root causes & consequential cost of rework - xl...

14
Robin McDonald, CCM, LEED G.A. Root Causes & Consequential Cost of Rework Insurance North America Construction

Upload: lexuyen

Post on 27-Mar-2018

223 views

Category:

Documents


2 download

TRANSCRIPT

Robin McDonald, CCM, LEED G.A.

Root Causes & Consequential Cost of Rework

5286

_07/

2015

InsuranceNorth America Construction

2

Table of Contents

1. DefinitionofRework ....................................................... 1

2. Introduction .................................................................... 1

3. CostandRootCauseOverview ..................................... 1

4. ProductivityLossandReducedQualityInProjects ...... 2

5. ExaminationofDesign-InducedRework ....................... 3

6. TheEffectofReworkonConstruction CostPerformance .......................................................... 5 OwnerReportedProjects .............................................. 7 ContractorReportedProjects ....................................... 7

7. ReworkCostsInBuildingConstruction. ........................ 8

8. ReworkCostsInCivilInfrastructureProjects ............... 9

9. Conclusion ...................................................................... 9

References........................................................................... 11

IllustrationsFigure1.0

CauseandEffectDiagram-ModeloftheRoot CausesofRework (Fayek et al., 2003)............................. 2

Figure2.0 InfluenceDiagramOfDesignErrorInducedRework (Peter E. D. Love, 2008) .................................................... 4

Table1.0 ReworkQuestionnaireIndex ......................................... 6

Figure3.0 FRIScoreChart ............................................................... 6

Table2.0 LargestSourcesofReworkforOwners andContractors (Bon-Gnag Hwang et al, ASCE, March 2009) ................... 7

Table3.0 DirectAndIndirectReworkCostsPerProjectType, (Peter E.D. Love, 2002) .................................................... 8

Figure4.0 ASummaryOfReworkCosts(Bon-Gang Hwang). 10

RootCauses&ConsequentialCostofRework

Robin McDonald, CCM, LEED G.A.

Thispaperevaluatestheimpactofreworkondirectandindirectconstructioncostforprojecttypes,projectindustry,andprojectsizeandprocurementmethodsinvariouscategories.Byrecognizingtheimpactsofreworkanditssources,theconstructionindustrycanreducereworkandeventuallyimproveprojectscheduleandcostperformance.

1

Section1 DefinitionofReworkReworkisdefinedasworkmeasuresthathavetobecompletedmorethanonce.BuratiJ.L.etal.(1992)describedreworkasa“non-conformance;”PeterE.D.Love1characterizedreworkasthe“unnecessaryprocessofredoingaworkactivitythatwasincorrectlycarriedoutthefirsttime.”Anotherdefinitionwhichemphasizestheessenceofreworkis“workthatismadetoconformtotheoriginalrequirementsbycompletionorcorrectionatleastoneextratimeduetononconformancewithrequirements.”Reworkisnotcommonlydescribedtoincludemissingscopeofworkchangesandchangeordersbroughtaboutbyendusers/owners,whichare not necessarilyconsiderednon-conformance.Ratherchangessuchastheseinsteadstemfromadesiretochangeduetobudgetconstraintsorotherunrelatedcircumstances.

Section2 IntroductionReworkisamajorcontributortocostandschedule.Inalargecomplexenvironmentthatinvolvesmultiplelevelsoftrades,suppliersandinstallers,andwheremanyactivitiestakeplacesimultaneously,thelikelihoodforerrors,omissionsandpoormanagementpracticesoftencauseneglectthatcanleadtoqualityfailures,whichmustthenbereworked.Errorsaredefinedasunintendeddeviationsfromcorrectandacceptablepracticesandleadtoprojectcostandscheduleoverruns,whicharebothunnecessaryandavoidable.FivemajorareasofreworkhavebeenidentifiedinthepastbytheConstructionIndustryInstitute(1989),PeterE.D.Love(1990),andBuratiJ.L(1992)inwhichtheystatethatdesign,construction,fabricationandtransportationandoperabilitywerethecausesofrework;sourcesofreworkaredescribedinSection3.0.Inadditiontoactivitiesandsourcespreviouslydescribed,theanalysisofsampleempiricalindependentresearchdatafromavarietyofconstructionandengineeringprojectstypicallymeasuresthecostofreworkbasedonprojecttype,projectindustry,projectsizeandbyprocurementmethod.Thesedataanalysesarebasedonbothdirectandindirectcoststhatareattributableintheinfrastructureandbuildingindustries.Section6considerstheseeffects.

1 P.E.D.LoveiswiththecooperativeResearchCenterforconstructionInnovation,DepartmentofConstructionManagement,CuringUniversityofTechnology,PerthAustralia.

