rocky mountain g & e resources conference

Upload: alok-rawat

Post on 02-Apr-2018

212 views

Category:

Documents


0 download

TRANSCRIPT

  • 7/27/2019 Rocky Mountain G & E Resources Conference

    1/23

    Unconventional Gas Resources to Reserves A Predictive Approach

    Unconventional Gas Resources to Reserves A Predictive Approach

    Presented By:Scott Reeves

    ADVANCED RESOURCES INTERNATIONAL, INC.Houston, TX

    Rocky Mountain Geology & Energy Resources ConferenceJuly 9 - 11, 2008Denver, CO

  • 7/27/2019 Rocky Mountain G & E Resources Conference

    2/23

    2

    COGA_AAPG SP070908

    AbstractEstimating potential hydrocarbon recoveries from greenfield (butresource-rich) unconventional gas plays is a challenge. While analogsare routinely employed for this purpose, there is no shortage of examples of how frontier tight sand, coalbed methane and organic shaleplays have required new operating practices that can run contrary tohistorical (analog) experience. An analytic approach is presented toaccount for whatever limited geologic and reservoir information might beavailable for a new resource play, and based upon sound engineeringprinciples, make predictions of potential gas recoveries, their variability,and identify areas of uncertainty. The methodology involves selectingthe potential ranges (and distributions where appropriate) of reservoirparameters across a particular acreage position, such as depth andpressure, formation thickness, porosity, fluid saturations, permeability,relative permeability, etc. Where no data exists, analogs and experiencemust still be employed. Single-well probabilistic reservoir simulationforecasting is then performed using Monte Carlo methods to establish adistribution of potential well recoveries, which are in turn used for fielddevelopment planning and economic analysis. Factors having thegreatest impact on well recoveries and economics can be identified viastatistical analysis of the results, thus focusing field data collectionefforts on issues with the greatest potential for uncertainty reduction.

  • 7/27/2019 Rocky Mountain G & E Resources Conference

    3/23

    3

    COGA_AAPG SP070908

    Resources-to-Reserves: The Short,Practical Answer

    The only way to convert resources to reserves is

    to drill and produce commercial wells.

    - Anonymous

  • 7/27/2019 Rocky Mountain G & E Resources Conference

    4/23

  • 7/27/2019 Rocky Mountain G & E Resources Conference

    5/23

    5

    COGA_AAPG SP070908

    CBM Reserves Assignment Methodology

    Source: SPEE (Calgary Chapter), Canadian Oil & Gas Evaluation Handbook, Volume 3:Detailed Guidelines fo r Estimation and Classifi cation of CBM Reserves and Resources,

    First Edition, June 10, 2007.

    Proved

    Probable

    Possible

    Contingent

    Prospective

    Key

    Commercially ProducingWell (Different scheme if adata well)

    Drilling SpacingUnit (DSU)

    X

    9 proved16 probable24 possible

    120 contingent

    1 well =

  • 7/27/2019 Rocky Mountain G & E Resources Conference

    6/23

    6

    COGA_AAPG SP070908

    Example Application

    0255075

    100125150175200225250275300325

    350375400425450475500525550575600625

    0 10 20 30 40 50 60 70 80

    Number of Commercially Producing Wells

    #

    D S U ' s

    1P

    2P3PContingentProspective

    Assumptions100,000 acres160 acre DSU625 DSU total

  • 7/27/2019 Rocky Mountain G & E Resources Conference

    7/23

    7

    COGA_AAPG SP070908

    Objective of Presentation

    How does an operator assess likelyreserves

    and commerciality in the early stages of playdevelopment? At the point in time when a resource

    assessment has been performed, and (limited)well/production data available.

    i.e., The production forecasting challenge.

  • 7/27/2019 Rocky Mountain G & E Resources Conference

    8/23

    8

    COGA_AAPG SP070908

    A Few Premises

    Unconventional gas plays are statistical many

    wells drilled with a manufacturing mentalityyielding a distribution of outcomes. Why? - presumably reservoir heterogeneity.

