review of recent experimental and modeling progress in the … · 2013-06-28 · review of recent...

48
Review of Recent Experimental and Modeling Progress in the Lower Hybrid Range of Frequencies at ITER Relevant Parameters P. T. Bonoli PSFC – MIT, Cambridge, MA 02139 (USA) 20 th Topical Conference on Radio Frequency Power in Plasmas Sorrento, Italy June 25-28, 2013

Upload: others

Post on 09-Jun-2020

0 views

Category:

Documents


0 download

TRANSCRIPT

Page 1: Review of Recent Experimental and Modeling Progress in the … · 2013-06-28 · Review of Recent Experimental and Modeling Progress in the Lower Hybrid Range of Frequencies at ITER

Review of Recent Experimental and Modeling Progress in the

Lower Hybrid Range of Frequencies at ITER Relevant

Parameters

P. T. BonoliPSFC – MIT, Cambridge, MA 02139 (USA)

20th Topical Conference on Radio Frequency Power in Plasmas

Sorrento, Italy June 25-28, 2013

Page 2: Review of Recent Experimental and Modeling Progress in the … · 2013-06-28 · Review of Recent Experimental and Modeling Progress in the Lower Hybrid Range of Frequencies at ITER

Outline for review

• Short review on LH wave physics and motivation for using LHCD in ITER and beyond.

• Experimental demonstrations of LH actuator capabilities needed for ITER (core ITB control).

• Progress in diagnostic measurements and validating core simulation capability (combined ray tracing/Fokker Planck, spatial diffusion effects, full-wave effects, spectral gap).

• Role of the scrape off layer (SOL) – linear and nonlinear absorption processes, wave scattering, long distance coupling, modifications of the SOL by LH waves.

• New beneficial applications of LHRF – toroidal rotation changes, modifications of the pedestal and ELM’s.

• Looking to the future – role of integrated modeling and high field side (HFS) launch.

Page 3: Review of Recent Experimental and Modeling Progress in the … · 2013-06-28 · Review of Recent Experimental and Modeling Progress in the Lower Hybrid Range of Frequencies at ITER

Lower Hybrid (LH) Wave Coupling and Propagation

• RF power at ~ (ce ci)1/2 is coupled from a waveguide launcher or “Grill” with Erf = E//(slow wave) and tunnels through an evanescent layer where > pe(Brambilla, 1976):

• Slow wave is electrostatic in the core with pe/ >>1:

22 2

2pen n

4 24 2 0 0D P n P n P

• Accessibility of slow wave to the plasma core is determined by n//:

2 2

1pe pe piacc

ce ce

n n

Page 4: Review of Recent Experimental and Modeling Progress in the … · 2013-06-28 · Review of Recent Experimental and Modeling Progress in the Lower Hybrid Range of Frequencies at ITER

LH Wave Absorption and Current Drive• Waves undergo electron

Landau damping at v// ~ 3vte forming a quasilinear plateau in the electron distribution function fe :

• Plateau electrons are relatively collisionlesssince fast ~ 0/v3.

• Plateau electrons also pitch scatter from || to direction further reducing the collisionality.

• CD efficiency is high for narrow spectrum of damped LH waves (Fisch, PRL, 1980; Karney, PoP, 1985):

Page 5: Review of Recent Experimental and Modeling Progress in the … · 2013-06-28 · Review of Recent Experimental and Modeling Progress in the Lower Hybrid Range of Frequencies at ITER

Lower Hybrid Current Drive is Attractive for Tokamak Reactor Applications in Devices Ranging

From ITER to Power Plant (ARIES-RS)

• Lower hybrid (LH) waves damp strongly on “tail” electrons at ~3vte and can therefore be used to drive current off-axis at r/a 0.6.– High v// ~ 3vte gives efficient current drive with

reduced trapping effect. • Localized JLH(r) can be used to control and move

the shear reversal point associated with an internal transport barrier (ITB) to larger radii, with qmin > 2.

• Improved confinement broadens the pressure profile, thus increasing Q and fBS = IBS/Ip.