Section3 CostandRootCauseOverviewAsearlyas1981,theBuildingResearchEstablishment(BRE)intheUKreferencedthatreworkcanoccurduringdifferentphasesoftheprojectlifecycleandthaterrorsinbuildinghad50%oftheirorigininthedesignstageand40%intheconstructionstage.In1986,O’ConnerandTucker’sIndustrialProjectConstructabilityImprovementpaperidentifiedownerscopechange,specificationchangeinadditiontodesignorprocurementerrorsthatresultfrompoorconstructiontechniqueorpoorconstructionmanagementprocesses.Abdul-Rahman(1995)determinednon-conformancecostsinahighwayprojecttobe5%ofthecontractvalue(excludingmaterialwastageandheadofficeoverhead). Abdul-Rahmanspecificallypointsoutthatnon-conformancecostsmaybesignificantlyhigherwherepoorqualitymanagementpracticeswereimplemented. NylenK.O.(1996)foundthatwhenpoorqualitymanagementpracticeswereusedinrailwayprojectsthequalityfailureswerefoundtobe10%ofthecontractvalue.Furthermore,10%ofthequalityfailuresrepresented90%oftheirtotalcost. Additionalstudiesindicatedthatreworkhasaconsiderableimpactontheindustryasawhole;sourcesofthesestudiesincludedtheAmericanSocietyofCivilEngineers(ASCE),BuratiJ.Letal(1992),CII(2004),PeterE.D.Love(2002,2008&2010)andarecentwhitepaperproducedbyNavigantConstructionForum(2012).Thisresearchisfurthersupportedbyothersurveydatathatsuggestthatthetotalmeanreworkcanbeasmuchas10%ofthecontractvalue.ResearchconductedbytheASCEandCIIfindsthatdirectcostofreworkcontributesanaverageof5%tothetotalconstructioncost(CII,2005),howeverwhereheadofficeoverheadandindirectcostsaretakenintoaccount,thepercentageofreworkcontributingtototalconstructioncostscanexceed7.25%andreachashighas12%.

Figure1.0illustratesthefivemainsourcesofreworkandtheirassociatedrootcauses(Fayeketal.2003).OfthoseidentifiedinFigure1.0,“EngineeringandReviews”hadthehighestmonetaryweightatapproximately60%,accordingtoonesurvey,farandaboveanyothersourceidentifiedinthefigure.Thesecondhighestsourcewas“HumanResourceCapability”at21%andthirdhighestwas“MaterialandEquipmentSupply”at15%,althoughthefrequencyofoccurrencewasfargreaterthantheHumanResourceweighting.“ConstructionPlanningandScheduling”and“LeadershipandCommunications”hadalmostidenticalweighting.

2

Section4 ProductivityLossandReducedQualityinProjectsFailuretodeliverprojectneedsontimeandonbudgethasbeenthedownfallofpoliticalparties,governmentsandpublicentitiesaroundtheworld.Wheredelaysinprojectsoccur,theProjectManagerisusuallyforcedtoconsiderthreepossiblesituations:declineinquality,additionalcostsandpossiblerework.Adeclineinqualitywillusuallyleadtorework,whileintroducingadditionalresourcestomeetprojectscheduleconstraintssignificantlyincreasesprojectcosts.Likewise,lossofproductivitymayoccurduetolongerperiodsofovertimeifprojectaccelerationisrequiredtoresolvedelays.Wherethisapproachisadopted,fatiguewillinvariablyincreaseleadingtosub-standardperformancethatmayalsogeneraterework.Ifextraresourcesareimplemented,theoutcomemayleadtolaborovercrowdingandstackingofsubcontracttrades,whichalsohasapotentialtoreduceworkeffectiveness,whichinturncanleadtonon-conformance.

Whileproductivitylossandthechoiceofovertimeworkareimportantandinterestingfactors,itisnotthepurposeofthispapertostudytherelationshipbetweenovertimeworkandproductivity.Thiswhitepaperconcentratesontheeffectofreworkqualityonthecostandschedulefunction.

Key selection of resources that best reduce productivity loss and best resolves delays is carefully scaled by injecting 50% overtime work and 30% additional resource.

AllocationofresourceisfurtherexplainedinSection5.

Fig 1.0 Cause and Effect Diagram - Model of the Root Causes of Rework (Fayek et al. 2003)

Late designer input

Unrealistic schedule

Constructability problems

Insufficient turnover & commissioning resourcing

Contribute to Rework

Human Resource Capability Leadership & Communications

Engineering & ReviewsConstruction Planning & Scheduling

Material & Equipment Supply

Unclear instructions to workers

Excessive overtime

Insufficient skill level

Inadequate supervision

Ineffective management of project team

Lack of safety & QA/QC

Poor communications

Lack of operations (end user)

Late design changes

Scope changes

Error & omissions

Poor document control

Non-compliance with specification

Untimely deliveries

Materials not in right place when needed

Prefab. & construction not to project requirements

3

3

Section5 ExaminationofDesign-InducedReworkReworkresultingfromclientdesignchangesordesignconsultanterrorhasbeenidentifiedastheprimaryfactorcontributingtotimeandcostoverruns.Design-inducedreworkhasbeenreportedtocontributeasmuchas70%ofthetotalamountofreworkexperiencedinconstructionandengineeringprojects(PeterE.D.Loveetal2008).Inspiteoflessonslearnedfromprojectfailuresanddesignerrors,poordesignandconstructionmanagementpracticescontinuetoplaguetheconstructionindustry.Errorsmadeduringtheearlystagesofaprojectareoftendetectedduringthelaterstagesoftheproject,afterwhatappearstobean“errorfree-undetectedperiod.”DesignerrorsfromarchitecturalandengineeringprofessionalsthatgoundetectedmayleadtoStructural,GeotechnicalandCivilEngineeringorMechanicalfailuresthatcanhavecatastrophicconsequences,asthefollowingexamplesillustrate:

• TayBridge,1879–centralnavigationspanscollapsedintotheFirthofTayatDundee,takingwithitthetrainandsixcarriagesand75people

• TetonDam,1976–collapseoftheEarthDaminIdaho.Geotechnicalanddesigndecisionsledtofailurewithoutbuildingmultiplelayersofredundancyanddefenseagainstfailure

• LondonMillenniumfootbridge,2000–synchronouslateralexcitationcausingsidewayswaymotionsimilartoTacomaNarrowsBridgethatcollapsedin1940

• ParisCharlesDeGaulleAirport,Terminal2E,2004–sixmodulesofthetubularstructure,inadditiontothreefootbridgeswhichlinkedtheboardingareacollapsed

Theprimereasonfortheseissuesisduemainlytoindustrytimelineexpectations,pressuresandclientdemands.Designconsultantsaregenerallytooquicktomoveontothenextbidorarepreparingthenextphaseoftheprojecttofullyunderstandandreflectonthesepastdesignissues,designdefectsandthereviewoftheirprocesses.Theprocurementprocessforpublicbidding,inparticular,canincreasethelikelihoodofrework.Thehandoffofincompletedesignrelateddocumentation,whichisthenrelieduponbycontractorsordesign-buildteamstocompiletenderdocumentationandbudgetscancreatereliabilityproblemsastheseerrorsindocumentationarenotdetecteduntiloperationsbeginonsite.Insomecasesthismaydirectlyaffecttheengineeringandplantoperation,whichwillthenimpactsafety.

Ifwedrilldownintothedesignerrorcauseswecanseemoreelementsthatdriveconsultantstomakeerrors,whichaffecttheirperformanceandfurtherinfluencetheirdecision-makingprocess.

Managementdecision-makingandothersoftvariableshavehadlimitedempiricalresearchandhavenotbeensystematicallystudiedorpresentedandreferencedhere.Conversely,thereviewofManagementandOrganizations,andhowtheseaffecthumanbehavior,iswelldocumented.Thetypesoferrorsthatstemfromthesetypesofcharacteristicsareusuallydefinedasthosearisingfrom(i)poorknowledge,(ii)carelessnessandnegligenceand(iii)intent(duetogreedetc.). Ifweconcentrateon(i)and(ii)above,wefindthatpoorknowledgeisaresultofpoortrainingandeducationcombinedwithalackofexperience.Carelessnessandnegligenceoftenincludeerrorsindetailingandcalculationsandaremostlyduetoalackofduediligenceandthereforemaybemadeatanytimeduringtheproject’slifecycle,asaddressedearlier.

Fig2.0(onpage4)representsaninfluencediagramthatidentifieskeyissuesfromstudiesinthedesignphase(fromconceptualthroughdetaileddesignstages)thatcanaffectadesigner’scognitivereasoning,andthereforethelikelihoodtocommiterrors. Othercausesareineffectiveuseofcomputeraideddesign,lowdesigntaskawareness,lackofteamworkandlackofawarenessinchangesindesignstandards.Aspreviouslystatedabove,workpressuresduetoscheduleconstraintsarealsoakeyindicator. “Designchangeinducedreworkisgenerallyclientinitiatedandinvariablyresultsinmodificationtothecontract”.(PeterE.D.Love2008)Theresultingcostandscheduleimpactareusuallymutuallyagreeduponbytheclientandcontractor.LoveandLi(2000)alsofoundthatchangesduringconstructionwereinitiatedbytheenduser;clientbasedchangeaccountedforupto25%ofreworkcosts. Analternativeexplanationastowhatleadstodesignerrorcanbecategorizedasthoseclientrequirementsthathavenotbeenfullyunderstood,especiallywherethereisindirectcommunicationbetweendesignerandenduserofthefacility.Thistypeofcommunicationcancreatemoredifficultyintherelayingofinformationandcreateamisunderstandingfordesignerand,thus,thetasks.

Schedulepressureandunrealisticclientdemandforearliercompletionofprojectshavebeenreportedtobecontributorstotheworkingofincompleteanderroneousprojectcontractdocumentation.Scheduleconstraintsandclientpressureoftenleadtolackofattentionbymanagementresultinginpoorqualityandrequiringreworkthatcanultimatelyaffectprofitabilityandprojectperformance. Thisisespeciallytruewhenalowdesignfeeforaprojectissubmittedandafixeddurationallocatedforeachdesigntask.Thiscouldleadtoinadequatetimetopreparedocumentsandmaybemoreprofoundifinexperienceddesignstaffwithlimitedtechnicalknowledgeisinvolved,asthiscouldamplifytheincompletenessofthesedocuments.