    Bestdrilling, completion, stimulation &production practices evolve over time. i.e., early production results are likely understated.

  • 7/27/2019 Rocky Mountain G & E Resources Conference

    9/23

    9

    COGA_AAPG SP070908

    The Statistical Nature of UnconventionalGas A Coalbed Methane Example

    By Basin By Field in a Basin

    By Well in a Field

    Source: SPE 98069; Challengingthe Traditional Coalbed MethaneExploration and Evaluation Model ,Weida, S. D., Lambert, S. W., and

    Boyer II, C. M., 2005.

  • 7/27/2019 Rocky Mountain G & E Resources Conference

    10/23

  • 7/27/2019 Rocky Mountain G & E Resources Conference

    11/23

    11

    COGA_AAPG SP070908

    The Production Forecasting Approach Unconventional gas reservoir simulation

    to account for complex reservoir behavior

    Monte-Carlo simulation to account for statistical variability of reservoir

    properties

    Plus... experience analogy skepticism

    etc.

  • 7/27/2019 Rocky Mountain G & E Resources Conference

    12/23

    12

    COGA_AAPG SP070908

    Modeling Permeability Variability UsingGeostatistics

    Sill

    0.00

    0.25

    0.50

    0.75

    1.00

    0 200 400 600 800 1000 1200 1400 1600 18000.00

    0.25

    0.50

    0.75

    1.00

    0 200 400 600 800 1000 1200 1400 1600 1800

    NuggetEffect Range

    V a r i a n c e

    Y axis(North)

    Range = 1,200 m

    Minor range = 600 m

    Anisotropy Coefficient = 1/2Major Direction of ContinuityRotated Y axis (N60E)

    X axis(East)

    Azimuth = 60

    Minor Direction of Continuity

    Rotated X axis (E60S)

    (h) =1.5 h1,200 - 0.5

    h1,200

    3

    , if h 1,200

    1 , otherwise(h) =

    1.5 h1,2001.5h

    1,200h

    1,200 - 0.5h

    1,200

    3

    - 0.5 h1,200

    3h

    1,200h

    1,200

    3

    , if h 1,200

    1 , otherwise

    Spherical Variogram Model

    Sill

    0.00

    0.25

    0.50

    0.75

    1.00

    0 200 400 600 800 1000 1200 1400 1600 18000.00

    0.25

    0.50

    0.75

    1.00

    0 200 400 600 800 1000 1200 1400 1600 1800

    Nugge tEffect Range

    V a r i a n c e

    Sill

    0.00

    0.25

    0.50

    0.75

    1.00

    0 200 400 600 800 1000 1200 1400 1600 18000.00

    0.25

    0.50

    0.75

    1.00

    0 200 400 600 800 1000 1200 1400 1600 18000.00

    0.25

    0.50

    0.75

    1.00

    0 200 400 600 800 1000 1200 1400 1600 18000.00

    0.25

    0.50

    0.75

    1.00

    0 200 400 600 800 1000 1200 1400 1600 1800

    NuggetEffect Rang eRang e

    V a r i a n c e

    Y axis(North)

    Range = 1,200 m

    Minor range = 600 m

    Anisotropy Coefficient = 1/2Major Direction of ContinuityRotated Y axis (N60E)

    X axis(East)

    Azimuth = 60

    Minor Direction of Continuity

    Rotated X axis (E60S)

    (h) =1.5 h1,200 - 0.5

    h1,200

    3

    , if h 1,200

    1 , otherwise(h) =

    1.5 h1,2001.5h

    1,200h

    1,200 - 0.5h

    1,200

    3

    - 0.5 h1,200

    3h

    1,200h

    1,200

    3

    , if h 1,200

    1 , otherwise

    Spherical Variogram Model

    (h) =1.5 h1,200 - 0.5

    h1,200

    3

    , if h 1,200

    1 , otherwise(h) =

    1.5 h1,2001.5h

    1,200h

    1,200 - 0.5h

    1,200

    3

    - 0.5 h1,200

    3h

    1,200h

    1,200

    3

    , if h 1,200

    1 , otherwise

    Spherical Variogram Model

  • 7/27/2019 Rocky Mountain G & E Resources Conference

    13/23

    13

    COGA_AAPG SP070908

    Permeability Porosity Relationships

    3

    00

    k

    k

    =

    3 kA =

    kA 3 +=

    is an added random error!

