d

    r rdx dy

    f f

    i j

    Polar Coordinates

    cos( ) sin( )d dx d dy d d d dr dr dx dr dy dx dy

    f f

    sin( ) cos( )d dx d dy d d d

    r r

    d d dx d dy dx dy

    f f

    f f f

    2 22

    2 2

    d d

    dx dy

    2 22

    2 2( , ) ( , )

    d dr r

    dx dyf f

  • 7/30/2019 Rotational Motion 2009 7

    23/85

    Two-Dimensional Rotational Motion

    cos( ) sin( )d dx d dy d d d

    dr dr dx dr dy dx dyf f

    d d dr x y

    dr dx dy

    2 2

    1 d x d y d

    r dr r dx r dy

    2 2

    1 d d x d y d d d

    r x yr dr dr r dx r dy dx dy

    2 2 2 2

    x d d x d d y d d y d dx y x y

    r dx dx r dx dy r dy dx r dy dy

    2 2 2 2

    2 2 2 2 2 2 2 2

    x d x d xy d yx d y d y d

    r dx r dx r dxdy r dydx r dy r dy

    2 2 2 2

    xx d d xy d d yx d d y dy d d dy

    r dx dx r dx dy r dy dx r dy dy dy dy

    product rule

  • 7/30/2019 Rotational Motion 2009 7

    24/85

    Two-Dimensional Rotational Motion

    sin( ) cos( )d dx d dy d d d d d

    r r y xd d dx d dy dx dy dx dy

    f ff f f

    2

    2

    d d d d d y x y x

    d dx dy dx dyf

    2 22 2

    2 2

    d dx d d d d d d d y y yx x xy x

    dx dx dy dx dy dx dy dx dy

    d d d d d d d d y y y x x y x x

    dx dx dx dy dy dx dy dy

    2 2 2 2 2

    2 2 2 2 2 2 2 2 2 2

    1 d y d y d yx d x d xy d x d

    r d r dx r dy r dxdy r dx r dydx r dyf

    2 22 2

    2 2

    d d d d d d y y yx x xy x

    dx dy dxdy dx dydx dy

    product rule

  • 7/30/2019 Rotational Motion 2009 7

    25/85

    Two-Dimensional Rotational Motion

    2 2 2 2

    2 2 2 2 2 2 2 2

    1 d d x d x d xy d yx d y d y d r

    r dr dr r dx r dx r dxdy r dydx r dy r dy

    2 2 2 2 2

    2 2 2 2 2 2 2 2 2 2

    1 d y d x d yx d xy d y d x d

    r d r dx r dx r dxdy r dydx r dy r dyf

    2 2 2 2 2 2 2 2 2

    2 2 2 2 2 2 2 2 2 2

    1 1d d d x d y d x d y d r

    r dr dr r d r dx r dx r dy r dyf

    2 2 2 2 2 2

    2 2 2 2 2 2x y d x y dr r dx r r dy

    2 22

    2 2

    d d

    dx dy

  • 7/30/2019 Rotational Motion 2009 7

    26/85

    Two-Dimensional Rotational Motion

    2

    2

    2 21 1d d dr

    dr r dr r d f

    2 2 2

    2 2 2 2

    1 1d d d d d r

    dr r dr r d dx dyf

    2 2 2

    22 2

    1 1

    2 2

    d d dH rdr r dr r d f

  • 7/30/2019 Rotational Motion 2009 7

    27/85

    Two-Dimensional Rigid Rotor

    22

    ( , ) ( , ) ( , )2H r r E r f f f

    Assume ris rigid, ie. it is constant

    2 2 22

    2 2

    1 1

    2 2

    d d dH r

    dr r dr r d f

    2 2 22

    2 2

    1

    2 2r

    dH

    r d f

    2

    2

    zLHI

    z rd

    L i idf

    As the system is rotating about the z-axis

  • 7/30/2019 Rotational Motion 2009 7

    28/85

    18_05fig_PChem.jpg

    Two-Dimensional Rigid Rotor

    2 2

    2( ) 0

    2

    dE

    I d f

    f

    2

    2 2

    2( ) 0

    d IE

    d f

    f

    2

    22 ( ) 0d kd

    f

    r

    2 22

    2

    2

    2

    I kk E

    I

    2 2

    2 ( ) ( ) ( )

    2

    dH E

    I d

    f f f

    f

  • 7/30/2019 Rotational Motion 2009 7

    29/85

    18_05fig_PChem.jpg

    Two-Dimensional Rigid Rotor

    22

    2 ( ) 0

    d

    kd ff

    ( ) 0d d

    ik ik

    d d

    f

    f f

    ( ) 0 & ( ) 0d d

    ik ik d d

    f f f f

    ( ) ikA e f f ( )ikA e f f

  • 7/30/2019 Rotational Motion 2009 7

    30/85

    18_05fig_PChem.jpg

    Two-Dimensional Rigid Rotor

    ( ) ikA e f f

    Periodic

    2 2 2 2

    2 2 m

    k m

    E EI I

    2( 2 ) ( )

    ik ikA e A ef f f f

    2 1 2 2ik

    e k m k m k

    m = quantum number

    ( ) imm A ef f ( )

    im

    m A ef f

  • 7/30/2019 Rotational Motion 2009 7

    31/85

    18_05fig_PChem.jpg

    Two-Dimensional Rigid Rotor

    ( ) imm A ef f

    2 2 22

    2

    2 2r

    dH

    I d f

    z r

    dL i i

    df

    2 2 ( ) ( )

