roberto monti (padova)trelat/srgi/monti.pdf · third order analysis of the end-point mapping...

43
Third order analysis of the end-point mapping Roberto Monti (Padova) joint work with F. Boarotto (Padova) and F. Palmurella (ETH Z¨ urich) Sub-Riemannian Geometry and Interactions Paris 6-11 September 2020

Upload: others

Post on 05-Nov-2020

2 views

Category:

Documents


0 download

TRANSCRIPT

Page 1: Roberto Monti (Padova)trelat/SRGI/Monti.pdf · Third order analysis of the end-point mapping Roberto Monti (Padova) joint work with F. Boarotto (Padova) and F. Palmurella (ETH Zurich)

Third order analysis of the end-point mapping

Roberto Monti (Padova)

joint work with

F. Boarotto (Padova) and F. Palmurella (ETH Zurich)

Sub-Riemannian Geometry and InteractionsParis 6-11 September 2020

Page 2: Roberto Monti (Padova)trelat/SRGI/Monti.pdf · Third order analysis of the end-point mapping Roberto Monti (Padova) joint work with F. Boarotto (Padova) and F. Palmurella (ETH Zurich)

End-point mapping

(M,D) sub-Riemannian manifold

– M smooth manifold– D = span{f1, . . . , fk} ⊂ TM horiz. distribution (Hormander condition)

Fix a point q ∈ M and for u ∈ X := L2([0, 1];Rk) let γ = γq,u be thesolution to

γ =k∑

i=1

ui fi (γ) on [0, 1], γ(0) = q.

The end-point mapping is the smooth map F = Fq : X → M

F (u) = γq,u(1).

The control u ∈ X is singular if the differential duF : X → TF (u)M is notsurjective.

Page 3: Roberto Monti (Padova)trelat/SRGI/Monti.pdf · Third order analysis of the end-point mapping Roberto Monti (Padova) joint work with F. Boarotto (Padova) and F. Palmurella (ETH Zurich)

End-point mapping

(M,D) sub-Riemannian manifold

– M smooth manifold– D = span{f1, . . . , fk} ⊂ TM horiz. distribution (Hormander condition)

Fix a point q ∈ M and for u ∈ X := L2([0, 1];Rk) let γ = γq,u be thesolution to

γ =k∑

i=1

ui fi (γ) on [0, 1], γ(0) = q.

The end-point mapping is the smooth map F = Fq : X → M

F (u) = γq,u(1).

The control u ∈ X is singular if the differential duF : X → TF (u)M is notsurjective.

Page 4: Roberto Monti (Padova)trelat/SRGI/Monti.pdf · Third order analysis of the end-point mapping Roberto Monti (Padova) joint work with F. Boarotto (Padova) and F. Palmurella (ETH Zurich)

End-point mapping

(M,D) sub-Riemannian manifold

– M smooth manifold– D = span{f1, . . . , fk} ⊂ TM horiz. distribution (Hormander condition)

Fix a point q ∈ M and for u ∈ X := L2([0, 1];Rk) let γ = γq,u be thesolution to

γ =k∑

i=1

ui fi (γ) on [0, 1], γ(0) = q.

The end-point mapping is the smooth map F = Fq : X → M

F (u) = γq,u(1).

The control u ∈ X is singular if the differential duF : X → TF (u)M is notsurjective.

Page 5: Roberto Monti (Padova)trelat/SRGI/Monti.pdf · Third order analysis of the end-point mapping Roberto Monti (Padova) joint work with F. Boarotto (Padova) and F. Palmurella (ETH Zurich)

End-point mapping

(M,D) sub-Riemannian manifold

– M smooth manifold– D = span{f1, . . . , fk} ⊂ TM horiz. distribution (Hormander condition)

Fix a point q ∈ M and for u ∈ X := L2([0, 1];Rk) let γ = γq,u be thesolution to

γ =k∑

i=1

ui fi (γ) on [0, 1], γ(0) = q.

The end-point mapping is the smooth map F = Fq : X → M

F (u) = γq,u(1).

The control u ∈ X is singular if the differential duF : X → TF (u)M is notsurjective.

Page 6: Roberto Monti (Padova)trelat/SRGI/Monti.pdf · Third order analysis of the end-point mapping Roberto Monti (Padova) joint work with F. Boarotto (Padova) and F. Palmurella (ETH Zurich)

The end-point mapping is complicated

The main open problems in SR geometry:

–Regularity of singular length-minimizing curves–Size of the image of singular extremals (Sard problem)

are related to our limited understanding of the end-point mapping atsingular points.