    3

    00

    k

    k

    =

    3 kA =

    3

    00

    k

    k

    =

    3 kA =

    kA 3 += kA 3 +=

    is an added random error!

    0

    0.05

    0.1

    0.15

    0.2

    0.25

    0.00 1.00 2.00 3.00 4.00 5.00 6.00 7.00 8.00 9.00

    Permeability

    P o r o s i

    t y

  • 7/27/2019 Rocky Mountain G & E Resources Conference

    14/23

    14

    COGA_AAPG SP070908

    The Importance of Accounting forPermeability/Porosity Heterogeniety

    0

    200000

    400000

    600000

    800000

    1000000

    1200000

    0 2.5 5 7.5 10 12.5 15 17.5 20 22.5 25 27.5

    Av erage Permeability

    C u m . T

    o t a l G a s

    Permeability heterogeneously distributed

    Permeabilit y homo geneously distributed

    0

    200000

    400000

    600000

    800000

    1000000

    1200000

    0 2.5 5 7.5 10 12.5 15 17.5 20 22.5 25 27.5

    Av erage Permeability

    C u m . T

    o t a l G a s

    Permeability heterogeneously distributed

    Permeabilit y homo geneously distributed

    0

    100000

    200000

    300000

    400000

    500000

    600000

    700000

    800000

    900000

    1000000

    0.000 0. 001 0. 002 0. 003 0. 004 0. 005 0. 006 0. 007 0. 008 0. 009 0. 010 0.011 0. 012 0. 013 0. 014

    Fracture Porosity

    C u m u

    l a t i v e

    T o

    t a l G a s

    ( M s c

    f )

    Porosity heterogeneously distributed

    Porosity homogeneously distributed

    0

    100000

    200000

    300000

    400000

    500000

    600000

    700000

    800000

    900000

    1000000

    0.000 0. 001 0. 002 0. 003 0. 004 0. 005 0. 006 0. 007 0. 008 0. 009 0. 010 0.011 0. 012 0. 013 0. 014

    Fracture Porosity

    C u m u

    l a t i v e

    T o

    t a l G a s

    ( M s c

    f )

    0

    100000

    200000

    300000

    400000

    500000

    600000

    700000

    800000

    900000

    1000000

    0.000 0. 001 0. 002 0. 003 0. 004 0. 005 0. 006 0. 007 0. 008 0. 009 0. 010 0.011 0. 012 0. 013 0. 014

    Fracture Porosity

    C u m u

    l a t i v e

    T o

    t a l G a s

    ( M s c

    f )

    Porosity heterogeneously distributed

    Porosity homogeneously distributed

    0

    100000

    200000

    300000

    400000

    500000

    600000

    700000

    800000

    900000

    1000000

    0.000 0. 001 0. 002 0. 003 0. 004 0. 005 0. 006 0. 007 0. 008 0. 009 0. 010 0.011 0. 012 0. 013 0. 014

    Fracture Porosity

    C u m u

    l a t i v e

    T o

    t a l G a s

    ( M s c

    f )

    Porosity heterogeneously distributed

    Porosity homogeneously distributed

    0

    100000

    200000

    300000

    400000

    500000

    600000

    700000

    800000

    900000

    1000000

    0.000 0. 001 0. 002 0. 003 0. 004 0. 005 0. 006 0. 007 0. 008 0. 009 0. 010 0.011 0. 012 0. 013 0. 014

    Fracture Porosity

    C u m u

    l a t i v e

    T o

    t a l G a s

    ( M s c

    f )

    0

    100000

    200000

    300000

    400000

    500000

    600000

    700000

    800000

    900000

    1000000

    0.000 0. 001 0. 002 0. 003 0. 004 0. 005 0. 006 0. 007 0. 008 0. 009 0. 010 0.011 0. 012 0. 013 0. 014