    2m m

    mHI

    f f

    2 2

    2

    m

    mE

    I

    ( ) ( )z m mL m f f

    22 2

    2

    dL

    df

    2 2 2 ( ) ( )m mL m f f

    z mL m

    2 2 2

    mL m

  • 7/30/2019 Rotational Motion 2009 7

    32/85

    Two-Dimensional Rigid Rotor

    ( ) imm A ef f ( ) ( )m mH E f f

    2 2

    2m

    mE

    I

    ( ) ( )z m mL m f f

    z mL m

    E

    mz mLmEm

    6

    5

    4

    3

    21

    2

    I

    18.0

    12.5

    8.0

    4.5

    2.00.5

    6

    5

    4

    3

    2

    6

    5

    4

    3

    21

    Only 1 quantum number is require to determine the state of the system.

  • 7/30/2019 Rotational Motion 2009 7

    33/85

    Normalization

    ( ) imm A ef f

    2 2* *

    0 0( ) ( ) 1 & ( ) ( ) 1m m m m

    f f f f

    ** *( ) im imm A e A e

    f f f

    ( ) imm A ef f

    *A A

    *

    ( ) ( )m m f f

  • 7/30/2019 Rotational Motion 2009 7

    34/85

    Normalization

    2 2*

    0 0

    1 ( ) ( ) ( ) ( )m m m m

    d d

    f f f f f f

    2 2 2

    2 2

    0 0 0

    1 1 [2 ]im im im imA A e e d A A e e d A d A

    f f f f f f f 1

    2A

    1( )

    2

    im

    m ef f

    1( )

    2

    im

    m ef f

    2 2

    *

    0 0

    ( ) ( ) ( ) ( ) 1m m m md

    f f f f f

    O h li

  • 7/30/2019 Rotational Motion 2009 7

    35/85

    18_06fig_PChem.jpg

    1( )

    2

    im

    m ef f

    Orthogonality

    2

    *

    ,

    0

    ( ) ( )m m m md

    f f f *2

    0

    1 1

    2 2

    im ime e d

    f f f

    2

    0

    1

    2

    im ime e d

    f f f

    m = m 2

    0

    1 21 1

    2 2d

    f

    mm

    2 2

    0 0

    1 1

    cos( ) sin( )2 2

    i m m

    e d m m i m m d

    f

    f f f f

    2 2

    0 0

    1cos( ) sin( )

    2 2

    im m d m m d

    f f f f

    1

    0 0 02 2

    i

    S h i l P l C di t

  • 7/30/2019 Rotational Motion 2009 7

    36/85

    14_01fig_PChem.jpg

    x y z r i j k

    sin cos sin sin cosr r r f f r i j k

    Spherical Polar Coordinates

    d d d

    dx dy dz i j k

    ( , , ) ( , , ) ( , , )d d d

    r r rdx dy dz

    f f f

    i j k

    ( , , ) ( , , )

    ( , , )

    x r y r

    z r

    f f

    f

    r i j

    k

    ?

  • 7/30/2019 Rotational Motion 2009 7

    37/85

    14_01fig_PChem.jpg

    sin cos sin sin cosx r y r z r f f

    Spherical Polar Coordinates

    d dx d dy d dz d

    dr dr dx dr dy dr dz

    cos sin sin sin cosd d d d

    dr dx dy dz f f

    cos cos sin cos sind d d d

    r r rd dx dy dz

    f f

    sin sin cos sind d d

    r rd dx dy

    f f f

    .... & ....d d

    d d f

    Th G di i S h i l P l C di

  • 7/30/2019 Rotational Motion 2009 7

    38/85

    14_01fig_PChem.jpg

    The Gradient in Spherical Polar Coordinates

    cos sin sin sin cos

    cos cos sin cos sin

    sin sin cos sin 0

    d d

    dr dx

    d dr r r

    d dyr rd d

    d dz

    f f

    f f

    f f

    f

    .SP Cart WGradient in Spherical Polar

    coordinates expressed in

    Cartesian Coordinates

    Th G di t i S h i l P l C di t

  • 7/30/2019 Rotational Motion 2009 7

    39/85

    14_01fig_PChem.jpg

    The Gradient in Spherical Polar Coordinates

    cos cos sincos sin sin

    sin cos cossin sin

    sin

    sincos 0

    Cart

    d d

    dx r r dr

    d d

    dy r r d

    ddr ddz

    f ff

    f ff

    f

    1

    .Cart SP

    WGradient in Cartesian

    coordinates expressed inSpherical Polar Coordinates

    Th G di t i S h i l P l C di t

  • 7/30/2019 Rotational Motion 2009 7

    40/85

    14_01fig_PChem.jpg

    The Gradient in Spherical Polar Coordinates

    1

    .

    cos cos sincos sin

    sin

    sin cos cossin sinsin

    sincos

    Cart SP

    d d dd

    dr r d r d dx

    d d d d

    dy dr r d r d

    d dd

    dr r d dz

    f ff

    f

    f ff f

    W

    .