Page 7: Roberto Monti (Padova)trelat/SRGI/Monti.pdf · Third order analysis of the end-point mapping Roberto Monti (Padova) joint work with F. Boarotto (Padova) and F. Palmurella (ETH Zurich)

NotationX =Banach spaceF : X → M × R smooth mappingu ∈ X singular, say u = 0

In our application

F = (F , J) : X → M × R ≡ Rn

is the extended end-point mapping, where J : X → R is the lengthfunctional. We can assume M ×R = Rn fixing a chart around F (0) ∈ M.

The cokernel of the differential of F is

coker(d0F ) = TF (0)M × R/Im(d0F ).

We denote by π : TF (0)M × R→ coker(d0F ) the projection.

Page 8: Roberto Monti (Padova)trelat/SRGI/Monti.pdf · Third order analysis of the end-point mapping Roberto Monti (Padova) joint work with F. Boarotto (Padova) and F. Palmurella (ETH Zurich)

NotationX =Banach spaceF : X → M × R smooth mappingu ∈ X singular, say u = 0

In our application

F = (F , J) : X → M × R ≡ Rn

is the extended end-point mapping, where J : X → R is the lengthfunctional. We can assume M ×R = Rn fixing a chart around F (0) ∈ M.

The cokernel of the differential of F is

coker(d0F ) = TF (0)M × R/Im(d0F ).

We denote by π : TF (0)M × R→ coker(d0F ) the projection.

Page 9: Roberto Monti (Padova)trelat/SRGI/Monti.pdf · Third order analysis of the end-point mapping Roberto Monti (Padova) joint work with F. Boarotto (Padova) and F. Palmurella (ETH Zurich)

NotationX =Banach spaceF : X → M × R smooth mappingu ∈ X singular, say u = 0

In our application

F = (F , J) : X → M × R ≡ Rn

is the extended end-point mapping, where J : X → R is the lengthfunctional. We can assume M ×R = Rn fixing a chart around F (0) ∈ M.

The cokernel of the differential of F is

coker(d0F ) = TF (0)M × R/Im(d0F ).

We denote by π : TF (0)M × R→ coker(d0F ) the projection.

Page 10: Roberto Monti (Padova)trelat/SRGI/Monti.pdf · Third order analysis of the end-point mapping Roberto Monti (Padova) joint work with F. Boarotto (Padova) and F. Palmurella (ETH Zurich)

Strictly singular case

The singular point u = 0 is strictly singular when

coker(d0F ) = coker(d0F ) = TF (0)M/Im(d0F ).

The J component is quotiented out by π.

In this case we may study the end-point map F and deduce properties forthe extended map F (e.g., being an open mapping).

Page 11: Roberto Monti (Padova)trelat/SRGI/Monti.pdf · Third order analysis of the end-point mapping Roberto Monti (Padova) joint work with F. Boarotto (Padova) and F. Palmurella (ETH Zurich)

Strictly singular case

The singular point u = 0 is strictly singular when

coker(d0F ) = coker(d0F ) = TF (0)M/Im(d0F ).

The J component is quotiented out by π.

In this case we may study the end-point map F and deduce properties forthe extended map F (e.g., being an open mapping).

Page 12: Roberto Monti (Padova)trelat/SRGI/Monti.pdf · Third order analysis of the end-point mapping Roberto Monti (Padova) joint work with F. Boarotto (Padova) and F. Palmurella (ETH Zurich)

Second order analysis

Notation for the kth-order directional derivative at u = 0

dk0 F (v) =

dk

dtkF (tv)

∣∣∣∣t=0

, v ∈ X .

The intrinsic Hessian of F at u = 0 is the quadratic mapD2

0F : ker(d0F )→ coker(d0F )

D20F (v) = π(d2

0F (v)), v ∈ ker(d0F ).

Definition. An element v ∈ ker(d0F ) is a regular zero for D20F if:

– D20F (v) = 0;

– the linear map w 7→ D20F (v ,w) is su from ker(d0F ) to coker(d0F ).

Page 13: Roberto Monti (Padova)trelat/SRGI/Monti.pdf · Third order analysis of the end-point mapping Roberto Monti (Padova) joint work with F. Boarotto (Padova) and F. Palmurella (ETH Zurich)

Second order analysis

Notation for the kth-order directional derivative at u = 0

dk0 F (v) =

dk

dtkF (tv)

∣∣∣∣t=0

, v ∈ X .