    Fracture Porosity

    C u m u

    l a t i v e

    T o

    t a l G a s

    ( M s c

    f )

    Porosity heterogeneously distributed

    Porosity homogeneously distributed

    Lognormal Distribution

    0.000

    0.005

    0.010

    0.015

    0.020

    0.025

    0.030

    0 100 200 300 400 500

    Permeability (mD)

    F r e q u e n c y

    Mean = 100 mD

    Lognormal Distribution

    0.000

    0.005

    0.010

    0.015

    0.020

    0.025

    0.030

    0 100 200 300 400 500

    Permeability (mD)

    F r e q u e n c y

    Mean = 100 mD

    Normal Distribution

    0

    5

    10

    15

    20

    25

    0 0.01 0.02 0.03 0.04 0.05 0.06 0.07 0.08 0.09 0.1 0.11 0.12Porosity

    F r e q u e n c y

    Mean = 0.05Truncated!

    Normal Distribution

    0

    5

    10

    15

    20

    25

    0 0.01 0.02 0.03 0.04 0.05 0.06 0.07 0.08 0.09 0.1 0.11 0.12Porosity

    F r e q u e n c y

    Mean = 0.05

    Normal Distribution

    0

    5

    10

    15

    20

    25

    0 0.01 0.02 0.03 0.04 0.05 0.06 0.07 0.08 0.09 0.1 0.11 0.12Porosity

    F r e q u e n c y

    Mean = 0.05Truncated!

  • 7/27/2019 Rocky Mountain G & E Resources Conference

    15/23

    15

    COGA_AAPG SP070908

    Relative Permeabilitym

    rw Sgr Swr

    Swr SwK Krw

    =1max

    n

    rgSgr Swr

    Sgr SwK Krg

    =

    11

    max

    0.5 0.6 0.8 0.9 1.0

    CoreyCstKrg

    1.5 2.3 3.0 3.8 4.5

    CoreyExpKrg

    0

    0.1

    0.2

    0.3

    0.4

    0.5

    0.6

    0.7

    0.8

    0.9

    1

    0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

    Sw

    K r

    Krw Krg

    Swr=0.1 Sgr=0.2

    Krwmax=0.9

    Krgmax=0.7

    m=4.5

    n=1.5

    Uniform(0.2, 0.5)

    0.0

    0.5

    1.0

    1.5

    2.0

    2.5

    3.0

    3.5

    0 . 1

    5

    0 . 2

    0

    0 . 2

    5

    0 . 3

    0

    0 . 3

    5

    0 . 4

    0

    0 . 4

    5

    0 . 5

    0

    0 . 5

    5

    90.0%0.2150 0.4850

    m

    rw Sgr Swr

    Swr SwK Krw

    =1max

    n

    rgSgr Swr

    Sgr SwK Krg

    =

    11

    max

    0.5 0.6 0.8 0.9 1.0

    CoreyCstKrg

    1.5 2.3 3.0 3.8 4.5

    CoreyExpKrg

    0

    0.1

    0.2

    0.3

    0.4

    0.5

    0.6

    0.7

    0.8

    0.9

    1

    0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

    Sw

    K r

    Krw Krg

    Swr=0.1 Sgr=0.2

    Krwmax=0.9

    Krgmax=0.7

    m=4.5

    n=1.5

    0

    0.1

    0.2

    0.3

    0.4

    0.5

    0.6

    0.7

    0.8

    0.9

    1

    0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

    Sw

    K r

    Krw Krg

    Swr=0.1 Sgr=0.2

    Krwmax=0.9

    Krgmax=0.7

    m=4.5

    n=1.5

    Uniform(0.2, 0.5)