    Carti

    L r

    1SPi

    L r W

    Th G di t i S h i l P l C di t

  • 7/30/2019 Rotational Motion 2009 7

    41/85

    14_01fig_PChem.jpg

    The Gradient in Spherical Polar Coordinates

    cos cos sincos sin

    sincos( )sin( )sin cos cos

    sin( ) sin( ) sin sinsin

    cos( )sin

    cos

    d d d

    dr r d r d rd d d

    i rdr r d r d

    rd d

    dr r d

    f ff

    ff f f

    f f f

    x y zL L L L i j k

    cos sin cos

    sin

    cos

    cos sinsin

    x

    y

    z

    d dL i

    d d

    d d

    L i d d

    dL i

    d

    f f

    f

    f f f

    f

    i L r

    Th L l i i S h i l P l C di t

  • 7/30/2019 Rotational Motion 2009 7

    42/85

    14_01fig_PChem.jpg

    The Laplacian in Spherical Polar Coordinates

    22 2

    2 2 2 2 2

    1 1 1

    sinsin sin

    d d d d d

    rr dr dr r d d r d f

    22

    2

    1 .....d rr dr

    OR OR2

    2

    2

    2....

    d d

    dr r dr

    Radial Term Angular Terms

    2 1 1

    Cart SP SP

    W W

    Th Di i l Ri id R t

  • 7/30/2019 Rotational Motion 2009 7

    43/85

    Three-Dimensional Rigid Rotor

    Assume ris rigid, ie. it is constant. Then all energy is from rotational motion only.

    2 2 2 2 22

    . 2 2 2

    2 2Cart

    d d dH dx dy dz

    2 2 22

    2 2 2 2

    1 1 1 sin

    2 2 sin sin

    SP

    d d d d dH r

    r dr dr r d d r d

    f

    2 2

    2 2 2

    1 1

    sin2 sin sin

    d d d

    H r d d d f

    2

    2IL

    22 2

    2 2

    1 1 sin

    sin sin

    d d dL

    d d d

    f

    Th Di i l Ri id R t

  • 7/30/2019 Rotational Motion 2009 7

    44/85

    18_05fig_PChem.jpg

    Three-Dimensional Rigid Rotor

    2 2

    2 2

    1 1 ( , ) sin ( , ) ( , )

    2 sin sin

    d d dH E

    I d d d f f f

    f

    2 2

    2 2

    1 1sin ( ) ( ) ( ) ( )

    2 sin sin

    d d dE

    I d d d f f

    f

    22

    2sin sin ( ) ( ) ( ) ( ) sin ( ) ( )

    d d d

    d d d

    f f f

    f

    2

    2

    2

    2

    IEE

    I

    Separable?

    Th Di i l Ri id R t

  • 7/30/2019 Rotational Motion 2009 7

    45/85

    Three-Dimensional Rigid Rotor

    22

    2

    1( )

    ( )

    dk

    df

    f f

    2 21 sin sin ( ) sin( )

    d dk

    d d

    22

    2( )sin sin ( ) ( ) ( ) sin ( ) ( )

    d d d

    d d df f f f

    22

    2

    1 1sin sin ( ) sin ( )

    ( ) ( )

    d d d

    d d d

    f

    f f

    Two separateindependent

    equations

    k2= separation

    Constant

    Th Di i l Ri id R t

  • 7/30/2019 Rotational Motion 2009 7

    46/85

    18_05fig_PChem.jpg

    Three-Dimensional Rigid Rotor

    22

    2 ( ) 0d

    kd ff

    1( )

    2

    im

    m eff

    1( )

    2

    im

    m eff

    k m k

    22

    2

    1

    ( )( )

    d

    kd ff f

    Recall 2D Rigid Rotor

    Th Di i l Ri id R t

  • 7/30/2019 Rotational Motion 2009 7

    47/85

    18_05fig_PChem.jpg

    Three-Dimensional Rigid Rotor

    2 21 sin sin ( ) sin

    ( )

    d dm

    d d

    2 2sin sin sin ( ) ( )d d

    md d

    , ( ) cos( )mm

    l m l l C P

    This equation can be solving using a series expansion, using a Fourier Series:

    Where ( 1)l l 2

    2 ( 1)

    2 2

    l

    l lE E

    I I

    Legendre polynomials

    2 2sin sin ( ) sin ( ) ( )d d

    md d

    Th Di i l Ri id R t

  • 7/30/2019 Rotational Motion 2009 7

    48/85

    Three-Dimensional Rigid Rotor

    2 ( 1)