Page 6: Review of Recent Experimental and Modeling Progress in the … · 2013-06-28 · Review of Recent Experimental and Modeling Progress in the Lower Hybrid Range of Frequencies at ITER

Ip = 7.75 MAIBS = 3.3 MAINB = 3.2 MAIEC = 0.7 MAIFW = 0.25PNB = 33 MWPEC = 20 MWPIC = 20 MW (feedback)Q = 3.4li(3) = 0.9n/nGr = 1.0βN = 2.2H98 = 1.57Zeff = 2.4Tped = 3.7 keVn(0)/<n> = 1.5

Ip = 9.4 MAIBS = 4.1 MAINB = 3.5 MAIEC = 0.71 MAILH = 0.93 MAPNB = 33 MWPEC = 20 MWPLH = 20 MWQ = 4.1li(3) = 0.69n/nGr = 0.82βN = 2.45H98 = 1.60Zeff = 2.4Tped = 3.75 keVn(0)/<n> = 1.5

ITER steady state scenario studies found that adding 20 MW of LH can provide control of li(3) down to < 0.7 and raise qmin while keeping ρ(qmin) about the same (Kessel, IAEA, 2010; Poli, RF Conf, Invited Talk, 2013)

Page 7: Review of Recent Experimental and Modeling Progress in the … · 2013-06-28 · Review of Recent Experimental and Modeling Progress in the Lower Hybrid Range of Frequencies at ITER

ARIES-AT design utilized 37 MW of LHCD power in high fBS operating mode (Najmabadi, FED, 2006)

Major Parameters for ARIES-AT

Major radius (m) 5.2Minor radius (m) 1.3Plasma current (MA) 12.8On-axis field (T) 5.8Plasma elongation 2.20Plasma triangularity 0.90Normalized beta - N(%) 5.4On-axis safety factor (q0) 3.50Minimum safety factor (qmin) 2.40Edge safety factor – qe 3.70Internal inductance – li(3) 0.29Bootstrap current fraction 0.91Current drive power (MW) 42Te(0), Ti(0) (keV) 18Electron density (1020 m-3) 2.15ITER89-P multiplier 2.0

ARIES-AT LHCD System (f0 = 3.6 GHz)

N// Power Driven Current(MW) (MA)

1.65 3.1 0.152.0 4.4 0.2 2.5 8.2 0.33.5 8.9 0.25.0 12.4 0.15

Page 8: Review of Recent Experimental and Modeling Progress in the … · 2013-06-28 · Review of Recent Experimental and Modeling Progress in the Lower Hybrid Range of Frequencies at ITER

JT60-U demonstrated pure non-inductive plasmas (BSCD+LHCD) in quasi-steady state with reverse shear

sustaining and controlling an ITB (Ide, NF, 2000)

JLH = J(MSE) – JBS(ACCOME)

q() from MSE

q() during LHRF q() after LHRF

fBS=23%ILH/Ip = 77%Ip = 0.9 MAPLH=2.5 MWf0 = 2 GHzn//(0) =[1.65, 2.25]

B0 = 2 Tne ~ 2 1019 m-3

PNB=2.5 MWVl 0

Page 9: Review of Recent Experimental and Modeling Progress in the … · 2013-06-28 · Review of Recent Experimental and Modeling Progress in the Lower Hybrid Range of Frequencies at ITER

Core ITB’s have been sustained with LHCD in ELM’y H-mode plasmas in JET heated by NBCD and ICRF (Litaudon, PPCF, 2002)

~2.7 MW of LHCD at 3.7 GHz [n//(0) = 1.8] is coupled using gas injection (CD4) technique with PNBI = 15 MW and PICRF = 4 MW at ne ~ 5-6 × 1019 m-3.

B0 = 3.45 TIp = 2 MAN = 1.7IBS ~ 1.0 MAILH ~ 0.4-0.8 MAINB ~ 0.2-0.6 MA

ITB ~ res

Page 10: Review of Recent Experimental and Modeling Progress in the … · 2013-06-28 · Review of Recent Experimental and Modeling Progress in the Lower Hybrid Range of Frequencies at ITER

Electron ITB has been triggered with LHCD in Alcator C-Mod (Shiraiwa, IAEA, 2012)

• PLH = 800 kW, n//(0) = 1.9• Ip = 0.5 MA, B0 = 5.4 T• 0.3 s after LH injection Te(0)

increases spontaneously from 2.5 – 4 keV.