4

Cognitivebehaviorandtimepressuresalsohaveanimpact.Adesigner’sknowledgeisgenerallylimitedtohisorherownactivities,whichcancontributetothatdesigner’sinabilitytodetecterrors.Whensubjectedtotimepressures,peoplewilltendtomaintaintheirroutinebehaviorevenwhentheyhavebeeninformedofanalternativewayofassessingaproblem,whichcanproducenegativeresults. Thesamecanbetrueofrectifyingerrors.Ifconsultantsorcontractorsarecheckingfordesignerrorstheycaninvariablymakethesamemistakes.Wheretheprocessbecomescompoundediswhenmultipledisciplinessuchasarchitectural,mechanicalandstructuralengineeringandgeotechnicalengineeringaresubjectedtodegreeofconcurrency,alsoknownasparallelism.Inthe1999article“LimitsofConcurrency”,G.M.Hoedemakernotesthereisalimittothenumberoftasksthatcanbeundertakeninaconcurrentmannerandtheprobabilityofreworkandcostandscheduleoverrunssignificantlyincreasesandbecomesexacerbatedwhentheteamisundertimelinedemandsduetoscheduleslippages. Lowsalariescanalsoactasde-motivators,whichinturncancontributetoerrorsindesign.Ifafirmsubmitsalowdesignfeeforaproject,itmayputhigherpressureondesignerstomeetschedule. Theoccurrenceofreworkwillinvariably

resultincontractorsreevaluatingtheirprojectschedules,asdelayshavethepotentialtoleadtoLiquidatedDamages. 

AsnotedintheCausalBehaviorofDesign-InducedReworkpublishedbyIEEE(2008)andwrittenbyPeterE.D.Love,therecanbevastchangesintheoriginalscopeduetodesignerrorsandeventhoughprojectsmaybedeliveredontime,significantcostoverrunscanstilloccur.PeterE.D.Love’spaperidentifiesthatthetotalpercentageofcostreworkattributingtocostoverrunswereinexcessof40%.ThisiscomparabletotheresearchcompletedbyLovein2002,whichstatedthatonaveragereworkcontributedto52%oftheprojects’totalcostoverrun.ThiscomparisonisdiscussedinmoredetailinSection6.

Powell(1997)suggeststhatinsularityandarchitecturalfirms’poormanagementpracticesandaversiontomanagement,ingeneral,areotherfactors.Indeed,architecturalfirmshavebeenidentifiedastheprimarysourceofdesign-relatedreworkinprojects. WiththeexceptionofISO9000,qualitycontrolsliketotalqualitymanagement(TQM),qualitycosting,qualityimprovementteamsandqualityfunctiondeploymentwererarely

Job demands& constraints

Workload planning(task scoping)

Schedule pressure(time to design and

document)

Contracting strategy

Clientrequirements

Client-initiatedchanges

Additional resources

Firm profitability

Productivity

Fees

Education, training& experience of

personnel

Unavailability of staff

Design rework

De-motivation

Detected errors

Staff selection

Stress & fatigue

Time-boxing

Design/engineeringdocumentation

Interaction of participants

Interactionof tools

Design interface management

Design verifications,reviews and audits

Design errors

Figure 2.0 Influence Diagram Of Design Error Induced Rework (Peter E. D. Love 2008)

5

5

employed.ArchitectsshouldcommittoandstrivetofollowastructuredTQMprogram;doingsowillhelpeliminateunnecessaryandavoidablerevisions. Undertakingdesignreviewsandselectingstaffwithcommensurateskilllevelandexperiencetomanagethedesignprocessisthefirststagetoensuringpotentialdesignerrorsareminimized.Afirmthatsupportsinter-organizationalcollaborationwiththeuseofBuildingInformationModeling(BIM)/ProjectInformationModeling(PIM)andclashdetectionandonethatexaminesitsworkpractices(suchasthosedevelopedbyCII)willdowellinreducingrework.Whatisdifficulttominimizeorcontrolisifthedesignerisresponsiblefortheerror.Unlessitisasimpleproblem,thedesignfirmmayneedtoregroupthedesignersresponsible.Thesedesignersmayalreadybeworkingondifferentprojects,groupsorteams;inaworstcasescenario,theymayhaveleftthefirm.Inanyevent,theprocessofrecruitingorinductingdesignersmaywellhavetostartalloveragainanddelaytheprojectorforceahastydecision,anycombinationofwhichmaycausenon-conformance.

Section6 TheEffectofReworkonConstructionCostPerformanceTheCIICapitalProgrambenchmarkingandmetricsprogramcollecteddataforapproximately360projectswheredirectreworkcostsweremeasuredasaportionofactualconstructioncosts.CIIdevelopedaformulatocalculateametricknownasTotalFieldReworkFactor(TFRF),whichisexpressedasTotalDirectCostofFieldReworkovertheTotalConstructionPhaseCostasaleadingindicatorusedforthisgroupdataanalysis.The datasamplesweresplitintotwogroups,oneforOwnersandoneforContractors,withtheresultsbeinganalyzedseparatelyforeachgroup.

Formula for Total Field Rework Factor:

TFRF=

Totaldirectcostoffieldrework Totalconstructionphasecost

Twostatisticalhypotheseswereestablishedforthisstudy:(1)thesignificantdifferencesintheimpactsofreworkonconstructioncostperformanceforvariousprojectgroups,whichareidentifiedthroughoutthissectionand(2)thestatisticallysignificantdifferenceinrankorderofreworksources.Forhypothesis(1),arank-ordercorrelationwastestedusingaone-wayANOVA,whichisacommonlyusedmethodtocalculatethedifferenceinmeansbetweentwogroups;thistesthasaconfidencelevelof95%.Forhypothesis(2),therankofscores(notthescoresthemselves)wererankorderedusingtheSpearmancorrelationtest,whichconcentratesondifferencesinrankorderofdataratherthantheirmeandifferences. Sourcesofreworkthatwereclassifiedinthestudyareasfollows: • OwnerChange(OC)

• ConstructorError(CE)

• DesignError/Omission(DE)

• DesignChange(DC)

• VendorError/Omission(VE)

• VendorChange(VC)

• ConstructorChange(CC)

• TransportationError(TE)

• Other(OS)

6

TheTFRFformulacanbeusedwitheachoftheninesourcesofreworktoidentifythehighestimpactoncostperformance.CII’sresearchteamalsodevelopedafieldreworkquestion-naireindextohelpidentifytheneedforreworkearlyoninprojects,whichservesasaperformanceindicatorwiththeobjectiveofreducingreworkandensuringtheintendedpurposecouldbecompletedbeforethestartofconstruction.

