rf mems switch0

32
RF MEMS SWITCH Jonathan Hernandez Aguirre

Upload: jonathan-hernandez-aguirre

Post on 08-Apr-2018

228 views

Category:

Documents


0 download

TRANSCRIPT

Page 1: Rf mems switch0

8/7/2019 Rf mems switch0

http://slidepdf.com/reader/full/rf-mems-switch0 1/32

RF MEMS SWITCHJonathan Hernandez Aguirre

Page 2: Rf mems switch0

8/7/2019 Rf mems switch0

http://slidepdf.com/reader/full/rf-mems-switch0 2/32

Outline

� - Target Design Specifications

� - Design Methodology

� - Mathematical Model and Simulation

� - Design Process

� - Finite element Analysis

� - Comparison Results

� - Conclusions.

Page 3: Rf mems switch0

8/7/2019 Rf mems switch0

http://slidepdf.com/reader/full/rf-mems-switch0 3/32

Target design specifications

Parameter Value

Spring Constant 5Nw/m to 40 Nw/m [1]

Cantilever beam length 110 µm to 300 µm [1]

Mass

Resonant frequency 50 Khz

Radio frequency (RF) is a rate of oscillation in the range

of about 30 kHz to 300 GHz.

Page 4: Rf mems switch0

8/7/2019 Rf mems switch0

http://slidepdf.com/reader/full/rf-mems-switch0 4/32

Design Methodology

RF Switchrequired for 

the class

Initial target

specifications

Mathematical modeling

with mathlab

Design for 

resonant

frequency

Match

Design for spring

constant

Match Finite element

analysis

MATHLAB

and FEAmatch

Complete

No

Yes

No

Yes

No

Yes

Page 5: Rf mems switch0

8/7/2019 Rf mems switch0

http://slidepdf.com/reader/full/rf-mems-switch0 5/32

Mathematical Model and simulationlc

ymax

lc

b

lc

l

x

Bottom electrode

A fixed-free beam with one free movable edge is subjected to transverse load qo distributed about the free end of thebeam. It can be easily seen from the above figure, Ymax is at the free end of the beam. Making use of the load-deflection properties of the beam, accounting for transverse and axial loading simultaneously, and applying

superposition principle, the effective stiffness (spring constant) K at the position of maximum deflection, Ymax [1] isgiven by :

(1)

qo

Fig.1

Page 6: Rf mems switch0

8/7/2019 Rf mems switch0

http://slidepdf.com/reader/full/rf-mems-switch0 6/32

Mathematical Model and simulation

� Pull in Voltage

(2) (3)

Page 7: Rf mems switch0

8/7/2019 Rf mems switch0

http://slidepdf.com/reader/full/rf-mems-switch0 7/32

Mathematical Model and simulation� Resonant Frequency

k = Spring constant Nw/m

m = Mass k g 

We can calculate the mass of the RF Switch by adding the mass of the cantilever beam, the topelectrode and the tip (contact pad) [1]

We can find the mass by knowing the density of the material and the volume of every part of the

cantilever beam.

(4)

(5)

Page 8: Rf mems switch0

8/7/2019 Rf mems switch0

http://slidepdf.com/reader/full/rf-mems-switch0 8/32

Mathematical model and simulation

Determining the spring

constant and the mass

of the cantilever beam.

Spring constant

7.014 Nw / m

Mass 35.024 pkg

Page 9: Rf mems switch0

8/7/2019 Rf mems switch0

http://slidepdf.com/reader/full/rf-mems-switch0 9/32

Mathematical model and simulation

Determining the

length and the

thickness of the

cantilever beam.

Length = 221 µm

Thickness = 4.4µm

Page 10: Rf mems switch0

8/7/2019 Rf mems switch0

http://slidepdf.com/reader/full/rf-mems-switch0 10/32

Mathematical model and simulation

Determining the

pull-in voltage

Pull in voltage

296.3 v

Page 11: Rf mems switch0

8/7/2019 Rf mems switch0

http://slidepdf.com/reader/full/rf-mems-switch0 11/32

Parameters from the Mathematical Model

Parameter Value

Spring Constant 7.014 Nw / m

Resonant Frequency 50.333 kHz

Mass of the cantilever beam 35.024pkg

Length of the cantilever beam 221 µm

Width 15 µm

Thickness 4.4 µm

Pull-in Voltage 296.3 v

Effective electrode area

Page 12: Rf mems switch0

8/7/2019 Rf mems switch0

http://slidepdf.com/reader/full/rf-mems-switch0 12/32

Mathematical model and simulation

Capacitance up state

(6)

Page 13: Rf mems switch0

8/7/2019 Rf mems switch0

http://slidepdf.com/reader/full/rf-mems-switch0 13/32

Design Process

� In order to

compare the

simulation result

with Mathlab, a

cantilever beam

was designed as

the 3D FEAmodel, shown as

followed.

� The model is

refined with

maximum meshsize being 8µm.