0.00.10.20.30.40.50.6

[MA

]

-2.0-1.5-1.0-0.50.00.51.0

[V]

0.0 0.5 1.0 1.5 2.001

2

3

45

[ke

V]

Loop Voltage

Te0

Ip & PLH

1101119004

LH

Page 11: Review of Recent Experimental and Modeling Progress in the … · 2013-06-28 · Review of Recent Experimental and Modeling Progress in the Lower Hybrid Range of Frequencies at ITER

Steady state regimes have been achieved with LHCD in diverted plasmas on Alcator C-Mod

at the ITER ne, B0 pe / ce

• B0 = 5.4 T• ne ~ 5 × 1019 m-3

• pe / ce ~ 0.42• f0 = 4.6 GHz

n//(0) = 1.6• Vloop ~ 0 for 0.2 s ~ R

• CD ~ 0.2-0.25 (1020

A/W/m2)

0

2

4

6

8

x 1019

n e [1019

m−

3 ]

0

0.5

1

1.5

Vlo

op [V

]

0.8 1 1.2 1.4 1.60

2

4

Te0

[keV

]

Time [s]

0

500

1000

PLH

[kW

]

1101019026

Page 12: Review of Recent Experimental and Modeling Progress in the … · 2013-06-28 · Review of Recent Experimental and Modeling Progress in the Lower Hybrid Range of Frequencies at ITER

As density increases, the effect of nonthermal contribution to current from LH can be seen to decrease as E// / Edreicer 0

(data analyzed following Giruzzi, NF, 1997)

EAST: ne = (1-1.3) × 1019 m-3, IP= 0.25 MA, n//(0) = 2.1 (B. Ding, FST, 2011)

C-Mod: ne = (3.5-7) × 1019 m-3, IP = (0.5-1.0) MA, 120 kW < PLH < 830 kW) (Bonoli, PoP, 2008)

0 0.5 – 0.85 × 1019 A/W/m2 0 2.5 × 1019 A/W/m2

Page 13: Review of Recent Experimental and Modeling Progress in the … · 2013-06-28 · Review of Recent Experimental and Modeling Progress in the Lower Hybrid Range of Frequencies at ITER

Steady state discharges in Tore-Supra have made it possible to test launcher cooling concepts for long

pulse (Hillairet, NF, 2013)

• C3 - FAM is an actively cooled fully active multi-junction launcher

• C4 – PAM is a passive-active multi-junction launcher concept.

• f0 = 3.7 GHz

Page 14: Review of Recent Experimental and Modeling Progress in the … · 2013-06-28 · Review of Recent Experimental and Modeling Progress in the Lower Hybrid Range of Frequencies at ITER

What are the issues then for LHRF applications in ITER and beyond ?

• Core wave propagation and absorption:– Will spatial diffusion of fast electrons be important.– What is the underlying mechanism(s) for bridging the “spectral-gap”

and should we worry about this for ITER ?• For SOL propagation:

– How will LH waves interact with the SOL as density is increased in single pass and multi-pass regimes – importance of wave scattering, and nonlinear effects (PDI), modifications to the SOL by LH power.

– Can waves be coupled over long distances (~10-15 cm).– Complications from divertor geometry and separatrix

• Can we utilize un-anticipated benefits of LHRF power:– LH-induced rotation profile changes.– Modifications of edge plasma at higher density – (ELM & pedestal

changes).• What innovative solutions will be needed to solve problems for

LHRF applications to ITER and beyond.

Page 15: Review of Recent Experimental and Modeling Progress in the … · 2013-06-28 · Review of Recent Experimental and Modeling Progress in the Lower Hybrid Range of Frequencies at ITER

Progress in theory, simulation, and model validation will help to answer key questions for future applications

• Extensive use of synthetic diagnostic techniques for hard x-ray (HXR) emission and Motional Stark Effect (MSE) have been a major advance:– Provides stringent tests of models for core wave propagation and

Fokker Planck physics.– Can be used to understand experimental trends.– This talk will focus primarily on HXR measurements.