CII’squestionnaireFieldReworkIndex(FRI)andreworkchartarefoundinTable2.0andFig.3.0.Allanswerswitharatingof1receive1point;allratingswitharatingof2receive2points,andsoonthroughtoamaximumof5points.Thescoreforeachquestionisthenaddedtogethertogiveatotalscore;thosewithascorebetween14and70aregroupedaccordingtotheFRIscorecategorizingchart.Thosescoringhigherthan45areclassifiedasbeingwithinaReworkAlertstage.

Fig 3.0 FRI Score Chart

Table 1.0 Rework Questionnaire Index

Questionnaire Answer (option) Score Answer (option) Selected Score

1 Degreeofalignmentbetweenvariouselementsoftheownersorganization(departments,divisions)

Couldnotbebetter

1 2 3 4 5 Couldbeworse

2 Degreetowhichprojectexecutionplanningwasutilized Completely 1 2 3 4 5 Notatall

3 Designfirm’squalificationsforthespecificproject Couldnotbebetter

1 2 3 4 5 Couldnotbeworse

4 Degreetowhichleadersofkeydesigndisciplineshavechanged

Nochangeatall 1 2 3 4 5 Continualchange

5 Qualityoffieldverificationofexistingconditionsbyengineering

Couldnotbebetter

1 2 3 4 5 Couldnotbeworse

6 Qualityofinterdisciplinarydesigncoordination Couldnotbebetter

1 2 3 4 5 Couldnotbeworse

7 Qualityofprequalificationofvendorsfortheproject Couldnotbebetter

1 2 3 4 5 Couldnotbeworse

8 Availabilityofvendorinformationforequipment Couldnotbemoreavailable

1 2 3 4 5 Couldnotbelessavailable

9 Degreetowhichdesignscheduleiscompressed Notcompressedat all

1 2 3 4 5 Couldnotbemorecompressed

10 Levelofovertimeworkedbytheengineeringfirm None 1 2 3 4 5 Veryhighlevel

11 Levelofdesignrework(repeatingdesignwork) Couldnotbelower

1 2 3 4 5 Couldnotbehigher

12 Commitmenttoconstructabilityofthedesignandconstructionteam

Total Commitment

1 2 3 4 5 Totallackofcommitment

13 Expectedavailabilityofskilledcraftworkerstotheproject

Readilyavailable 1 2 3 4 5 Veryscarce

14 Expectedlevelofconstructioncontractorovertime None 1 2 3 4 5 Veryhighlevel

14

30 45

70

Approaching Success

NormalVigilance

ReworkAlert

7

OWNER-REPORTEDPROJECTSTheowner-reportedprojectresultsrevealedthatthemeanTFRFforlight industrialwasthehighest andthatheavyindustrialwaslowest.Thereforethecostofimpactofreworkinlightindustrialprojectsissignificantlygreaterthan that of buildingsorheavy industrialsources. Reworkinmodernizationprojectscontributedtotheincreaseofactualconstructionphasecosts,almosttwiceasmuchasadd-onprojects. 

TheresultsbasedonProjectSizefoundthatthemeanTFRFforprojectsbetween$50Mand$100Mwerethehighest,butasHwangetal(2009)pointsout,thisisbasedonasmallsample,andhaslessstatisticalsignificance. ThelowestmeanTFRFwasrecordedforprojectsoflessthan$15M,butagainthesefindingslackrealsignificancebasedontheirsamplesize.Projectscostinggreaterthan$100MidentifiedthatDesignErrorcontributedthemost.ProjectlocationdidnotrevealanysignificanttrendsinmeanTFRFdifferencestoconstituterealreworkimpacts.

MeanTFRFvaluesperindustrygrouppersourceofreworkwerealsodescribed.TheresultssuggestthatDesignError(DE)andOwnerChange(OC)inbuildingswerehigherthanthoseofanyothersourcesinthatgroup.FromthissampleofanalysiswecanpredictthatDEandOCcontributemoretoconstructionphasecoststhananyothersourceforbuildings.Inthecaseforheavy industrialthemeanTFRFforDEwashigherthananyothersourcebylargemargin.

Forlightindustrial,DEandOCwererankedquitecloselyasthemostcommonsourceofrework.

Overall, for each category, Design Error was the highest in all Industry groups except Infrastructure and Modernization. The Hwang et al study suggests that $0.018M per $1M actual construction costs contributed to Design Error.  

InallgroupscategorizedbyProjectNature,themeanTFRFforDEandOCwerehigherthanthoseforothersourcesincludingDesignChange,VendorChangeandTransportationError. 