    2l

    l lE

    I

    2 2

    2 2

    1 1sin ( , ) ( , )

    2 sin sin

    d d dE

    I d d d

    f f

    f

    1( )

    2

    im

    m eff

    , , ( ) ( ) ( ) ( )l m m l l m mH E f f , ( ) (cos( ))

    mm

    l m l l C P

    21 ( 1) 1 (cos( )) (cos( ))22 2

    m mm im m im

    l l l l

    l lH C P e C P e

    I

    f f

    ,

    1( , ) (cos( ))

    2

    mm im

    l m l l Y C P ef f

    Spherical Harmonics

    , , ( , ) ( , )l m l l mHY E Y f f

    Th S h i l H i

  • 7/30/2019 Rotational Motion 2009 7

    49/85

    The Spherical Harmonics

    ,

    1( , ) (cos( ))

    2

    mm im

    l m l l Y C P ef f

    , 1,..., 1,m l l l l

    1/2

    (2 1)( )!for 0

    2( )!

    m

    l

    l l mC m

    l m

    1/2

    (2 1)( )!( 1) for 0

    2( )!

    m m

    l

    l l mC m

    l m

    For l=0, m=0

    21(cos ) (cos 1)2 ! (cos )

    l

    l

    l l

    dP

    l d

    (cos ) sin (cos )(cos )

    m

    m ml l

    dP Pd

    0

    2 0

    0

    1(cos ) (cos 1) 1

    2 0! (cos )l

    dP

    d

    0

    0 0

    0 (cos ) sin 1 1(cos )

    d

    P d

    The Spherical Harmonics

  • 7/30/2019 Rotational Motion 2009 7

    50/85

    The Spherical Harmonics

    ,

    1( , ) (cos( ))

    2

    mm im

    l m l l Y C P ef f

    0

    0 (cos( )) 1P

    0

    0,0

    1 1 1( , ) (1)

    2 2 2

    iY e f

    For l=0, m=0

    1/2

    0 (2* 0 1)(0 0)! 1( 1)2(0)! 2

    mlC

    0,0

    1

    , (0, ), (0,2 )2 oY r r f

    Everywhere on the surface of the

    sphere has value 1

    2

    what is ro ? r = (ro, , f

    The Spherical Harmonics

  • 7/30/2019 Rotational Motion 2009 7

    51/85

    The Spherical Harmonics

    r = (1, , f

    Normalization:

    *

    0,0 0,0

    S

    Y Y dV

    2 sin( ) sin( )o

    dV dxdydz

    r d d d d f f

    *( ) ( , )

    ( ) ( , )

    1 11

    2 2

    f o f j f f f

    i o i i i i i

    x r y f x z g x y

    x r y f x y g x y

    dxdydz

    2 2 2 2Where ox y z r

    *2

    0 0

    1 1 sin( )2 2

    d d

    f

    In Spherical Polar Coordinates

    2

    0 0

    1sin( )

    4d d

    f

    2

    0 0

    1sin

    4d d

    f

    2

    0 0

    1 1cos 2(2 ) 1

    4 4

    f

    1or

    r is fixed at ro.

    The wavefunction is an angular

    function which has a constant valueover the entire unit circle.

    X

    Y

    Z

    1

    2

    The Spherical Harmonics

  • 7/30/2019 Rotational Motion 2009 7

    52/85

    The Spherical Harmonics

    01,01 3 3

    ( , ) 1 cos( ) cos( )22 2

    iY e f f

    1,0

    3( ) cos( )

    2

    (0, ), (0, 2 )

    Y

    f

    r = (1, , f

    X

    Y

    Z

    The wavefunction is an angular

    function which has a value varying ason the entire unit circle.

    3cos( )

    2

    The spherical Harmonics

    are often plotted as a

    vector strating from the

    origin with orientation

    and f and its length is

    Y(,f)

    Along z-axis

    2 1

    1 1

    1(cos ) (cos 1) cos

    2 1! (cos )

    dP

    d

    0

    0 0

    1 (cos ) sin cos cos(cos )

    dPd

    For l=1, m=0

    The Spherical Harmonics

  • 7/30/2019 Rotational Motion 2009 7

    53/85

    18_05fig_PChem.jpg

    The Spherical Harmonics

    1, 1

    3( , ) sin( )

    2 2

    iY e f f

    Complex Valued??

