rf power mosfets *g denotes rohs compliant, pb free … · 2020. 9. 28. · thermal considerations...

4
RF POWER MOSFETs N- CHANNEL ENHANCEMENT MODE 200V 300W 45MHz The ARF466FL is a rugged high voltage RF power transistor designed for scientic, commercial, medical and industrial RF power amplier applications up to 45 MHz. It has been optimized for both linear and high efciency classes of operation. Specified 150 Volt, 40.68 MHz Characteristics: Output Power = 300 Watts. Gain = 16dB (Class AB) Efficiency = 75% (Class C) Low Cost Flangeless RF Package. Low Vth thermal coefficient. Low Thermal Resistance. Optimized SOA for Superior Ruggedness. ARF466FL(G) 050-4928 Rev D 5-2010 ARF466FL Microsemi Website - http://www.microsemi.com CAUTION: These Devices are Sensitive to Electrostatic Discharge. Proper Handling Procedures Should Be Followed. Symbol Parameter Min Typ Max Unit R θJC Junction to Case 0.13 °C/W R θJHS Junction to Sink (High Efciency Thermal Joint Compound and Planar Heat Sink Surface.) 0.27 Maximum Ratings All Ratings: T C =25°C unless otherwise specified Symbol Parameter Ratings Unit V DSS Drain-Source Voltage 1000 V V DGO Drain-Gate Voltage 1000 I D Continuous Drain Current @ T C = 25°C 13 A V GS Gate-Source Voltage ±30 V P D Total Power Dissipation @ T C = 25°C 1153 W T J , T STG Operating and Storage Junction Temperature Range -55 to 175 °C T L Lead Temperature: 0.063” from Case for 10 Sec. 300 Static Electrical Characteristics Symbol Parameter Min Typ Max Unit BV DSS Drain-Source Breakdown Voltage (V GS = 0V, I D = 250 μA) 1000 V R DS(ON) Drain-Source On-State Resistance 1 (V GS = 10V , I D = 6.5A) 1.0 ohms I DSS Zero Gate Voltage Drain Current (V DS = 1000V, V GS = 0V) 25 μA Zero Gate Voltage Drain Current (V DS = 800V, V GS = 0V, T C = 125°C) 250 I GSS Gate-Source Leakage Current (V DS = ±30V, V DS = 0V) ±100 nA g fs Forward Transconductance (V DS = 25V, I D = 6.5A) 3.3 7 9 mhos V GS(TH) Gate Threshold Voltage (V DS = V GS , I D = 1mA) 2 4 Volts Thermal Characteristics G D S

Upload: others

Post on 29-Jan-2021

0 views

Category:

Documents


0 download

TRANSCRIPT

  • RF POWER MOSFETsN- CHANNEL ENHANCEMENT MODE 200V 300W 45MHz

    The ARF466FL is a rugged high voltage RF power transistor designed for scientifi c, commercial, medical and industrial RF power amplifi er applications up to 45 MHz. It has been optimized for both linear and high effi ciency classes of operation.

    • Specifi ed 150 Volt, 40.68 MHz Characteristics: • Output Power = 300 Watts. • Gain = 16dB (Class AB) • Effi ciency = 75% (Class C)

    • Low Cost Flangeless RF Package.• Low Vth thermal coeffi cient.• Low Thermal Resistance.• Optimized SOA for Superior Ruggedness.

    ARF466FL(G)

    050-

    4928

    R

    ev

    D

    5-20

    10

    ARF466FL

    Microsemi Website - http://www.microsemi.com

    CAUTION: These Devices are Sensitive to Electrostatic Discharge. Proper Handling Procedures Should Be Followed.

    Symbol Parameter Min Typ Max UnitRθJC Junction to Case 0.13

    °C/WRθJHS Junction to Sink (High Effi ciency Thermal Joint Compound and Planar Heat Sink Surface.) 0.27

    Maximum Ratings All Ratings: TC =25°C unless otherwise specifi edSymbol Parameter Ratings Unit