The intrinsic Hessian of F at u = 0 is the quadratic mapD2

0F : ker(d0F )→ coker(d0F )

D20F (v) = π(d2

0F (v)), v ∈ ker(d0F ).

Definition. An element v ∈ ker(d0F ) is a regular zero for D20F if:

– D20F (v) = 0;

– the linear map w 7→ D20F (v ,w) is su from ker(d0F ) to coker(d0F ).

Page 14: Roberto Monti (Padova)trelat/SRGI/Monti.pdf · Third order analysis of the end-point mapping Roberto Monti (Padova) joint work with F. Boarotto (Padova) and F. Palmurella (ETH Zurich)

Second order analysis

Notation for the kth-order directional derivative at u = 0

dk0 F (v) =

dk

dtkF (tv)

∣∣∣∣t=0

, v ∈ X .

The intrinsic Hessian of F at u = 0 is the quadratic mapD2

0F : ker(d0F )→ coker(d0F )

D20F (v) = π(d2

0F (v)), v ∈ ker(d0F ).

Definition. An element v ∈ ker(d0F ) is a regular zero for D20F if:

– D20F (v) = 0;

– the linear map w 7→ D20F (v ,w) is su from ker(d0F ) to coker(d0F ).

Page 15: Roberto Monti (Padova)trelat/SRGI/Monti.pdf · Third order analysis of the end-point mapping Roberto Monti (Padova) joint work with F. Boarotto (Padova) and F. Palmurella (ETH Zurich)

Second order analysis

Notation for the kth-order directional derivative at u = 0

dk0 F (v) =

dk

dtkF (tv)

∣∣∣∣t=0

, v ∈ X .

The intrinsic Hessian of F at u = 0 is the quadratic mapD2

0F : ker(d0F )→ coker(d0F )

D20F (v) = π(d2

0F (v)), v ∈ ker(d0F ).

Definition. An element v ∈ ker(d0F ) is a regular zero for D20F if:

– D20F (v) = 0;

– the linear map w 7→ D20F (v ,w) is su from ker(d0F ) to coker(d0F ).

Page 16: Roberto Monti (Padova)trelat/SRGI/Monti.pdf · Third order analysis of the end-point mapping Roberto Monti (Padova) joint work with F. Boarotto (Padova) and F. Palmurella (ETH Zurich)

Agracev-Sarychev theory

Theorem. Let u ∈ X be strictly singular. If D2uF has a regular zero

then the extended map F is open at u.

Thus u is not J-optimal (it is not length optimal).

Lemma. If for any λ 6= 0 orthogonal to Im(duF ) the scalarizationλD2

uF has index

ind(λD2uF ) ≥ dim(TF (u)/Im(duF )) =: corank(u)

then D2uF has a regular zero.

Corollary (Goh). Let (γ, u) be a strictly singular minimizingextremal. Then any adjoint curve λ : [0, 1]→ T ∗M satisfies

〈λ(t), [fi , fj ](γ(t))〉 = 0 t ∈ [0, 1], i , j = 1, . . . , k.

Comments. 1) If Goh’s condition is violated the index above is ∞.

2) The bracket [fi , fj ] appears in the computation for D2uF restricted

to its correct domain, i.e., ker(duF ).

Page 17: Roberto Monti (Padova)trelat/SRGI/Monti.pdf · Third order analysis of the end-point mapping Roberto Monti (Padova) joint work with F. Boarotto (Padova) and F. Palmurella (ETH Zurich)

Agracev-Sarychev theory

Theorem. Let u ∈ X be strictly singular. If D2uF has a regular zero

then the extended map F is open at u.

Thus u is not J-optimal (it is not length optimal).

Lemma. If for any λ 6= 0 orthogonal to Im(duF ) the scalarizationλD2

uF has index

ind(λD2uF ) ≥ dim(TF (u)/Im(duF )) =: corank(u)

then D2uF has a regular zero.

Corollary (Goh). Let (γ, u) be a strictly singular minimizingextremal. Then any adjoint curve λ : [0, 1]→ T ∗M satisfies

〈λ(t), [fi , fj ](γ(t))〉 = 0 t ∈ [0, 1], i , j = 1, . . . , k.

Comments. 1) If Goh’s condition is violated the index above is ∞.

2) The bracket [fi , fj ] appears in the computation for D2uF restricted

to its correct domain, i.e., ker(duF ).