    1, 1 1, 1

    1 3 3( , ) ( , ) sin( ) sin( ) cos( )

    2 4 2 2 2

    i iY Y e ef f f f f

    Along x-axis

    1, 1 1, 1

    1 3 3( , ) ( , ) sin( ) sin( )sin( )

    2 4 2 2 2

    i iY Y e ei i

    f f f f f

    Along y-axis

    1

    1 1

    1 1(cos ) sin (cos ) sin cos sin(cos ) (cos )

    d dP P

    d d

    For l=1, m =1

    The Spherical Harmonics

  • 7/30/2019 Rotational Motion 2009 7

    54/85

    18_05fig_PChem.jpg

    The Spherical Harmonics

    0 221

    (cos( )) 3cos ( ) 12

    P

    1

    2 (cos( )) 3sin( )cos ( )P 2 22 (cos( )) 3sin ( )P

    2

    2,0

    5( , ) (3cos ( ) 1)

    4Y f

    2, 1

    15( , ) sin cos

    2 2

    iY e f f

    2, 1 2, 1 15sin cos cos

    2 8

    Y Y f

    2, 1 2, 115

    sin sin cos2 8

    Y Y

    i f

    YZXZ

    2 2

    2, 2

    15( , ) sin

    4 2

    iY e f f

    The Spherical Harmonics Are Orthonormal

  • 7/30/2019 Rotational Motion 2009 7

    55/85

    The Spherical Harmonics Are Orthonormal

    2

    *

    , , , , ,

    0 0

    sin( )l m l m l m l mY Y d d

    f 2

    0 0

    1 1(cos ) (cos ) sin

    2 2

    m mm im m im

    l l l l C P e C P e d d

    f f f

    2

    0 0

    1(cos ) (cos ) sin

    2

    m mim im m m

    l l l l e e d C P C P d

    f f f

    2

    ,

    0

    (cos ) (cos ) sin2

    m mm ml l

    m m l l

    C CP P d

    2

    ,

    0

    When (cos ) (cos ) sin2

    m mm ml l

    l l l l

    C Cm m P P d

    Example0

    1 (cos( )) cos( )P 0

    0 (cos( )) 1P

    2 20 10 10 0 0 11 1

    0 1

    0 0

    (cos ) (cos ) sin cos sin 02 2

    C CC CP P d d

    Y are Eigenfuncions of H L2 L

  • 7/30/2019 Rotational Motion 2009 7

    56/85

    Yl,m are Eigenfuncions of H, L , Lz

    ,

    1( , ) (cos( ))

    2

    mm im

    l m l l Y C P ef f

    2 2

    2 2

    1 1 sin

    2 sin sin

    d d dH

    I d d d

    f

    22 2

    2 2

    1 1 sin

    sin sin

    d d dL

    d d d

    f

    z

    dL i

    df

    2

    , , ( , ) ( 1) ( , )

    2l m l mHY l l Y

    I f f

    2 2

    , , ( , ) ( 1) ( , )l m l mL Y l l Y f f

    , , ( , ) ( , )z l m l mL Y m Y f f

    2

    ( 1)2

    lE l lI

    2 2 ( 1)lL l l

    ( 1)lL l l

    zL m

    Dirac Notation

  • 7/30/2019 Rotational Motion 2009 7

    57/85

    Dirac Notation

    *

    ,i j i j

    Sds

    *

    ,i j i j v v

    ,

    N

    i i m m

    mc f

    mfis complete*

    ,m m m m

    Sf f

    * * * *

    ,1 ,2 , 1 ,i i i i N i N c c c c v

    ,1

    ,2

    , 1

    ,

    j

    j

    j

    j N

    j N

    c

    c

    cc

    v

    Continuous Functions

    Vectors

    *

    ,|i j i j i jS

    ds i i vDirac

    j j v

    * i j i j i j

    S

    ds O O O O

    Bra

    Ket

    |j j j

    H E

    Dirac Notation

  • 7/30/2019 Rotational Motion 2009 7

    58/85

    Dirac Notation

    2

    *

    1,1 1,1 1,1 1,1

    0 0

    ( , ) ( , )sin | |H Y HY d d Y H Y

    f f f 1,1 1,1

    |Y HY

    2 2 2

    1,1 1,1 1,1 1,1 1,1 1(1 1) |

    2HY Y Y Y Y

    I I I

    2 2

    1,1 1,1|Y YI I

    2

    , , ( , ) ( 1) ( , )