CONTRACTORREPORTEDPROJECTSDesignerrorhadthegreatestimpactonheavyindustrialprojects,butthetruecauseofimpacttoreworkoninfrastructureprojectswasnotclearlydefined(sourcewascategorizedasOther).InallgroupscategorizedbyProjectNature,categoryDEandOCwererankedfirstandsecondhighestbycostimpact.Infact,DE,OCandDCforadd-on,grassrootsandmodernizationprojectsweresignificantlydifferenttothoseofCC,VCandTE.

Table 2.0 Largest Sources of Rework for Owners and Contractors (Bon-Gang Hwang et al, March 2009)

Project CharacteristicsOwner Contractor

First Second Third First Second Third

IndustryGroup Buildings DE OC OS CE CE VE

HeavyIndustrial DE OS OC DE OC VE

Infrastructure OC CE DE OS DC DE

LightIndustrial DE OC OS DC OC DE

ProjectNature Add-on DE OC OS DE OC DC

GrassRoots DE OC CC DE OC DC

Modernization OC DE OS DE OC DC

ProjectSize <USD15Million OC DE OS DE OC DC

USD15-50Million DE OC OS DE VE OC

USD50-100Million OC DE OS OC DE CE

>USD100Million DE CE VE DE VE OC

ProjectLocation Domestic DE OC OS DE OC DC

International DE OC CE DC DE OS

WorkType* ConstructOnly -- -- -- DE DC OC

DesignandConstruct -- -- -- DE OC VE

KEY:OC=ownerchange;DE=designerror/omission;DC=designchange;VE=vendorerror/omission;VC=vendorchange; CE=constructorerror/omission;CC=constructorchange;TE=transportationerror;OS=other*Contractor-reportedprojectsonly

8

IntermsofrankingbyProjectSize,DEhadthehighestmeanTFRFandallrankingcorrelationsweresignificant,exceptwhereprojectcostswerebetween$50Mand$100M,andinthiscaseDEandOCsharedthesameTFRF.Table2.0(onpreviouspage)summarizesthelargestsourcesofreworkforbothownerandcontractors.

Section7 ReworkCostsinBuildingConstruction. 

AccordingtoPeterE.D.Love(2002)costgrowthfor161AustralianconstructionprojectssurveyedfoundthatReworkasaPercentageoftheTotalCostGrowthcouldbeupto52%,andfactorssuchasweather,client/end-userchangeorderscontributedtotheremaining48%. Asurprisingfindingoftheprojectdatarevealedthat27%ofprojectsweredeliveredontimedespiteexperiencingcostincreasesduetorework. Asstatedinsection4above,projectscanbeacceleratedandresourcesallocatedtocompensateforanydelays,whichwillinevatablyincreaseprojectcosts.

Key Predictors:• Changesmadeattherequestoftheclientoroccupierwhenaproductorprocesshasbeencompleted

• Valuemanagementanditsusetoreducerework• Ineffectiveuseofinformationtechnology• Designscopefreezing

Whilelookingintoreworkcostsandprocurementmethods,therewerenosignificantdifferencesbetweentheProcurementMethodcategoryfordirectandindirectreworkcosts.Inthissurveyitwasalsonotedthattherewasnosignificantdifferencebetweenthetotalcostofrework

usingdifferentprocurementmethodsandtheresultoftheone-wayANOVAtest.Refurbishmentandrenovationprojectsareconsideredhigherreworkcoststhanthosefornewbuildingprojects.Usingtheone-wayANOVAtesttherewerenosignificantdifferencesbetweenProjectTypeanddirectandindirectreworkcosts.Table3.0belowlooksattheProjectTypevs.directandindirectcosts;themeanvalueforeachdoesnotdrawsignificantdifferencesbyprojecttype.Itisthoughtthatthehighertheuncertaintyandcomplexityofworkthehigherthereworkcost,butagainthisisnotnecessarilysupportedbytheresultsofthissurvey. Thisis,however,backedupbyseveralreportsandfindingsofrootcausesofrework.

Lastly,theallocationofresourcesandplanningduringthedocumentationprocessareimportantpointsthatneedtoberaisedifreworkistobereduced.NoteworthyisthatdesignconsultantsreworkestimatesarealmosttwiceasmuchasPM’s,whereascontractorshaveabetterunderstandingofactualreworkcosts,becausetheyareintegratedwithintheconsultants’designandconstructionactivities,especiallywheredesign-buildprojectsareconcerned.

Table 3.0 Direct And Indirect Rework Costs Per Project Type, (Peter E.D. Love 2002)

Direct Rework Costs Indirect Rework Costs

Project Type N Mean Standard Deviation

Standard Error Minimum Maximum Mean Standard

DeviationStandard

Error Minimum Maximum

Newbuild 90 6.10 7.18 0.75 0.10 35.00 5.69 7.70 0.81 0.00 50.00

Refurbishment/Renovation

43 7.29 9.73 1.48 0.50 50.00 5.60 6.43 0.98 0.00 30.00

Fit-out 14 7.78 7.70 2.06 1.00 30.00 6.10 7.90 2.11 0.00 30.00

Newbuild/refurbish 11 4.95 4.67 1.41 0.50 15.00 5.81 5.92 1.78 0.00 20.00

Combinationofall 3 3.33 1.52 0.88 2.00 5.00 0.66 0.57 0.33 0.00 1.00

TOTAL 161 6.44 7.78 0.61 0.10 50.00 5.62 7.18 0.56 0.00 50.00

9

Section8 ReworkCostsinCivilInfrastructureProjectsPeterE.D.Loveetal(2010)notedthatfrom115civilinfrastructureprojectssurveyed,meanreworkcostswerelowerthanthepreviouslyreportedmeanreworkcostsforbuildingconstructionprojects.Theresultsthatinfluencedirectreworkcostsoncostgrowthforcivilinfrastructureprojectswerealsoconsiderablylessthaninbuildingconstruction:12%comparedto26%respectively,morethanhalfofwhatwasreportedinbuildingconstruction.

