rms values of rectifier waveforms

Upload: selaroth168

Post on 06-Jul-2018

220 views

Category:

Documents


0 download

TRANSCRIPT

  • 8/18/2019 RMS values of rectifier waveforms

    1/25

    !" $" %&'()*+

    -./0&12.,1 +3 %4.(1&'(045 6+2/71.&5 0,8 %,.&9: %,9',..&',

    ;,'

  • 8/18/2019 RMS values of rectifier waveforms

    2/25

    Fundamentals of Power Electronics 77 Chapter 18: PWM Rectifiers

    !"#V S6; 904(*8 .@ )*3,

  • 8/18/2019 RMS values of rectifier waveforms

    3/25

    Fundamentals of Power Electronics 78 Chapter 18: PWM Rectifiers

    S6; ,)0+8

  • 8/18/2019 RMS values of rectifier waveforms

    4/25

    Fundamentals of Power Electronics 79 Chapter 18: PWM Rectifiers

    B--).R

  • 8/18/2019 RMS values of rectifier waveforms

    5/25

    Fundamentals of Power Electronics 80 Chapter 18: PWM Rectifiers

    !"#V#! Q..8, )*3,

  • 8/18/2019 RMS values of rectifier waveforms

    6/25

    Fundamentals of Power Electronics 81 Chapter 18: PWM Rectifiers

    Q..8, )*3,

  • 8/18/2019 RMS values of rectifier waveforms

    7/25

    Fundamentals of Power Electronics 82 Chapter 18: PWM Rectifiers

    >+,*/)0,

  • 8/18/2019 RMS values of rectifier waveforms

    8/25

    Fundamentals of Power Electronics 83 Chapter 18: PWM Rectifiers

    Q..8, *R01-4*: ,)0+8

  • 8/18/2019 RMS values of rectifier waveforms

    9/25

    Fundamentals of Power Electronics 84 Chapter 18: PWM Rectifiers

    U074* .@ )*3,

  • 8/18/2019 RMS values of rectifier waveforms

    10/25

    Fundamentals of Power Electronics 85 Chapter 18: PWM Rectifiers

    U074* .@ )*3,

  • 8/18/2019 RMS values of rectifier waveforms

    11/25

    Fundamentals of Power Electronics 86 Chapter 18: PWM Rectifiers

    '.1-0)

  • 8/18/2019 RMS values of rectifier waveforms

    12/25

    Fundamentals of Power Electronics 87 Chapter 18: PWM Rectifiers

    '.1-0)

  • 8/18/2019 RMS values of rectifier waveforms

    13/25

    Fundamentals of Power Electronics 88 Chapter 18: PWM Rectifiers

    !"#$ &'()*+,- *'..). /,( )00+1+),12+, 33& 4+-4567/*+82 9)18+0+)9.

    Objective:   extend procedure of Chapter 3, to predict the output

    voltage, duty cycle variations, and efficiency, of PWM CCM low

    harmonic rectifiers.

    Approach:   Use the models developed in Chapter 3. Integrate over

    one ac line cycle to determine steady-state waveforms and average

    power.

    Boost example 

    + – 

    Q1

     L

    C R

    +

    v(t)

     –

     D1

    vg(t)

    ig(t) R

     L i(t)

    + – 

     R

    +

    v(t)

     –

    vg(t)

    ig(t) R L

    i(t) DRon

         +   –

     D' : 1V F 

    Dc-dc boost converter circuit Averaged dc model  

  • 8/18/2019 RMS values of rectifier waveforms

    14/25

    Fundamentals of Power Electronics 89 Chapter 18: PWM Rectifiers

    &'()*+,- 84) /15(1 :''.8 9)18+0+)9

     Rvac(t)

    iac(t)+

    vg(t)

     – 

    ig(t)

    +

    v(t)

     – 

    id (t)

    Q1

     L

     D1

    controller

    i(t)

     R L

    + – 

     R

    +

    v(t) = V 

     –

    vg(t)

    ig(t) R L

    i(t) = I d(t) Ron

         +   –

    d'(t) : 1V F 

    id (t)

    C (large)