Page 18: Roberto Monti (Padova)trelat/SRGI/Monti.pdf · Third order analysis of the end-point mapping Roberto Monti (Padova) joint work with F. Boarotto (Padova) and F. Palmurella (ETH Zurich)

Agracev-Sarychev theory

Theorem. Let u ∈ X be strictly singular. If D2uF has a regular zero

then the extended map F is open at u.

Thus u is not J-optimal (it is not length optimal).

Lemma. If for any λ 6= 0 orthogonal to Im(duF ) the scalarizationλD2

uF has index

ind(λD2uF ) ≥ dim(TF (u)/Im(duF )) =: corank(u)

then D2uF has a regular zero.

Corollary (Goh). Let (γ, u) be a strictly singular minimizingextremal. Then any adjoint curve λ : [0, 1]→ T ∗M satisfies

〈λ(t), [fi , fj ](γ(t))〉 = 0 t ∈ [0, 1], i , j = 1, . . . , k.

Comments. 1) If Goh’s condition is violated the index above is ∞.

2) The bracket [fi , fj ] appears in the computation for D2uF restricted

to its correct domain, i.e., ker(duF ).

Page 19: Roberto Monti (Padova)trelat/SRGI/Monti.pdf · Third order analysis of the end-point mapping Roberto Monti (Padova) joint work with F. Boarotto (Padova) and F. Palmurella (ETH Zurich)

Agracev-Sarychev theory

Theorem. Let u ∈ X be strictly singular. If D2uF has a regular zero

then the extended map F is open at u.

Thus u is not J-optimal (it is not length optimal).

Lemma. If for any λ 6= 0 orthogonal to Im(duF ) the scalarizationλD2

uF has index

ind(λD2uF ) ≥ dim(TF (u)/Im(duF )) =: corank(u)

then D2uF has a regular zero.

Corollary (Goh). Let (γ, u) be a strictly singular minimizingextremal. Then any adjoint curve λ : [0, 1]→ T ∗M satisfies

〈λ(t), [fi , fj ](γ(t))〉 = 0 t ∈ [0, 1], i , j = 1, . . . , k.

Comments. 1) If Goh’s condition is violated the index above is ∞.

2) The bracket [fi , fj ] appears in the computation for D2uF restricted

to its correct domain, i.e., ker(duF ).

Page 20: Roberto Monti (Padova)trelat/SRGI/Monti.pdf · Third order analysis of the end-point mapping Roberto Monti (Padova) joint work with F. Boarotto (Padova) and F. Palmurella (ETH Zurich)

Agracev-Sarychev theory

Theorem. Let u ∈ X be strictly singular. If D2uF has a regular zero

then the extended map F is open at u.

Thus u is not J-optimal (it is not length optimal).

Lemma. If for any λ 6= 0 orthogonal to Im(duF ) the scalarizationλD2

uF has index

ind(λD2uF ) ≥ dim(TF (u)/Im(duF )) =: corank(u)

then D2uF has a regular zero.

Corollary (Goh). Let (γ, u) be a strictly singular minimizingextremal. Then any adjoint curve λ : [0, 1]→ T ∗M satisfies

〈λ(t), [fi , fj ](γ(t))〉 = 0 t ∈ [0, 1], i , j = 1, . . . , k.

Comments. 1) If Goh’s condition is violated the index above is ∞.

2) The bracket [fi , fj ] appears in the computation for D2uF restricted

to its correct domain, i.e., ker(duF ).

Page 21: Roberto Monti (Padova)trelat/SRGI/Monti.pdf · Third order analysis of the end-point mapping Roberto Monti (Padova) joint work with F. Boarotto (Padova) and F. Palmurella (ETH Zurich)

Agracev-Sarychev theory

Theorem. Let u ∈ X be strictly singular. If D2uF has a regular zero

then the extended map F is open at u.

Thus u is not J-optimal (it is not length optimal).

Lemma. If for any λ 6= 0 orthogonal to Im(duF ) the scalarizationλD2

uF has index

ind(λD2uF ) ≥ dim(TF (u)/Im(duF )) =: corank(u)

then D2uF has a regular zero.

Corollary (Goh). Let (γ, u) be a strictly singular minimizingextremal. Then any adjoint curve λ : [0, 1]→ T ∗M satisfies

〈λ(t), [fi , fj ](γ(t))〉 = 0 t ∈ [0, 1], i , j = 1, . . . , k.

Comments. 1) If Goh’s condition is violated the index above is ∞.

2) The bracket [fi , fj ] appears in the computation for D2uF restricted

to its correct domain, i.e., ker(duF ).