    2

    l m l mHY l l Y

    I

    f f

    2

    1,1 1,1 1,0 1,0 1, 1 1, 1 | | | | | |Y H Y Y H Y Y H Y

    I

    Degenerate

    Dirac Notation

  • 7/30/2019 Rotational Motion 2009 7

    59/85

    Dirac Notation

    2

    2 * 2 2

    1,1 1,1 1,1 1,10 0

    ( , ) ( , )sin | |L Y L Y d d Y L Y

    f f f 21,1 1,1

    |Y L Y

    2 2 2 2

    1,1 1,1 1,1 1,1 1,1 1(1 1) 2 | 2L Y Y Y Y Y

    2 2

    1,1 1,12 | 2Y Y

    2 2

    , , ( , ) ( 1) ( , )l m l mL Y l l Y f f

    2L

    2 2

    1, 1 1, 1| 2Y L Y

    2

    2, 1 1, 1| ?Y L Y

    2 2

    2, 1 2, 1| 2Y L Y

    Dirac Notation

  • 7/30/2019 Rotational Motion 2009 7

    60/85

    Dirac Notation

    2

    *

    1,1 1,1 1,1 1,1

    0 0

    ( , ) ( , )sin | |z z zL Y L Y d d Y L Y

    f f f 1,1 1,1

    | zY L Y

    1,1 1,1 1,1 1,1 |zL Y Y Y Y

    , , ( , ) ( , )z l m l mL Y m Y f f

    1,1 1,1|Y Y

    1,0 1,0| | 0zY L Y 1, 1 1, 1

    | |zY L Y 1,0 1,1| | ?zY L Y

    3-D Rotational motion & The Angular Momentum Vector

  • 7/30/2019 Rotational Motion 2009 7

    61/85

    18_16fig_PChem.jpg

    3 D Rotational motion & The Angular Momentum Vector

    zL m

    ( 1)l l L

    m indicates the orientation ofthe angular momentum with

    respect to z-axis

    L

    l determines the length

    of the angularmomentum vector

    Rotational motion is quantized not continuous. Only certain

    states of motion are allowed that are determined by quantum

    numbers l and m.

    Three Dimensional Rigid Rotor States

  • 7/30/2019 Rotational Motion 2009 7

    62/85

    Three-Dimensional Rigid Rotor States

    lz mLlE,..,

    l

    m mY

    33,2,1,0, 1, 2, 3Y

    2

    2,1,0, 1, 2Y

    1

    1,0, 1Y

    2

    I

    6.0

    3.0

    1.0

    0.5

    0

    3

    2

    10

    Only 2 quantum numbers are require to determine the state of the system.

    2

    ( 1)

    2lE l l

    I

    ( 1)lL l l zL m

    12

    6

    2

    Lm

    0

    1 0 -10

    0Y

    1 0-1 -2

    2

    1 0-1 -22

    -3

    3

    0

    2

    0

    2

    32

    0

    22

    Rotational Spectroscopy

  • 7/30/2019 Rotational Motion 2009 7

    63/85

    19_01tbl_PChem.jpg

    Rotational Spectroscopy

    Rotational Spectroscopy

  • 7/30/2019 Rotational Motion 2009 7

    64/85

    19_13fig_PChem.jpg

    Rotational Spectroscopy

    2

    2( 1)

    2J

    o

    E J J

    r

    1J JE E ED

    2

    1E JI

    D

    J : Rotational quantum number

    2

    2( 1)( 2) ( 1)

    2o

    J J J Jr

    2

    ( 1)2J

    E J JI

    Rotational Spectroscopy

  • 7/30/2019 Rotational Motion 2009 7

    65/85

    Rotational Spectroscopy

    hcE h hc

    D

    2

    ( 1)

    4

    h J

    Ic

    2 ( 1)B J

    2 28 o

    hB

    r c

    Wavenumber (cm-1)

    Rotational Constant

    1J Jv c c D D

    2 ( 1 1) 2 ( 1) 2c B J B J cB

    Frequency (v)

    Dvv

    Line spacing

    Rotational Spectroscopy

  • 7/30/2019 Rotational Motion 2009 7

    66/85

    Rotational Spectroscopy

    8 1 122 2 (2.99 10 / ) (1890 ) 1.13 10v cB m s m Hz D

    Predict the linespacing for the 16O1H radical.

    mO = 15.994 amu = 2.656 x 10-26 kg

    mH = 1.008 amu = 1.673 x 10-26 kg

    r = 0.97 A = 9.7 x 10-11 m

    1 amu = 1 g/mol = (0.001 kg/mol)/6.022 x 10-23 mol-1

    = 1.661 x 10-23 kg

    27

    26 27

    1 1 11.774 10

    2.656 10 1.673 10kg

    kg kg

    2 28o

    hB

    r c

    34 21

    22 27 11 8

    6.626 10 /1890

    8 1.774 10 9.7 10 (2.99 10 / )

    kgm sm

    kg m m s

    1 1 12 2 (1890 ) 3780 37.8v B m m cm D

    Rotational Spectroscopy

  • 7/30/2019 Rotational Motion 2009 7

    67/85

    Rotational SpectroscopyThe line spacing for1H35Cl is 21.19 cm-1,

    determine its bond length .

    mCl = 34.698 amu = 5.807 x 10-26 kg

    mH = 1.008 amu = 1.673 x 10-26 kg

    27

    26 27

    1 1 11.626 10

    5.807 10 1.673 10

    kg

    kg kg

    2 2 28 8o

    o

    h hB rr c B c

    34 210

    1 2 27 8

    6.626 10 /1.257 10 1.257

    (1059.5 )8 1.626 10 (2.99 10 / )

    kgm sm A

    m kg m s

    11(21.19 )(100 / ) 1059.5

    2 2

    v cm cm mB m

    D

    The Transverse Components of Angular Momentum

  • 7/30/2019 Rotational Motion 2009 7

    68/85

    x

    y

    z

    d dL i y z

    dz dy

    d dL i z x

    dx dz

    d dL i x ydy dx

    zL m

    ( 1)l l L

    L

    2 2 2 2 L x y zL L L

    ?

