robert cooper l. garrison, l. rebenitsch, r. tayloe, r. thornton

Download Robert Cooper L. Garrison, L. Rebenitsch, R. Tayloe, R. Thornton

If you can't read please download the document

Upload: aleesha-lawrence

Post on 17-Dec-2015

217 views

Category:

Documents


3 download

TRANSCRIPT

  • Slide 1
  • Robert Cooper L. Garrison, L. Rebenitsch, R. Tayloe, R. Thornton
  • Slide 2
  • INTRODUCTION
  • Slide 3
  • MI-12 Neutron Background Run Neutrons ~18 m from target 40 days on target (60 days total) In-line behind beam target (ground) 1 kg EJ-301 detector motivated SciBath placement
  • Slide 4
  • MI-12 Neutron Background Run Neutrons ~18 m from target 40 days on target (60 days total) In-line behind beam target (ground) 1 kg EJ-301 detector motivated SciBath placement
  • Slide 5
  • THE SCIBATH DETECTOR
  • Slide 6
  • Design Concept Bath of liquid scintillator ~40 cm length cubic volume 3D array, crossed wave- length shifting fiber readout 768-channel with 64-anode PMT system (x12) IU custom-built DAQ ($70 per channel with PMT)
  • Slide 7
  • The SciBath Detector 80 L liquid scintillator (LS) 88% mineral oil 11% pseudocumene 1% PPO 768 (3-16x16) array wavelength-shifting fibers (x,y,z axes) 1.5 mm diameter 2.5 cm spacing UV blue
  • Slide 8
  • The SciBath Detector Pulsed LED calibration
  • Slide 9
  • The SciBath Detector N 2 and LS plumbing
  • Slide 10
  • The SciBath Detector Electronics readout & PMTs
  • Slide 11
  • The SciBath Detector Electronics readout & PMTs
  • Slide 12
  • Sample Event
  • Slide 13
  • Anticipated Sensitivity (n events)
  • Slide 14
  • n / Particle Discrimination
  • Slide 15
  • muons
  • Slide 16
  • n / Particle Discrimination neutrons
  • Slide 17
  • PRELIMINARY NEUTRON ENERGY SPECTRUM
  • Slide 18
  • Beam Spill Time / PE Structure Bin 6 Bin 10 Bin 11 Bin 12Bin 13Bin 16 Bin 20
  • Slide 19
  • Beam Spill Time / PE Structure Softening of PE spectrum in time
  • Slide 20
  • Preliminary Analysis Roadmap 1.Measure proton PE response 2.Convert proton PEs to energy scale 3.Unfold spectrum of neutrons from protons 4.Divide detector efficiency 5.Normalize to X units (X = time, POT, triggers, etc.) Future spectra will combine 3. and 4. in MC
  • Slide 21
  • Preliminary Analysis Roadmap 1.Measure proton PE response 2.Convert proton PEs to energy scale 3.Unfold spectrum of neutrons from protons 4.Divide detector efficiency 5.Normalize to X units (X = time, POT, triggers, etc.) Future spectra will combine 3. and 4. in MC
  • Slide 22
  • SciBath In-Beam PE Spectrum PEs
  • Slide 23
  • Preliminary Analysis Roadmap 1.Measure proton PE response 2.Convert proton PEs to energy scale 3.Unfold spectrum of neutrons from protons 4.Divide detector efficiency 5.Normalize to X units (X = time, POT, triggers, etc.) Future spectra will combine 3. and 4. in MC
  • Slide 24
  • Proton Response and Quenching Birks Law used to convert to energy deposit Handles quenching for large dE / dx
  • Slide 25
  • Proton Response and Quenching Birks Law used to convert to energy deposit Handles quenching for large dE / dx
  • Slide 26
  • Energy Deposit Spectrum Assume everything is a proton recoil and apply quenching formula 300 MeV protons can range-out in SciBath.
  • Slide 27
  • Preliminary Analysis Roadmap 1.Measure proton PE response 2.Convert proton PEs to energy scale 3.Unfold spectrum of neutrons from protons 4.Divide detector efficiency 5.Normalize to X units (X = time, POT, triggers, etc.) Future spectra will combine 3. and 4. in MC
  • Slide 28
  • A Quick Unfolding Algorithm Assume isotropic CM scattering Assume uniform energy deposit Assume monotonic with endpoint Integrate uniform cake layers n p EpEp EnEn
  • Slide 29
  • A Quick Unfolding Algorithm Assume isotropic CM scattering Assume uniform energy deposit Assume monotonic with endpoint Integrate uniform cake layers
  • Slide 30
  • A Quick Unfolding Algorithm Assume isotropic CM scattering Assume uniform energy deposit Assume monotonic with endpoint Integrate uniform cake layers
  • Slide 31
  • A Quick Unfolding Algorithm Assume isotropic CM scattering Assume uniform energy deposit Assume monotonic with endpoint Integrate uniform cake layers
  • Slide 32
  • Unfolded Neutron Spectrum
  • Slide 33
  • Preliminary Analysis Roadmap 1.Measure proton PE response 2.Convert proton PEs to energy scale 3.Unfold spectrum of neutrons from protons 4.Divide detector efficiency 5.Normalize to X units (X = time, POT, triggers, etc.) Future spectra will combine 3. and 4. in MC
  • Slide 34
  • Detection Efficiency (MC)
  • Slide 35
  • Predicted Neutron Spectrum
  • Slide 36
  • Preliminary Analysis Roadmap 1.Measure proton PE response 2.Convert proton PEs to energy scale 3.Unfold spectrum of neutrons from protons 4.Divide detector efficiency 5.Normalize to X units (X = time, POT, triggers, etc.) Future spectra will combine 3. and 4. in MC
  • Slide 37
  • Neutron Spectrum per Beam Spill 3 neutrons per spill (1 neutron > 40 MeV)
  • Slide 38
  • NEXT STEPS
  • Slide 39
  • Underway Implement MC unfolding Least squares fit or maximum likelihood? POT analysis Explore effect of n- capture tagging, fiducial cuts, and PID Directional analysis Double scatter analysis More Aggressive n / discrimination Validate with cosmic ns