    Boost 

    rectifier 

    circuit 

    Averaged 

    model 

  • 8/18/2019 RMS values of rectifier waveforms

    15/25

    Fundamentals of Power Electronics 90 Chapter 18: PWM Rectifiers

    ;''.8 9)18+0+)9

  • 8/18/2019 RMS values of rectifier waveforms

    16/25

    Fundamentals of Power Electronics 91 Chapter 18: PWM Rectifiers

    ?@/>A*)B :''.8 9)18+0+)9

  • 8/18/2019 RMS values of rectifier waveforms

    17/25

    Fundamentals of Power Electronics 92 Chapter 18: PWM Rectifiers

    !"#$#! ?@A9)..+', 0'9 1',89'**)9 (782 121*) !"#$

    + – 

     R

    +

    v(t) = V 

     –

    vg(t)

    ig(t) i(t) = I 

    d(t) Ron

    d'(t) : 1

    id (t)

    C (large)

    Solve input side of

    model:

    ig(t )d (t ) Ron =  vg(t ) –  d '(t )v

    with   ig(t ) =vg(t )

     Re

    eliminate ig(t ):

    vg   t 

     Red (t ) Ron =  vg(t ) –  d '(t )v

    vg(t ) =  V  M    sin !t 

    solve for d (t ):

    d (t ) =v – vg(t )

    v – vg(t )  Ron Re

    Again, these expressions neglect converter dynamics, and assume

    that the converter always operates in CCM.

  • 8/18/2019 RMS values of rectifier waveforms

    18/25

    Fundamentals of Power Electronics 93 Chapter 18: PWM Rectifiers

    !"#$#G ?@A9)..+', 0'9 84) (1 *'/( 1799),8

    + – 

     R

    +

    v(t) = V 

     –

    vg(t)

    ig(t) i(t) = I 

    d(t) Ron

    d'(t) : 1

    id (t)

    C (large)

    Solve output side of

    model, using chargebalance on capacitor C :

     I  =   id  T ac

    id (t ) = d '(t )ig(t ) =  d '(t )vg   t 

     Re

    Butd’(t ) is:

    d '(t ) =

    vg(t ) 1 – Ron Re

    v – vg(t ) Ron Re

    hence id (t ) can be expressed as

    id (t ) =vg

    2(t )

     Re

    1 – Ron Re

    v –  vg(t ) Ron Re

    Next, average id 

    (t ) over an ac line period, to find the dc load current I .

  • 8/18/2019 RMS values of rectifier waveforms

    19/25

    Fundamentals of Power Electronics 94 Chapter 18: PWM Rectifiers

    H1 *'/( 1799),8 % 

     I  =   id  T ac=   2

    T ac

    V  M 2

     Re

    1 – Ron Re

    sin2 !t 

    v – V  M  Ron

     Resin   !t 

    dt 

    0

    T ac/2

    Now substitute vg (t ) = V  M  sin &t , and integrate to find "id (t )#T ac:

    This can be written in the normalized form

     I  =   2T ac

    V  M 2

    VRe1 –

     Ron Re

    sin2 !t 

    1 –  a sin   !t dt 

    0

    T ac/2

    with a =  V  M 

     Ron Re

  • 8/18/2019 RMS values of rectifier waveforms

    20/25

    Fundamentals of Power Electronics 95 Chapter 18: PWM Rectifiers

    I,8)-9/8+',

    By waveform symmetry, we need only integrate from 0 to T ac/4. Also,make the substitution % = &t :

     I  =  V  M 

    2

    VRe1 –

     Ron Re

    2*

    sin2 -

    1 –  a sin   -d -

    0

    */2

    This integral is obtained not only in the boost rectifier, but also in the

    buck-boost and other rectifier topologies. The solution is

    4*

    sin2 -

    1 –  a sin   -d -

    0

    */2

    = F (a) =   2a2*

      – 2a – * +4 sin

     – 1a   + 2 cos – 1 a

    1 –  a 2

    • Result is in closed form

    • a is a measure of the loss

    resistance relative to Re

    • a is typically much smaller than

    unity

  • 8/18/2019 RMS values of rectifier waveforms

    21/25

    Fundamentals of Power Electronics 96 Chapter 18: PWM Rectifiers

    F4) +,8)-9/* &J'K

    F(a)