Page 14: Rf mems switch0

8/7/2019 Rf mems switch0

http://slidepdf.com/reader/full/rf-mems-switch0 14/32

Design process

Level 0 , Bottom electrode, Si,Thickness 25 µm

Level 1 , Dielectric layer, Silicon

nitride, Thickness 5 µm

Level 2 , Contact Pad, Al,Thickness 1 µm

Level 3 , Air Gap, Height 2 µm

Level 4 , Contact Pad and top

electrode, Al, Thickness 1 µm

Level 5 , Cantilever beam, SiliconNitride, Thickness 4.4 µm

211 µm 10 µm

10 µm

26.52 µm

221 µm

Page 15: Rf mems switch0

8/7/2019 Rf mems switch0

http://slidepdf.com/reader/full/rf-mems-switch0 15/32

Design dimensions

Level Material Thickness Length

Substrate Si 25µm 221µm

Dielectric layer Si3N4 5µm 221µm

Contact area Al 1µm 10µm

Air gap 2µm

Top electrode and

contact area

Al 1µm Electrode = 26.52µm

Contact Area = 10µm

Cantilever beam Si3N4 4.4µm 221µm

Page 16: Rf mems switch0

8/7/2019 Rf mems switch0

http://slidepdf.com/reader/full/rf-mems-switch0 16/32

FEA using Intellisuite

Page 17: Rf mems switch0

8/7/2019 Rf mems switch0

http://slidepdf.com/reader/full/rf-mems-switch0 17/32

FEA using Intellisuite

Page 18: Rf mems switch0

8/7/2019 Rf mems switch0

http://slidepdf.com/reader/full/rf-mems-switch0 18/32

FEA using Intellisuite

Page 19: Rf mems switch0

8/7/2019 Rf mems switch0

http://slidepdf.com/reader/full/rf-mems-switch0 19/32

FEA using Intellisuite

Page 20: Rf mems switch0

8/7/2019 Rf mems switch0

http://slidepdf.com/reader/full/rf-mems-switch0 20/32

Resonant frequency

f = 52.298 kHz

Page 21: Rf mems switch0

8/7/2019 Rf mems switch0

http://slidepdf.com/reader/full/rf-mems-switch0 21/32

Deflection

Page 22: Rf mems switch0

8/7/2019 Rf mems switch0

http://slidepdf.com/reader/full/rf-mems-switch0 22/32

Pull-in Voltage

Page 23: Rf mems switch0

8/7/2019 Rf mems switch0

http://slidepdf.com/reader/full/rf-mems-switch0 23/32

Up-state capacitance

C = 8.228 fF 

Page 24: Rf mems switch0

8/7/2019 Rf mems switch0

http://slidepdf.com/reader/full/rf-mems-switch0 24/32

Stress distribution

Page 25: Rf mems switch0

8/7/2019 Rf mems switch0

http://slidepdf.com/reader/full/rf-mems-switch0 25/32

Pressure distribution

Page 26: Rf mems switch0

8/7/2019 Rf mems switch0

http://slidepdf.com/reader/full/rf-mems-switch0 26/32

Comparison with Mathlab

Mathlab calculation 3D FEA Intellisuite

Natural frequency 50.333 Khz 52.988 Khz

Pull in Voltage 296.3 V 300 V

Mathlab calculation 3D FEA

Intellisuite

Capacitance 8.3318 fF 8.228 fF

Page 27: Rf mems switch0

8/7/2019 Rf mems switch0

http://slidepdf.com/reader/full/rf-mems-switch0 27/32

Insertion loss and isolation loss

Generally the contact resistance is around 1 ohm [2]

In order to calculate both, the insertion and isolation loss we need to know

the transmission-line impedance.

(7)

(8)

Page 28: Rf mems switch0

8/7/2019 Rf mems switch0

http://slidepdf.com/reader/full/rf-mems-switch0 28/32

Switching time

Assuming aV 

s voltage of 1.3V 

p [2] and using the resonantfrequency of 50 kHz, the switching time is 9µsec.

(9)

Page 29: Rf mems switch0

8/7/2019 Rf mems switch0

http://slidepdf.com/reader/full/rf-mems-switch0 29/32

Page 30: Rf mems switch0

8/7/2019 Rf mems switch0

http://slidepdf.com/reader/full/rf-mems-switch0 30/32

Conclusions

� A RF MEMS switch was designed, a FEA was performed to find the value of 

the natural frequency, pull-in voltage and up-state capacitance. After to run

this analysis, was found that the calculated and simulated values are quite

similar, which means the calculations were performed correctly.

� A problem of this design is the high value of the pull-in voltage needed to

activate the switch, this voltage can be optimized by increasing the effective

electrode area and reducing the thickness of the dielectric layer located over 

the silicon substrate.

Page 31: Rf mems switch0

8/7/2019 Rf mems switch0

http://slidepdf.com/reader/full/rf-mems-switch0 31/32

References

� [1] Abhijeet V. Kshirsagan ¶Design of MEMS Cantilever ± Hands

Calculation¶¶, Sensors and transducers Journal, Vol. 91, Issue 4, April

2008 pp 55-69.

� [2] Gabriel M. Rebeiz, Jeremy B. Muldavin, ¶RF MEMS Switches andswitch circuits¶¶, IEEE Microwave Magazine, December 2001, pp 59-

71.

Page 32: Rf mems switch0

8/7/2019 Rf mems switch0

http://slidepdf.com/reader/full/rf-mems-switch0 32/32

Thank you!!