Key Predictors:• Ineffectiveuseofinformationtechnologies• Workingproceduresandcommunicationslinesnotclearlydefined

• Excessiveclientinvolvementintheproject• Changesmadeattherequestoftheclient• Insufficientchangesinitiatedbytheclientcontractortoimprovequality

Again,whilelookingintoreworkcostsandprocurementmethods,itcanbeconcludedthattherewerenosignificantvariancesamongprocurementmethodcategoriesfordirectandindirectreworkcosts,norwerethereanysignificantdifferencesrevealedfortheprojecttype(railwayinfrastructurewasnotincludedamongtheprojecttypessampled).

Itwasnotedalsothatthereisadifferenceofunderlyingpredictorsofreworkbetweenbuildingconstructionandinfrastructureprojects,thoughinefficientuseofinformationtechnologiesbydesignteammembersiscommontoboth.AsnotedbyLove(2009)whenprojectsaresubjecttotightdesignschedules,designteammembersoftenreusestandarddetailsandspecificationstominimizetheirtaskloading.Togetherwithinteroperabilityissuesandinformationtechnologyapplications,thiscanleadtotentativedesigninformation. 

Section9 ConclusionForowner-reportedprojects,heavyindustrialworkhadthelowestreportedTFRF.Conversely,heavyindustrialprojectswerethemostaffectedamongcontractors.CircumstanceswheretheTFRFresultsdidmatchbetweenownerandcontractorwereduetotheeffectofreworkcostincreasesformodernizationandprojectsforwhichthecostrangewasbetween$50Mand$100M.Surprisingly,thetrendshowedthatreworkdidnotgreatlyinfluencecostincreaseswhereprojectvaluesaregreaterthan$100M,althoughthesamplesizewasnotsignificant.Therearetwomainassumptionsthatmaysuggestwhyreworkisnotsodisruptivewithprojectvaluesgreaterthan$100M.Theseareeitherduetothesuccessfulexecutionofbestpractices,suchasCIIPerformanceImprovementandAssesment,andtheuseofBIM,oritcouldmeanthattheseprojectsmaybelesssensitivefromacoststandpointandperhapsthevaliditymaybeinquestion.

ThereisnotenoughthoroughreworkresearchdatatosuggestthatBIMdiminishespotentialrework,buttheprocessofpreparingtheBIMworkflowandmodelinginacollaborativeeffortdoesdecreaseopportunitiesforrework.

Whatisclearfromstudiesisthatthecostofreworkforownersistwiceashighasforcontractors,althoughtheownerisgenerallyincontrolofthewholeprojectasopposedtoasectionoftheprojectgiventoacontractor.Consequentlytheownerbearsasignificantlylargerproportionoffinancialresponsibility.Themostsusceptibleprojectsaffectedbyreworkarelightindustrial,heavyindustrial,railwayprojectsandmodernizationprojectsandprojectsforwhichcostrangeisbetween$50Mand$100M.Seefigure4.0whichsummarizesthesemostsensitiveprojecttypes.

Forowners,OCandDEweremostfrequentlyrankedamongstallcategories.CEwasalsofoundonownerscategoriessuchasprojectscostingmorethan$100Mandinfrastructureprojects.Forcontractors,OC,DE,DCandVEweremostfrequentlyrankedasthemostprevalentsourcesofrework.DCwasoneofthehighercostofreworkcategoriesforthecontractorbutwaslesssoforowners.CEwashighlyrankedontheownerssidebutlesssoforcontractorsreworkimpactdata.Thereisanongoingtrendforcontractorstoassignreworktodesignerrorandomission;theownersattributethecostofreworktoconstructorerrorandomission.

Fig 4.0 A Summary Of Rework Costs (Bon-Gang Hwang)

10

Itcanbesaidthatalthoughthecostimpactofreworkisdifferentamonggroups,thegreatestcostimpactsourcesingroupswerehighlycorrelated,forexampleDEandOC arethetwomostfrequentlyrankedsourcesbycostimpactandcanbeconsideredtobethemostimportantrootcauseforbothcontractorandowner.ItcanalsobenotedthatCEforownerreportedprojectsandDCforcontractorreportedprojectsarealsogreatcontributorstorework.IneffectiveuseofITbydesignteammemberswastheprimaryfactorcontributingtoDE. Toreducerework,firmsshouldimplementqualityoperationssuchaspre-projectplanning,benchmarkingprocesses,projectchangemanagementandconstructabilityanddesigneffectiveness.Furthermore,firmsshouldimprovemanagementofdesignanddocumentationprocessesandcommunicationamongowner,designersandconstructorstocreateaguidingcoalition,andasharedobjectiveandmutualtrust.Overallchangerequiresleadershipandmanagement;thelargerthechangethemoreleadershipisrequired.ProjectManagersshouldanalyze,thinkaheadandchangebytakingtheleadtodevelopandimplementsystemsfortrackingandcontrollingconstructorerrorandomissionforowners,designchangeforcontractors,ownerchange,anddesignerrorforbothcontractorsandownerstotrytoreducereworkbythesesources.TheunderlyingmessageistoremovecomplacencyandaddresspastfailuresandlearnfromthembyimplementingCIIbestpractices,whileimprovinglearningcapabilitiesandstimulatingorganizationallearning.