    a

     –0.15 –0.10 –0.05   0.00 0.05 0.10 0.15

    0.85

    0.9

    0.95

    1

    1.05

    1.1

    1.15

    4*

    sin2 -

    1 –  a sin   -d -

    0

    */2

    = F (a) =   2a2*

      – 2a – * +4 sin

     – 1a   + 2 cos – 1 a

    1 –  a 2

    F (a) &  1 + 0.862a + 0.78a2

    Approximation via

    polynomial:

    For | a | ' 0.15, thisapproximate expression iswithin 0.1% of the exact

    value. If the a2 term is

    omitted, then the accuracydrops to ±2% for | a | ' 0.15.The accuracy of F(a)

    coincides with the accuracy

    of the rectifier efficiency (.

  • 8/18/2019 RMS values of rectifier waveforms

    22/25

    Fundamentals of Power Electronics 97 Chapter 18: PWM Rectifiers

    !"#$#L D'*78+', 0'9 1',=)98)9 )00+1+),12 (

    Converter average input power is

    Pin =   pin(t ) T ac=

      V  M 2 Re

    Average load power is

    Pout  = VI  =   V   V  M 

    2

    VRe1 –

      Ron Re

    F (a)

    2with   a =

      V  M V 

     Ron Re

    So the efficiency is

    / = Pout 

    Pin= 1 –

     Ron Re

    F (a)

    Polynomial approximation:

    / &   1 – Ron Re

    1 + 0.862 V  M 

     Ron Re

    + 0.78  V  M 

     Ron Re

    2

  • 8/18/2019 RMS values of rectifier waveforms

    23/25

    Fundamentals of Power Electronics 98 Chapter 18: PWM Rectifiers

    ;''.8 9)18+0+)9 )00+1+),12

    / = Pout 

    Pin= 1 –

     Ron Re

    F (a)

    0.0 0.2 0.4 0.6 0.8 1.0

    0.75

    0.8

    0.85

    0.9

    0.95

    1

    V  M /V 

    /

     Ron/ Re 

     =  0. 05

     R o n/ Re

      =  0. 1

     R o n / R e

      =  0. 1 5

     R o n / R e  =  0

    . 2

    • To obtain highefficiency, choose V 

    slightly larger than V  M 

    • Efficiencies in the range90% to 95% can then beobtained, even with Ronas high as 0.2 Re

    • Losses other than

    MOSFET on-resistance

    are not included here

  • 8/18/2019 RMS values of rectifier waveforms

    24/25

    Fundamentals of Power Electronics 99 Chapter 18: PWM Rectifiers

    !"#$#M H).+-, )@/>A*)

    Let us design for a given efficiency. Consider the following

    specifications:Output voltage 390 V

    Output power 500 W

    rms input voltage 120 V

    Efficiency 95%

    Assume that losses other than the MOSFET conduction loss are

    negligible.

    Average input power is

    Pin =  out 

    /   = 500 W

    0.95  = 526 W

    Then the emulated resistance is

     Re =V g, rms

    2

    Pin=

     (120 V)2

    526 W  = 27.4 0

  • 8/18/2019 RMS values of rectifier waveforms

    25/25

    Fundamentals of Power Electronics 100 Chapter 18: PWM Rectifiers

    H).+-, )@/>A*)

    Also,   M V 

      =  120 2 V390 V

      = 0.435

    0.0 0.2 0.4 0.6 0.8 1.0

    0.75

    0.8

    0.85

    0.9

    0.95

    1

    V  M /V 

    /

     Ron/ Re 

     =  0. 05

     R o n/ Re

      =  0. 1

     R o n / R e

      =  0. 1 5

     R o n / R e

      =  0. 2

    95% efficiency with

    V  M /V  = 0.435 occurs

    with Ron/ Re ) 0.075.

    So we require a

    MOSFET with on

    resistance of

     Ron )  (0.075) Re

    = (0.075) (27.4 0) = 2 0