Page 22: Roberto Monti (Padova)trelat/SRGI/Monti.pdf · Third order analysis of the end-point mapping Roberto Monti (Padova) joint work with F. Boarotto (Padova) and F. Palmurella (ETH Zurich)

Third intrinsic differential

Consider a smooth map F : X → M. The subspace

dom(D30F ) := {v ∈ ker(d0F ) : π(d2

0F (v , x)) = 0 for all x ∈ X}

is chart-independent.

We define D30F : dom(D3

0F )→ coker(d0F ) in the natural way:

D30F (v) = π(d3

0F (v)).

Definition. Let w ∈ ker(d0F ) be such that D20F (w) = 0.

An element v ∈ dom(D30F ) is a w -regular zero for the third

differential if:– D3

0F (v) = 0;– the linear map u 7→ D3

0F (v , v , u) is surjective from dom(D30F ) to

coker(d0F )/Im(D20F (w , ·)).

Page 23: Roberto Monti (Padova)trelat/SRGI/Monti.pdf · Third order analysis of the end-point mapping Roberto Monti (Padova) joint work with F. Boarotto (Padova) and F. Palmurella (ETH Zurich)

Third intrinsic differential

Consider a smooth map F : X → M. The subspace

dom(D30F ) := {v ∈ ker(d0F ) : π(d2

0F (v , x)) = 0 for all x ∈ X}

is chart-independent.

We define D30F : dom(D3

0F )→ coker(d0F ) in the natural way:

D30F (v) = π(d3

0F (v)).

Definition. Let w ∈ ker(d0F ) be such that D20F (w) = 0.

An element v ∈ dom(D30F ) is a w -regular zero for the third

differential if:– D3

0F (v) = 0;– the linear map u 7→ D3

0F (v , v , u) is surjective from dom(D30F ) to

coker(d0F )/Im(D20F (w , ·)).

Page 24: Roberto Monti (Padova)trelat/SRGI/Monti.pdf · Third order analysis of the end-point mapping Roberto Monti (Padova) joint work with F. Boarotto (Padova) and F. Palmurella (ETH Zurich)

Third intrinsic differential

Consider a smooth map F : X → M. The subspace

dom(D30F ) := {v ∈ ker(d0F ) : π(d2

0F (v , x)) = 0 for all x ∈ X}

is chart-independent.

We define D30F : dom(D3

0F )→ coker(d0F ) in the natural way:

D30F (v) = π(d3

0F (v)).

Definition. Let w ∈ ker(d0F ) be such that D20F (w) = 0.

An element v ∈ dom(D30F ) is a w -regular zero for the third

differential if:– D3

0F (v) = 0;– the linear map u 7→ D3

0F (v , v , u) is surjective from dom(D30F ) to

coker(d0F )/Im(D20F (w , ·)).

Page 25: Roberto Monti (Padova)trelat/SRGI/Monti.pdf · Third order analysis of the end-point mapping Roberto Monti (Padova) joint work with F. Boarotto (Padova) and F. Palmurella (ETH Zurich)

Third intrinsic differential

Consider a smooth map F : X → M. The subspace

dom(D30F ) := {v ∈ ker(d0F ) : π(d2

0F (v , x)) = 0 for all x ∈ X}

is chart-independent.

We define D30F : dom(D3

0F )→ coker(d0F ) in the natural way:

D30F (v) = π(d3

0F (v)).

Definition. Let w ∈ ker(d0F ) be such that D20F (w) = 0.

An element v ∈ dom(D30F ) is a w -regular zero for the third

differential if:– D3

0F (v) = 0;– the linear map u 7→ D3

0F (v , v , u) is surjective from dom(D30F ) to

coker(d0F )/Im(D20F (w , ·)).

Page 26: Roberto Monti (Padova)trelat/SRGI/Monti.pdf · Third order analysis of the end-point mapping Roberto Monti (Padova) joint work with F. Boarotto (Padova) and F. Palmurella (ETH Zurich)

Third order open mapping theorem

Theorem. Let F : X → M be a smooth mapping and let u = 0 be asingular point.

1) Case corank(u) = 1. If there exists v ∈ dom(D30F ) such that

D30F (v) 6= 0 then F is open at u = 0.

2) Case corank(u) ≥ 1. If there exist w and v such that v is aw -regular zero for D3

0F then F is open at u = 0.

Comments.

1) In our application the extended map F will be open at u.

2) We could not find any condition of the algebraic type (extension ofthe notion of index for a quadratic form) ensuring the existence of aw -regular zero for a cubic map.