    ?

    , ( , )l mY f

    zL m

    2 ( 1)L l l

    x y zi L L L L r i j k

    The Transverse Components of Angular Momentum

    Ylm are eigenfunctions ofL2 and Lz but not ofLx and Ly

    Therefore Lx and Ly do not commute with either L2 or Lz!!!

    Commutation of Angular Momentum Components

  • 7/30/2019 Rotational Motion 2009 7

    69/85

    g p

    ,x y x y y xL L L L L L

    d d d d d d d d d d d d y z z x y z y x z z z x

    dz dy dx dz dz dx dz dz dy dx dy dz

    22

    2

    d d d d d y yz yx z zx

    dx dzdx dz dydx dydz

    2 d d d d d d d d y z z x z x y zdz dy dx dz dx dz dz dy

    dz d d d d d d d d d y z yx zz zx

    dz dx dz dx dz dz dy dx dy dz

    product rule

    Commutation of Angular Momentum Components

  • 7/30/2019 Rotational Motion 2009 7

    70/85

    g p

    d d d d d d d d d d d d z x y z z y z z x y x z

    dx dz dz dy dx dz dx dy dz dz dz dy

    22

    2

    d d d d d zy z xy x xz

    dxdz dxdy dz dy dzdy

    d d d d d d dz d d d

    zy zz xy x zdx dz dx dy dz dz dz dy dz dy

    product rule

    Commutation of Angular Momentum Components

  • 7/30/2019 Rotational Motion 2009 7

    71/85

    g p

    22

    2

    22

    2

    2

    ,x y

    d d d d d y yz yx z zx

    dx dzdx dz dydx dydz L L

    d d d d d zy z xy x xz

    dxdz dxdy dz dy dzdy

    z

    d di ih x y i L

    dy dx

    ,y x y x x y zL L L L L L i L

    2 d d d d y x i ih y xdx dy dx dy

    Commutation of Angular Momentum Components

  • 7/30/2019 Rotational Motion 2009 7

    72/85

    Commutation of Angular Momentum Components

    2 x

    d d d d d d d d

    z x y z y z z x i Ldx dz dz dy dz dy dx dz

    ,x z x z z xL L L L L L

    2 y

    d d d d d d d d y z x y x y y z i L

    dz dy dy dx dy dx dz dy

    ,z x z x x z yL L L L L L i L

    ,y z y z z yL L L L L L

    ,z y z y y z xL L L L L L i L

    Cyclic Commutation of Angular Momentum

  • 7/30/2019 Rotational Motion 2009 7

    73/85

    Cyclic Commutation of Angular Momentum

    ,z x yL L i L

    ,y z xL L i L

    ,x y zL L i L

    ,z y x

    L L i L ,

    x z yL L i L ,y x zL L i L

    ,x y zL L i L

    ,y x zL L i L

    xL

    yL

    zL

    i

    xL

    yL

    zL

    i

    Commutation with Total Angular Momentum

  • 7/30/2019 Rotational Motion 2009 7

    74/85

    Commutation with Total Angular Momentum

    2 2 2 2 , , , ,z x z y z z zL L L L L L L L

    2 2 2 ,x z x z z xL L L L L L

    , , ,x z x z z x x z x z z x z x x z x zL L L L L L L L L L L L L L L L L L

    , ,x x z z x x z x z xL L L L L L L L L L

    x x z z x xL L L L L L

    , ,x x z x z x x z x x z xL L L L L L L L L L L L

    x y y xi L L i L L

    Commutation with Total Angular Momentum

  • 7/30/2019 Rotational Motion 2009 7

    75/85

    g

    2 2 2 ,y z y z z yL L L L L L

    , ,y y z y z y y z y y z yL L L L L L L L L L L L

    , ,y y z z y y z y z yL L L L L L L L L L

    , , ,y z y z z y y z x z z y z y z y x zL L L L L L L L L L L L L L L L L L

    y x x yi L L i L L

    y y z z y yL L L L L L

    Commutation with Total Angular Momentum

  • 7/30/2019 Rotational Motion 2009 7

    76/85

    g

    2 2 2 2 , , , ,z x z y z z zL L L L L L L L

    2 2 2 ,z z z z z zL L L L L L

    0z z z z z zL L L L L L

    0 0x y y x y x x yi L L i L L i L L i L L

    2 , 0xL L 2 , 0yL L

    This means that only

    any one component of

    angular momentum

    can be determined at

    one time.

    Ladder Operators

  • 7/30/2019 Rotational Motion 2009 7

    77/85

    p

    x yL L iL

    x yL L iL

    2 y xi L i L y xi L L

    , , ,z z x z y

    L L L L i L L

    x yL iL L

    , , ,z z x z yL L L L i L L

    x yL iL L

    y xi L L

    ( )y xi L i i L

    Ladder Operators

  • 7/30/2019 Rotational Motion 2009 7

    78/85

    p

    What do these ladder operators actually do???