• Advances in modeling capability:– Development of full-wave EM field solvers for LH waves.– Routine use of 3D (v, v//, r) Fokker Planck codes.– Inclusion of 2D SOL plasma profiles, 3D vessel geometry, and

magnetic geometry in diverted plasmas (separatrix) – New attempts to assess nonlinear processes such as parametric decay

instability (PDI) and wave scattering from density fluctuations.– Routine use of advanced models for LH actuators in whole device

modeling frameworks.• Some of this work has been done as part of an ITPA-IOS Joint

Activity IOS5.3.

Page 16: Review of Recent Experimental and Modeling Progress in the … · 2013-06-28 · Review of Recent Experimental and Modeling Progress in the Lower Hybrid Range of Frequencies at ITER

Fokker Planck solution via a response function – ray tracing approach is computationally fast and thus widely used

• Define and solve an “Adjoint Problem” for the Spitzer -Harm function (): [Karney, NF 1985]

rfrf pdJ

p3

•The response function contains all the physics effects already in the numerical 2D and 3D FP solvers such as particle trapping, DC electric field effect, and momentum conserving corrections in C(fe)

•(Jrf / Srf) can be found accurately, but computation of Jrf requires separate knowledge of rf and fe .

•rf and fe are evaluated from a 1-D (p//) solution of the FPE.

•Codes using this approach FRTC, LSC, ACCOME

||pfD e

QLrf

Page 17: Review of Recent Experimental and Modeling Progress in the … · 2013-06-28 · Review of Recent Experimental and Modeling Progress in the Lower Hybrid Range of Frequencies at ITER

Solution via combined 3-D(p, p//, r) Fokker Planck –ray tracing models are now more routine

• Ray tracing and FP solver iterate until a self-consistent Drfand fe are obtained.

• FP codes employ numerical bounce averages for C(fe) and Drf.

• Codes using this approach GENRAY/CQL3D, C3PO/LUKE

tf

rfr

rrp

pfeEppfC

pfpD

p

eeFs

ee

erf

1)(+

),,()(

//

//////

////

//

• Codes compute the steady state solution of FPE, with and without the radial diffusion operator:

Page 18: Review of Recent Experimental and Modeling Progress in the … · 2013-06-28 · Review of Recent Experimental and Modeling Progress in the Lower Hybrid Range of Frequencies at ITER

Understanding fast electron diffusion is critical for current profile control applications

• Early work by Baranov (NF, 1996) on JET showed that FAST could be inferred by matching the measured FEB signal with a synthetic diagnostic:– fe(r, v, v//) simulated with a ray

tracing / 2D (r, v//) Fokker Planck code.

– Found FAST ~ 0.5 m2/s reproduced FEB signal.

– ne(0) = 1.7 × 1019 m-3, n// = 1.85, IP=0.4 MA

– Fast electron diffusion important in this regime.

Page 19: Review of Recent Experimental and Modeling Progress in the … · 2013-06-28 · Review of Recent Experimental and Modeling Progress in the Lower Hybrid Range of Frequencies at ITER

Recent measurements / analysis on C-Mod have shown that FAST is negligible at higher density and current

(Schmidt, PoP, 2011)

• Measured HXR profiles on C-Mod (solid lines) could be simulated (dashed lines) using GENRAY-CQL3D with FAST ~ 0.01 (v// / (vte3) m2/s :– ne(0) = 9.0 × 1019 m-3, n// = 3.1,

IP=0.8 MA– Fast electron diffusion negligible

in this regime since slow << FAST

• Fast electron diffusivity inferred from HXR analysis of LH power modulation experiments consistent with FAST needed in simulations:– D = FAST = 0.01 m2 / s– ne(0) = 9.0 × 1019 m-3, n// =

3.1, IP=0.8 MA

Page 20: Review of Recent Experimental and Modeling Progress in the … · 2013-06-28 · Review of Recent Experimental and Modeling Progress in the Lower Hybrid Range of Frequencies at ITER

Tore Supra: Trends in measured HXR consistent with simulated HXR from ray tracing / Fokker Planck

(Goniche, NF, 2013)

• Decline in HXR at ne ~ 5 × 1019 m-3consistent with loss of wave accessibility (f0=3.7Ghz, B0=3.85T):– HXR successfully simulated using C3PO/LUKE and synthetic code R5-

X2.– Measured profiles always peaked at r/a ~ 0.2– No conclusive data to link decline to SOL interactions (except for one

discharge where PDI was observed).