    VDSS Drain-Source Voltage 1000V

    VDGO Drain-Gate Voltage 1000ID Continuous Drain Current @ TC = 25°C 13 A

    VGS Gate-Source Voltage ±30 VPD Total Power Dissipation @ TC = 25°C 1153 W

    TJ, TSTG Operating and Storage Junction Temperature Range -55 to 175°C

    TL Lead Temperature: 0.063” from Case for 10 Sec. 300

    Static Electrical Characteristics

    Symbol Parameter Min Typ Max UnitBVDSS Drain-Source Breakdown Voltage (VGS = 0V, ID = 250 μA) 1000 VRDS(ON) Drain-Source On-State Resistance 1 (VGS

    = 10V, ID = 6.5A) 1.0 ohms

    IDSSZero Gate Voltage Drain Current (VDS = 1000V, VGS = 0V) 25 μAZero Gate Voltage Drain Current (VDS = 800V, VGS = 0V, TC = 125°C) 250

    IGSS Gate-Source Leakage Current (VDS = ±30V, VDS = 0V) ±100 nA

    gfs Forward Transconductance (VDS = 25V, ID = 6.5A) 3.3 7 9 mhos

    VGS(TH) Gate Threshold Voltage (VDS = VGS, ID = 1mA) 2 4 Volts

    Thermal Characteristics

    G

    D

    S

    austin.hillText Box*G Denotes RoHS Compliant, Pb Free Terminal Finish.

  • DYNAMIC CHARACTERISTICS ARF466FL(G)

    30 45 60 75 90 105 120FREQUENCY (MHz)

    Figure 1, Typical Gain vs Frequency

    Class CVDD = 150VPout = 150W

    30

    25

    20

    15

    10

    5

    0

    GA

    IN (d

    B)

    Symbol

    Ciss

    CossCrsstd(on)

    trtd(off)

    tf

    Characteristic

    Input Capacitance

    Output Capacitance

    Reverse Transfer Capacitance

    Turn-on Delay Time

    Rise Time

    Turn-off Delay Time

    Fall Time

    Test Conditions

    VGS = 0VVDS = 150Vf = 1 MHz

    VGS = 15V

    VDD = 500 V

    ID = 13A @ 25°C

    RG = 1.6W

    MIN TYP MAX

    2000

    165

    75

    12

    10

    43

    10

    UNIT

    pF

    ns

    FUNCTIONAL CHARACTERISTICS

    Symbol

    GPS

    h

    y

    Test Conditions

    f = 40.68 MHz

    VGS = 2.5V VDD = 150V

    Pout = 300W No Degradation in Output Power

    Characteristic

    Common Source Amplifi er Power Gain

    Drain Effi ciency

    Electrical Ruggedness VSWR 10:1

    MIN TYP MAX

    14 16

    70 75

    UNIT

    dB

    %

    1 Pulse Test: Pulse width < 380μS, Duty Cycle < 2% Microsemi reserves the right to change, without notice, the specifi cations and information contained herein.

    1 10 100 1000

    20

    18

    16

    14

    12

    10

    8

    6

    4

    2

    0 0 1 2 3 4 5 6 7 8

    CA

    PAC

    ITA

    NC

    E (p

    f)

    VDS, DRAIN-TO-SOURCE VOLTAGE (VOLTS)Figure 2, Typical Capacitance vs. Drain-to-Source Voltage

    10,000

    1000

    500

    100

    50

    10 .1 1 10 100 200

    I D, D

    RA

    IN C

    UR

    RE

    NT

    (AM

    PE

    RE

    S)

    VDS, DRAIN-TO-SOURCE VOLTAGE (VOLTS)Figure 4, Typical Maximum Safe Operating AreaVGS, GATE-TO-SOURCE VOLTAGE (VOLTS)Figure 3, Typical Transfer Characteristics

    I D, D

    RA

    IN C

    UR

    RE

    NT

    (AM

    PE

    RE

    S)

    VDS> ID (ON) x RDS (ON)MAX.250μSEC. PULSE TEST@

  • ARF466FL(G)TYPICAL PERFORMANCE CURVES

    050-

    4928

    R

    ev

    D

    5-2

    010

    0

    0.02

    0.04

    0.06

    0.08

    0.10

    0.12

    0.14

    10-5 10-4 10-3 10-2 10 1.0 -1

    TC, CASE TEMPERATURE (°C)Figure 5, Typical Threshold Voltage vs TemperatureVDS, DRAIN-TO-SOURCE VOLTAGE (VOLTS)Figure 6, Typical Output Characteristics