    , , ,

    l m x l m y l mL Y L Y iL Y

    ? ?Recall That: ,zL L L

    z zL L L L L

    , ,

    l m z z l mL Y L L L L Y

    , , , ,

    z l m z l m z l m l mL L Y L L Y L L Y m L Y

    , , ,

    l m z l m l mL Y L L Y m L Y

    , ,

    ( 1)z l m l mL L Y m L Y

    , 1 , 1 , , 1 ( 1)

    z l m l m l m l mL Y m Y L Y Y Raising Operator

    Lowering Operator, , 1

    l m l mL Y Y Similarly

    Ladder Operators

  • 7/30/2019 Rotational Motion 2009 7

    79/85

    Therefore is an eigenfunction of with eigen values land m+1

    p

    2 2 2 , , , 0 0 0x yL L L L i L L i 2 2 2 , , , 0x yL L L L i L L

    2 2 2

    , , 0 , l m l mL L Y L L L L Y

    2 2

    , ,

    l m l mL L Y L L Y

    2 2

    , , ( 1)l m l mL L Y l l L Y

    2 2

    , ,

    ( 1)l m l mL L Y l l L Y

    ,

    l mL Y2 & zL L

    Which implies that, , , 1

    l m l m l mL Y C Y

    Ladder Operators

  • 7/30/2019 Rotational Motion 2009 7

    80/85

    p

    , , , 1

    l m l m l mL Y C Y

    , , , 1 l m l m l mL Y C Y

    This is not an eigen relationship!!!! ,l mC

    is not an normalization constant!!!These relationships indicates that a change in state, by Dm=+/-1, is caused by L+and L-

    Can these operators be applied indefinitely??

    Remember that there is a max and min value for m, as

    it represents a component ofL, and therefore must be

    smaller than L. ie.

    ( 1) ( 1) ( 1)m l l l l m l l

    2,0 2,1L Y Y

    Why is lL

    2,1 2,2L Y Y

    2,2 0L Y Not allowed

    ?

    , ?

    n

    l mL Y ,

    ?n

    l mL Y

    2,0 2, 1L Y Y

    2, 1 2, 2L Y Y

    2, 2 0L Y

    More Useful Properties of Ladder Operators

  • 7/30/2019 Rotational Motion 2009 7

    81/85

    p p

    2 2 2 2 x y zL L L L

    2 2 2 2 x y zL L L L

    2 2 2 2, , x y l m z l mL L Y L L Y

    2 2

    , ,

    l m z l mL Y L Y

    2

    ,( 1) l ml l m Y

    This is an eigen equation of a physical observable that is always greater than zero,

    as it represents the difference between the magnitude ofL and the square of its

    smaller z-component, which are both positive.

    2( 1) 0 ( 1) ( 1)l l m l l m l l

    This means that m is constrained by l, and since m can be changed by1

    , 1, 2,...., 2, 1, .m l l l l l l

    More Useful Properties of Ladder Operators

  • 7/30/2019 Rotational Motion 2009 7

    82/85

    max, 0l mL Y

    p p

    min, 0l mL Y

    max, 0l mL L Y min,

    0l mL L Y

    Lets show that mmin and mmax are land -lresp.

    &L L L L Have to be determined in terms of2

    & zL L

    2 2 2 2 zL L L L L L

    2 2 x y x y x x y y x yL L L iL L iL L iL L iL L L

    2 2 x y x y x x y y x yL L L iL L iL L iL L iL L L

    2 21 2

    x yL L L L L L

    More Useful Properties of Ladder Operators

  • 7/30/2019 Rotational Motion 2009 7

    83/85

    , , ,x yL L L L i L L

    , , , ( ) ,x x y x x y y yL L i L L i L L i i L L

    0 ( ) ( ) 0 2z z zi i L i i L L

    Also note that:

    2 2 , 2 2 zL L L L L L L L

    2 2 z zL L L L L

    2 2 z zL L L L L

    2 2 2 2 zL L L L L L

    2 2 2 2 2 2z zL L L L L

    Similarly

    Ladder Operators

  • 7/30/2019 Rotational Motion 2009 7

    84/85

    2 2

    ,max ,max 0 l z z l L L Y L L L Y

    max max max

    2 2

    , , ,

    l m z l m z l mL Y L Y L Y

    max max max2 2 2

    , max , max ,1 l m l m l ml l Y m Y m Y

    2 max max ,1 ( 1) l ml l m m Y

    max max1 ( 1) 0l l m m

    maxm l

    Ladder Operators

  • 7/30/2019 Rotational Motion 2009 7

    85/85

    min min

    2 2

    , , 0 l m z z l mL L Y L L L Y

    min min min

    2 2

    , , ,

    l m z l m z l mL Y L Y L Y

    min min min

    2 2 2

    , min , min ,1 l m l m l ml l Y m Y m Y

    min

    2

    min min ,1 ( 1) l ml l m m Y

    min min1 ( 1) 0l l m m

    2min min min1 0 1,&m m l l m l l

    Since the minimum value cannot be larger than the maximum value, therefore .