    0.0

    0.5

    1.0

    1.5

    2.0

    2.5

    3.0

    3.5

    0 . 1

    5

    0 . 2

    0

    0 . 2

    5

    0 . 3

    0

    0 . 3

    5

    0 . 4

    0

    0 . 4

    5

    0 . 5

    0

    0 . 5

    5

    90.0%0.2150 0.4850

  • 7/27/2019 Rocky Mountain G & E Resources Conference

    16/23

    16

    COGA_AAPG SP070908

    Building the Model

    X-Dir. Perm. in Fract., md7.7082 1133.3800570.5441289.1262 851.9620

    Well 1

    X-Dir. Perm. in Fract., md7.7082 1133.3800570.5441289.1262 851.9620

    X-Dir. Perm. in Fract., md7.7082 1133.3800570.5441289.1262 851.9620

    Well 1

    Single well Mutiple layer (can use clustering methods to

    establish layering scheme) Probablistic di stributions of reservoir properties

  • 7/27/2019 Rocky Mountain G & E Resources Conference

    17/23

    17

    COGA_AAPG SP070908

    Establishing Layering Scheme UsingClustering

    MABROUK 4H1

    15250 ft

    15375 ft

    15500 ft

    15625 ft

    GR (Raw)(GAPI)0 200

    DENS (Raw)

    (G/C3)1.9 2.8

    MABROUK-4H1

    MABROUK 4H1

    15250 ft

    15375 ft

    15500 ft

    15625 ft

    GR (Raw)(GAPI)0 200

    DENS (Raw)

    (G/C3)1.9 2.8

    MABROUK-4H1

    MABROUK 4H1

    15250 ft

    15375 ft

    15500 ft

    15625 ft

    GR (Raw)(GAPI)0 200

    DENS (Raw)

    (G/C3)1.9 2.8

    MABROUK-4H1

    15250 ft

    15375 ft

    15500 ft

    15625 ft

    GR (Raw)(GAPI)0 200

    DENS (Raw)

    (G/C3)1.9 2.8

    MABROUK-4H1

    JALEEL 1H2

    14750 ft

    14875 ft

    15000 ft

    15125 ft

    GR (Raw)(GAPI)0 200

    DEN (Raw)

    (G/CM3)2.2 2.8

    J ALEEL-1H2

    JALEEL 1H2

    14750 ft

    14875 ft

    15000 ft

    15125 ft

    GR (Raw)(GAPI)0 200

    DEN (Raw)

    (G/CM3)2.2 2.8

    J ALEEL-1H2

    JALEEL 1H2

    14750 ft

    14875 ft

    15000 ft

    15125 ft

    GR (Raw)(GAPI)0 200

    DEN (Raw)

    (G/CM3)2.2 2.8

    J ALEEL-1H2

    14750 ft

    14875 ft

    15000 ft

    15125 ft

    GR (Raw)(GAPI)0 200

    DEN (Raw)

    (G/CM3)2.2 2.8

    J ALEEL-1H2

    M2_Sh3

    M1_Sh2

    M6_Sh1

    M5_Slt2

    M3_Slt1

    M4_Ss

    Different tones of . . . gray : possible shale green : possible siltstone yellow : possible sandstone

    A data-driven sof tware (GAMLS) permitsclustering using mixed variables, andprobabilistic assignment of samples to eachmulti dimensional cluster.

    At each depth, clus tering analysisprovides rock types with differentRQ, and estimates of an analyzedreservoir parameter.

    Clustering methods are applied to selected welllogs and core data for lithology interpretation,

    and reservoir quality (RQ) characterization.

    Logs Track : Density (red) & GR (blue)

    Colorfu l Track : Probabilistic representationof clusters

  • 7/27/2019 Rocky Mountain G & E Resources Conference

    18/23

    18

    COGA_AAPG SP070908

    Establishing Probabilistic VariablesParameter Units Distribution

    Initial Water Saturation fraction T(0.7, 1,1)

    Average Permeability md L(5,2)

    Permeability Anisotropy Factor dimensionless T(1,2,5)

    Fracture Porosity fraction N(0.005, 0.002)

    Sorption Time days T(30, 300, 3000)

    Fracture Spacing inches T(12, 36, 120)