Page 27: Roberto Monti (Padova)trelat/SRGI/Monti.pdf · Third order analysis of the end-point mapping Roberto Monti (Padova) joint work with F. Boarotto (Padova) and F. Palmurella (ETH Zurich)

Third order open mapping theorem

Theorem. Let F : X → M be a smooth mapping and let u = 0 be asingular point.

1) Case corank(u) = 1. If there exists v ∈ dom(D30F ) such that

D30F (v) 6= 0 then F is open at u = 0.

2) Case corank(u) ≥ 1. If there exist w and v such that v is aw -regular zero for D3

0F then F is open at u = 0.

Comments.

1) In our application the extended map F will be open at u.

2) We could not find any condition of the algebraic type (extension ofthe notion of index for a quadratic form) ensuring the existence of aw -regular zero for a cubic map.

Page 28: Roberto Monti (Padova)trelat/SRGI/Monti.pdf · Third order analysis of the end-point mapping Roberto Monti (Padova) joint work with F. Boarotto (Padova) and F. Palmurella (ETH Zurich)

Third order open mapping theorem

Theorem. Let F : X → M be a smooth mapping and let u = 0 be asingular point.

1) Case corank(u) = 1. If there exists v ∈ dom(D30F ) such that

D30F (v) 6= 0 then F is open at u = 0.

2) Case corank(u) ≥ 1. If there exist w and v such that v is aw -regular zero for D3

0F then F is open at u = 0.

Comments.

1) In our application the extended map F will be open at u.

2) We could not find any condition of the algebraic type (extension ofthe notion of index for a quadratic form) ensuring the existence of aw -regular zero for a cubic map.

Page 29: Roberto Monti (Padova)trelat/SRGI/Monti.pdf · Third order analysis of the end-point mapping Roberto Monti (Padova) joint work with F. Boarotto (Padova) and F. Palmurella (ETH Zurich)

Third order open mapping theorem

Theorem. Let F : X → M be a smooth mapping and let u = 0 be asingular point.

1) Case corank(u) = 1. If there exists v ∈ dom(D30F ) such that

D30F (v) 6= 0 then F is open at u = 0.

2) Case corank(u) ≥ 1. If there exist w and v such that v is aw -regular zero for D3

0F then F is open at u = 0.

Comments.

1) In our application the extended map F will be open at u.

2) We could not find any condition of the algebraic type (extension ofthe notion of index for a quadratic form) ensuring the existence of aw -regular zero for a cubic map.

Page 30: Roberto Monti (Padova)trelat/SRGI/Monti.pdf · Third order analysis of the end-point mapping Roberto Monti (Padova) joint work with F. Boarotto (Padova) and F. Palmurella (ETH Zurich)

Third order open mapping theorem

Theorem. Let F : X → M be a smooth mapping and let u = 0 be asingular point.

1) Case corank(u) = 1. If there exists v ∈ dom(D30F ) such that

D30F (v) 6= 0 then F is open at u = 0.

2) Case corank(u) ≥ 1. If there exist w and v such that v is aw -regular zero for D3

0F then F is open at u = 0.

Comments.

1) In our application the extended map F will be open at u.

2) We could not find any condition of the algebraic type (extension ofthe notion of index for a quadratic form) ensuring the existence of aw -regular zero for a cubic map.

Page 31: Roberto Monti (Padova)trelat/SRGI/Monti.pdf · Third order analysis of the end-point mapping Roberto Monti (Padova) joint work with F. Boarotto (Padova) and F. Palmurella (ETH Zurich)

Computation of D3uF

New notation G (v) = F (u + v).

The end-point mapping is defined via a flow that can be expressed as aright (or left) chronological exponential and can be interpreted as anoperator acting on C∞(M).

In this sense we have the expansion

G (v) = Id + d0G (v) +1

2d2

0G (v) +1

6d3

0G (v) + error

The third order term is (we do not explain the notation)

d30G (v) =

∫Σ3

[gτ3

v(τ3), [gτ2

v(τ2), gτ1

v(τ1)]]dτ3dτ2dτ1

+(∫

Σ2

[gτ2

v(τ2), gτ1

v(τ1)]dτ2dτ1

)◦(∫ 1

0

g tv(t)dt

)+(∫ 1

0

g tv(t)dt

)◦(∫

Σ2

[gτ2

v(τ2), gτ1

v(τ1)]dτ2dτ1

)+(∫ 1

0

g tv(t)dt

)◦(∫ 1

0

g tv(t)dt

)◦(∫ 1

0

g tv(t)dt

)

Page 32: Roberto Monti (Padova)trelat/SRGI/Monti.pdf · Third order analysis of the end-point mapping Roberto Monti (Padova) joint work with F. Boarotto (Padova) and F. Palmurella (ETH Zurich)

Computation of D3uF

New notation G (v) = F (u + v).