    1.10

    1.05

    1.00

    0.95

    0.90

    0.85

    0.80

    0.75 -50 -25 0 25 50 75 100 125 150

    25

    20

    15

    10

    5

    0 0 5 10 15 20 25 30

    I D, D

    RA

    IN C

    UR

    RE

    NT

    (AM

    PE

    RE

    S)

    VG

    S(th

    ), TH

    RE

    SH

    OLD

    VO

    LTA

    GE

    (NO

    RM

    ALI

    ZED

    )

    5.5V

    4.5V

    5V

    6V

    VGS=15 & 10V

    8V

    4V

    Figure 7b, TRANSIENT THERMAL IMPEDANCE MODEL

    SINGLE PULSE

    Z θJC

    , TH

    ER

    MA

    L IM

    PE

    DA

    NC

    E (°

    C/W

    )

    RECTANGULAR PULSE DURATION (SECONDS)

    FIGURE 7a, MAXIMUM EFFECTIVE TRANSIENT THERMAL IMPEDANCE, JUNCTION-TO-CASE vs PULSE DURATION

    0.5

    0.1

    0.3

    0.7

    D = 0.9

    0.05

    Table 1 - Typical Class AB Large Signal Input - Output Impedance

    Freq. (MHz) ZOL ( )

    2.013.527.140.765

    18 - j 111.3 - j 5

    .40 - j 2.6

    .20 - j 1.6.11 + j 0.6

    30 - j 1.725.7 - j 9.818 - j 13.312 - j 12.66.2 - j 8.9

    Zin - Gate shunted with 25 IDQ = 100mAZOL - Conjugate of optimum load for 300 W output at Vdd = 150V

    ZIN ( )

    Dissipated Power (Watts)

    TJ (°C) TC (°C)

    ZEXT are the external thermalimpedances: Case to sink,sink to ambient, etc. Set to zero when modeling onlythe case to junction.

    ZE

    XT.043 .058 .018

    .022 .016 1.91

  • ARF466FL(G)05

    0-49

    28

    Rev

    D

    5

    -201

    0

    .330 .210.210

    .325 +/- .01

    .570ARF466FL

    1.500

    .100

    .100

    .300

    .200.005 .040

    .320

    1.250

    .125R4 pls

    .125dia4 pls

    T3 Package Outline

    DS S

    SS G

    L1

    C1

    R1

    R3

    R4

    R5ARF466FL

    L2

    L3

    C3C4

    C7

    C6 R2

    C2

    C8

    C9

    L4

    150V+-RF Output

    RF Input

    40.68 MHz Test Circuit

    +-

    Bias0-12V

    C5

    TL1

    C1 -- 2200 pF ATC 700BC2-C5 -- Arco 465 Mica trimmerC6-C8 -- .1 mF 500V ceramic chip C9 -- 3x 2200 pF 500V chips COG

    L1 -- 3t #22 AWG .25"ID .25 "L ~55nHL2 -- 5t #16 AWG .312" ID .35"L ~176nHL3 -- 10t #24 AWG .25"ID ~.5uH�L4 -- VK200-4B ferrite choke 3uH

    R1- R3 -- 1k 0.5W R4- R5 -- 1 1W SMTTL1 -- 40 t-line 0.15 x 2" C1 is ~1.75" from R4-5.

    Thermal Considerations and Package Mounting:

    The rated power dissipation is only available when the package mounting surface is at 25°C and the junction temperature is 175°C. The thermal resistance between junctions and case mounting surface is 0.13 °C/W. When installed, an additional thermal impedance of 0.17°C/W between the package base and the mounting surface is typical. Insure that the mounting surface is smooth and flat. Thermal joint compound must be used to reduce the effects of small surface irregularities. Use the minimum amount necessary to coat the surface. The heatsink should incorporate a copper heat spreader to obtain best results.

    The package design clamps the ceramic base to the heatsink. A clamped joint maintains the required mounting pressure while allowing for thermal expansion of both the base and the heat sink. Four 4-40 (M3) screws provide the required mounting force. Torque the mounting screws to T = 2.5 - 3.5 in-lb (0.28 - 0.40 N-m).

    HAZARDOUS MATERIAL WARNINGThe white ceramic portion of the device between leads and mounting surface is beryllium oxide, BeO. Beryllium oxide dust is toxic when inhaled. Care must be taken during handling and mounting to avoid damage to this area. These devices must never be thrown away with general industrial or domestic waste.