    Langmuir Volume cuft/cuft T(3.82, 6.82, 9.82)

    Langmuir Pressure psi T(300, 354, 400)

    Water Density lb/ft T(43.2, 50.42, 57.63)

    Skin Factor dimensionless T(-4, 0, -2)

    Desorption Pressure Function dimensionless T(0.7, 1,1)

    Irreducible Water Saturation fraction T(0.1, 0.2, 0.3)

    Maximum gas relative permeability dimensionless T(0.5, 0.75, 1)

    Corey gas exponent dimensionless T(1, 2, 3)

    Corey water exponent dimensionless T(1, 2, 3)

    Azimuth degrees U(-90, 90)

    Nugget Effect dimensionless U(0,1)

    Range mts U(800, 2000)

    Anisotropy Coefficient dimensionless U(0.001, 1.0)

  • 7/27/2019 Rocky Mountain G & E Resources Conference

    19/23

    19

    COGA_AAPG SP070908

    Sample Outcome

    0

    5

    10

    15

    20

    25

    30

    35

    40

    45

    50

    0 1 2

    0 2 4

    0 3 6

    0 4 8

    0 6 0

    0 7 2

    0 8 4

    0 9 6

    0 1 0

    8 0 1 2

    0 0

    Cumulative Gas, MMcf

    F r e q u e n c y

    0%

    10%

    20%

    30%

    40%

    50%

    60%

    70%

    80%

    90%

    100%

    C u m u

    l a t i v

    e P e r c e n

    t a g e

    Average= 513 MMcf

    Dry Holes

    Each case has uniqueproduction profile!

  • 7/27/2019 Rocky Mountain G & E Resources Conference

    20/23

    20

    COGA_AAPG SP070908

    Understanding Critical Success Factors

    Cumulative Total Gas

    -0.6 -0.4 -0.2 0 0.2 0.4 0.6 0.8

    Lang Press

    Perm Ani sotrophy Fac

    Initial Water Sat

    Irred Water Sat

    Skin Prod

    KrwExp

    KrgMaxFrac Spacing

    Water Density

    Lang Vol

    Pd_Pi

    Sorption Time

    KrgExp

    Por Frac

    Avg Permeabi li ty

    Rank Correlation

    ImportantImportant Questionable

  • 7/27/2019 Rocky Mountain G & E Resources Conference

    21/23

    21

    COGA_AAPG SP070908

    Field Development Planning*

    -

    5,000

    10,000

    15,000

    20,000

    25,000

    30,000

    35,000

    0 2 4 6 8 10 12 14 16 18 20

    Time, years

    P r o

    d u c t

    i o n

    R a t e

    -

    50

    100

    150

    200

    250

    300

    350

    W e l

    l C o u n

    t , C u m u l a

    t i v e

    P r o

    d u c t

    i o n

    Gas Rate,mcf/dWater Rate,bbl/dCum Gas, bcf Well Count

    Cum Water, MMbbl

    Set constraints (e.g., drilling rate, max gasproduction, etc.)

  • 7/27/2019 Rocky Mountain G & E Resources Conference

    22/23

    22

    COGA_AAPG SP070908

    Final Remarks

    Integrated reservoir and Monte Carlo simulation approachreplicates statistical nature of unconventional gas playswhile honoring physical nature of complex reservoirsystem.

    Results provide a range of outcomes that can be used formore realistic development planning and economic

    analysis. Sensitivity analysis can be used to focus data collection

    efforts where they can have the greatest impact onuncertainty reduction.

    Accounting for permeability and porosity variability hasimportant implications for production forecasting.

  • 7/27/2019 Rocky Mountain G & E Resources Conference

    23/23

    23

    COGA_AAPG SP070908

    Office Locations

    Washington, DC4501 Fairfax Drive, Suite 910

    Arlington, VA 22203 USAPhone: (703) 528-8420Fax: (703) 528-0439

    Houston, Texas11490 Westheimer Rd., Suite 520Houston, TX 77077 USAPhone: (281) 558-9200Fax: (281) 558-9202

    For More Information...