The end-point mapping is defined via a flow that can be expressed as aright (or left) chronological exponential and can be interpreted as anoperator acting on C∞(M).

In this sense we have the expansion

G (v) = Id + d0G (v) +1

2d2

0G (v) +1

6d3

0G (v) + error

The third order term is (we do not explain the notation)

d30G (v) =

∫Σ3

[gτ3

v(τ3), [gτ2

v(τ2), gτ1

v(τ1)]]dτ3dτ2dτ1

+(∫

Σ2

[gτ2

v(τ2), gτ1

v(τ1)]dτ2dτ1

)◦(∫ 1

0

g tv(t)dt

)+(∫ 1

0

g tv(t)dt

)◦(∫

Σ2

[gτ2

v(τ2), gτ1

v(τ1)]dτ2dτ1

)+(∫ 1

0

g tv(t)dt

)◦(∫ 1

0

g tv(t)dt

)◦(∫ 1

0

g tv(t)dt

)

Page 33: Roberto Monti (Padova)trelat/SRGI/Monti.pdf · Third order analysis of the end-point mapping Roberto Monti (Padova) joint work with F. Boarotto (Padova) and F. Palmurella (ETH Zurich)

Computation of D3uF

New notation G (v) = F (u + v).

The end-point mapping is defined via a flow that can be expressed as aright (or left) chronological exponential and can be interpreted as anoperator acting on C∞(M).

In this sense we have the expansion

G (v) = Id + d0G (v) +1

2d2

0G (v) +1

6d3

0G (v) + error

The third order term is (we do not explain the notation)

d30G (v) =

∫Σ3

[gτ3

v(τ3), [gτ2

v(τ2), gτ1

v(τ1)]]dτ3dτ2dτ1

+(∫

Σ2

[gτ2

v(τ2), gτ1

v(τ1)]dτ2dτ1

)◦(∫ 1

0

g tv(t)dt

)+(∫ 1

0

g tv(t)dt

)◦(∫

Σ2

[gτ2

v(τ2), gτ1

v(τ1)]dτ2dτ1

)+(∫ 1

0

g tv(t)dt

)◦(∫ 1

0

g tv(t)dt

)◦(∫ 1

0

g tv(t)dt

)

Page 34: Roberto Monti (Padova)trelat/SRGI/Monti.pdf · Third order analysis of the end-point mapping Roberto Monti (Padova) joint work with F. Boarotto (Padova) and F. Palmurella (ETH Zurich)

Comments

1. The above representation for the third differential is not unique.

2. When v ∈ dom(D30G ) the only surviving term is the geometric one:

d30G (v) =

∫Σ3

[gτ3

v(τ3), [gτ2

v(τ2), gτ1

v(τ1)]]dτ3dτ2dτ1

3. After scalarization with λ orthogonal to Im(d0G ) the representationbecomes unique.

Page 35: Roberto Monti (Padova)trelat/SRGI/Monti.pdf · Third order analysis of the end-point mapping Roberto Monti (Padova) joint work with F. Boarotto (Padova) and F. Palmurella (ETH Zurich)

Comments

1. The above representation for the third differential is not unique.

2. When v ∈ dom(D30G ) the only surviving term is the geometric one:

d30G (v) =

∫Σ3

[gτ3

v(τ3), [gτ2

v(τ2), gτ1

v(τ1)]]dτ3dτ2dτ1

3. After scalarization with λ orthogonal to Im(d0G ) the representationbecomes unique.

Page 36: Roberto Monti (Padova)trelat/SRGI/Monti.pdf · Third order analysis of the end-point mapping Roberto Monti (Padova) joint work with F. Boarotto (Padova) and F. Palmurella (ETH Zurich)

Comments

1. The above representation for the third differential is not unique.

2. When v ∈ dom(D30G ) the only surviving term is the geometric one:

d30G (v) =

∫Σ3

[gτ3

v(τ3), [gτ2

v(τ2), gτ1

v(τ1)]]dτ3dτ2dτ1

3. After scalarization with λ orthogonal to Im(d0G ) the representationbecomes unique.

Page 37: Roberto Monti (Padova)trelat/SRGI/Monti.pdf · Third order analysis of the end-point mapping Roberto Monti (Padova) joint work with F. Boarotto (Padova) and F. Palmurella (ETH Zurich)

Third order necessary conditions

Theorem. Let (γ, u) be a strictly singular minimizing extremal.