14%

12%

10%

8%

6%

4%

2%

0%

All types 1

Commercial

Industrial 2

Residential 3

Highway 4

Heavy Eng./

Industrial 5

Railway 6

1 CII (2005)

2 Josephson and Hammarlund (1999)

3 Love and Li (2000)

4 Abdul-Rahman (1995)

5 Burati et al. (1992)

6 Nylen (1996)

5%2-6%

3.15%

5%

12.4%

10%

Cos

t of

rew

ork

(% o

f tot

al p

roje

ct c

ost)

11

ReferencesAbdul-Rahman,H,The Cost of Non-Conformance During a Highway Project(1995)BuratiJ.L.Causes of Quality Deviations in Design and Construction(1992)ConstructionIndustryInstitute(CII)CausesandEffectsofFieldreworkresearchteam,TheUniversityofTexasatAustin(2004&2005)Nylen,K.O.Cost of Failure in a Major Civil Engineering Project (1995)Fayek,A.R.etel.Measuring and Classifying Construction Field Rework: A Pilot Study(2003)Hoedemaker,G.M.Limits to Concurrency(1999)Hwang,Bon-Gang,etel.Measuring the Impact of Rework on Construction Cost Performance(2009)Love,P.E.D.Forensic Project Management: An Exploratory Examination of the Causal Behavior of Design-Induced Rework(2008)Love,P.E.D.Influence of Project Type and Procurement Method on Rework Costs in Building Construction Projects (2002)Love,P.E.D.Determining the Causal Structure of Rework Influences in Construction(2010)Love,P.E.D.&HengLi,Quantifying the Causes and Cost of Rework in Construction,ConstructionManagementandEconomics(2000)NavigantConstructionForum.The Impact of Rework on Construction & Some Practical Remedies(2012)Powell,Christopher.Responding to Marginalisation,ArchitecturalResearchQuarterly,Volume2,issue3(1997)

AbouttheAuthorRobin McDonaldRisk Engineering ConsultantRobinMcDonaldistheLeadRiskEngineeringConsultantforXLCatlin’sConstructionProfessionalLiabilitypractice.PreviouslyheservedasaConstructionManagerwithParsonsCorporation,leadingRiskandCostManagementfortheWTCRedevelopmentProgram.

Withabroadrangeofengineeringconsultingexperiencespanningfourcountriesandsixteenyears,Robinhashadexposuretobusinessdevelopment,design,pre-constructionanalysisandprojectmanagementon“Mega”BuildingandInfrastructureProjects.Hisbackgroundinconstructionandengineeringisdiverse,derivedfromyearsofexperiencewithreputablefirmswhichbeganintheUKandcontinuedoverseas;includingChannelTunnelRailLink(UK),theNewJerseyNetsSportsArena(NY), 12-MonthmanagementofamultidisciplinedSiteSatelliteOfficeinWestIndies,Jamaica,HaitiandrecentlywiththeWorldTradeCenterRedevelopmentProgram(NYC).RobinalsohasEarthquakeRapidResponseexperienceinsearchandrecovery,whichincludesmanagementofoperationalsupport,forensicdemolitionandsiteoversight,andqualitycontrol.

RobinisaCertifiedConstructionManager(CCM)andMemberoftheConstructionManagementAssociationofAmerica(CMAA)andisaLEEDAccreditedProfessional.HeisarecentgraduateoftheCleantechExecutiveProgramatNYU-Poly,whichisaffiliatedwiththeNewYorkCityCleanandRenewableEconomy(NYCACRE)programthatfocusesonenvironmentalsustainabilityandsmarttechnologygrowth. HereceivedaB.Eng(Hons)inCivil,StructuralandEnvironmentalEngineeringfromUniversityCollegeLondon(UCL)intheUKandalsoholdsaPostGraduateAdvancedEngineeringManagementDegreeatBathandBristolUniversity(UK).

................................MAKE YOUR WORLD GO xlcatlin.com

Contact:

Robin McDonald

Tel:2129156834Mobile:[email protected]

200LibertyStreet,21stFloor,NewYork,NY10281

The information contained herein is intended for informational purposes only. Insurance coverage in any particular case will depend upon the type of policy in effect, the terms, conditions and exclusions in any such policy, and the facts of each unique situation. No representation is made that any specific insurance coverage would apply in the circumstances outlined herein. Please refer to the individual policy forms for specific coverage details. XL Catlin is the global brand used by XL Group plc’s insurance subsidiaries. In the US, the insurance companies of XL Group plc are: Catlin Indemnity Company, Catlin Insurance Company, Inc.,  Catlin Specialty Insurance Company,  Greenwich Insurance Company, Indian Harbor Insurance Company, XL Insurance America, Inc., XL Insurance Company of New York, Inc., and XL Specialty Insurance Company. Not all of the insurers do business in all juridiscictions, nor is coverage available in all jurisdictions. Information accurate as of July, 2015.

5286

_07/

2015