Assume that:

a) we have corank(u) = 1;

b) dom(D3uF ) is of finite codimension in ker(duF ).

Then any adjoint curve λ : [0, 1]→ T ∗M satisfies for i , j , ` = 1, . . . , k

〈λ(t), [fi , [fj , f`]](γ(t)) + [f`, [fj , fi ]](γ(t))〉 = 0 t ∈ [0, 1]. (∗)

Page 38: Roberto Monti (Padova)trelat/SRGI/Monti.pdf · Third order analysis of the end-point mapping Roberto Monti (Padova) joint work with F. Boarotto (Padova) and F. Palmurella (ETH Zurich)

Third order necessary conditions

Theorem. Let (γ, u) be a strictly singular minimizing extremal.

Assume that:

a) we have corank(u) = 1;

b) dom(D3uF ) is of finite codimension in ker(duF ).

Then any adjoint curve λ : [0, 1]→ T ∗M satisfies for i , j , ` = 1, . . . , k

〈λ(t), [fi , [fj , f`]](γ(t)) + [f`, [fj , fi ]](γ(t))〉 = 0 t ∈ [0, 1]. (∗)

Page 39: Roberto Monti (Padova)trelat/SRGI/Monti.pdf · Third order analysis of the end-point mapping Roberto Monti (Padova) joint work with F. Boarotto (Padova) and F. Palmurella (ETH Zurich)

Third order necessary conditions

Theorem. Let (γ, u) be a strictly singular minimizing extremal.

Assume that:

a) we have corank(u) = 1;

b) dom(D3uF ) is of finite codimension in ker(duF ).

Then any adjoint curve λ : [0, 1]→ T ∗M satisfies for i , j , ` = 1, . . . , k

〈λ(t), [fi , [fj , f`]](γ(t)) + [f`, [fj , fi ]](γ(t))〉 = 0 t ∈ [0, 1]. (∗)

Page 40: Roberto Monti (Padova)trelat/SRGI/Monti.pdf · Third order analysis of the end-point mapping Roberto Monti (Padova) joint work with F. Boarotto (Padova) and F. Palmurella (ETH Zurich)

Comments

1. In the second order case, using the notion of index it is possible tocover the case of general corank.

2. In the second order case, assumption b) reads

dom(D2uF ) = ker(duF ) is of finite codimension in X

and it is trivially satisfied.

3. Assumption b) does the following job. Contradicting (∗), there isenough room to construct a function v ∈ L2([0, 1];Rk) and in factv ∈ dom(D3

0G ) such that

D30G (v) 6= 0.

This contradicts the third order open mapping theorem.

Page 41: Roberto Monti (Padova)trelat/SRGI/Monti.pdf · Third order analysis of the end-point mapping Roberto Monti (Padova) joint work with F. Boarotto (Padova) and F. Palmurella (ETH Zurich)

Comments

1. In the second order case, using the notion of index it is possible tocover the case of general corank.

2. In the second order case, assumption b) reads

dom(D2uF ) = ker(duF ) is of finite codimension in X

and it is trivially satisfied.

3. Assumption b) does the following job. Contradicting (∗), there isenough room to construct a function v ∈ L2([0, 1];Rk) and in factv ∈ dom(D3

0G ) such that

D30G (v) 6= 0.

This contradicts the third order open mapping theorem.

Page 42: Roberto Monti (Padova)trelat/SRGI/Monti.pdf · Third order analysis of the end-point mapping Roberto Monti (Padova) joint work with F. Boarotto (Padova) and F. Palmurella (ETH Zurich)

Comments

1. In the second order case, using the notion of index it is possible tocover the case of general corank.

2. In the second order case, assumption b) reads

dom(D2uF ) = ker(duF ) is of finite codimension in X

and it is trivially satisfied.

3. Assumption b) does the following job. Contradicting (∗), there isenough room to construct a function v ∈ L2([0, 1];Rk) and in factv ∈ dom(D3

0G ) such that

D30G (v) 6= 0.

This contradicts the third order open mapping theorem.

Page 43: Roberto Monti (Padova)trelat/SRGI/Monti.pdf · Third order analysis of the end-point mapping Roberto Monti (Padova) joint work with F. Boarotto (Padova) and F. Palmurella (ETH Zurich)

That’s all.

Thank you for your attention.

Hoping in better times.