Page 21: Review of Recent Experimental and Modeling Progress in the … · 2013-06-28 · Review of Recent Experimental and Modeling Progress in the Lower Hybrid Range of Frequencies at ITER

Tore Supra: Measured HXR simulated using ray tracing / Fokker Planck model (Peysson, PoP, 2008)

• Simulated HXR (solid line) from ray tracing/Fokker Planck model (C3PO/LUKE) and RX-52 HXR synthetic diagnostic code:

– IP=0.7 MA, PLH=4 MW, f0=3.7 GHz, n//(0) = 2.0.

– Included effect of helical winding of magnetic field to explain the LFS/HFS asymmetry.

– Have developed simplified models for DQL in multi-pass regime and tested them using the synthetic HXR technique (EPS, 2007).

– Have recently interpreted HXR results in terms of LH wave scattering from density fluctuations as a way to close spectral gap in LHCD (Decker Invited Talk I3.3).

Page 22: Review of Recent Experimental and Modeling Progress in the … · 2013-06-28 · Review of Recent Experimental and Modeling Progress in the Lower Hybrid Range of Frequencies at ITER

C-Mod: Measured HXR found to be consistent with ray tracing / Fokker Planck if 2D SOL is added to GENRAY ray tracing code

(Wallace, PoP, 2010; NF, 2011)

• Decline in HXR at ne > 1.1 × 1019 m-3 consistent with collisional damping of LH waves in SOL (f0=4.6Ghz, B0=5.4T):– HXR simulated using GENRAY-CQL3D and a synthetic code– Caveat: PDI also observed in these discharges.

0.4 0.6 0.8 1 1.2 1.4 1.6

x 1020

103

104

105

106

107

Line Integrated HXR Count Rate

Line Averaged ne

[m−3]

Cou

nt R

ate

(Cho

rds

9−24

, 40−

200

keV)

[s−

1 ]

n||=1.9, 5.4T, 800kA

n||=2.3, 5.4T, 800kA

n||=1.9, 7.0T, 800kA

n||=2.3, 7.0T, 800kA

n||=1.9, 5.4T, 1.1MA

n||=2.3, 5.4T, 1.1MA

GENRAY-CQL3D w/o SOL

GENRAY-CQL3D with SOL

ne-av = 1.4 × 1020m-3, IP=0.8 MA, B0=5.4 T

Page 23: Review of Recent Experimental and Modeling Progress in the … · 2013-06-28 · Review of Recent Experimental and Modeling Progress in the Lower Hybrid Range of Frequencies at ITER

FTU: Measured HXR behavior at high density is also consistent with ray tracing / Fokker Planck if collisional

damping is included (Barbato, NF, 2011)

• Standard Regime (SR) plasmas exhibit dominant collisional damping at edge while New Regime (NR) discharges produced with pellet injection exhibit reduced collisional damping and recover HXR:– Ray tracing / CD simulated using the FRTC code without SOL– PDI also observed in these discharges (Cesario, Nature Comm,

2010).

Page 24: Review of Recent Experimental and Modeling Progress in the … · 2013-06-28 · Review of Recent Experimental and Modeling Progress in the Lower Hybrid Range of Frequencies at ITER

Development of full-wave field solvers in the LHRF has been a major advance in modeling (Wright, PoP,

2009; Meneghini, PoP, 2009, Shiraiwa, PoP, 2010)

• Important tool for understanding multi-pass damping regimes and wave behavior at higher density:– Approach includes full-wave effects such as diffraction,

scattering at a cut-off, and poloidal mode coupling.• Wave equation is solved using either a semi-spectral ansatz

for E (TORLH) or a pure finite element method (FEM) approach (LHEAF):

2

2

4( ) ANTc iE S E iD b E PE J

• Field solvers have also been coupled to 3D Fokker Planck codes:– TORLH+CQL3D (Wright, PoP, 2009)– LHEAF+VERD (Shiraiwa, PoP, 2011)

Page 25: Review of Recent Experimental and Modeling Progress in the … · 2013-06-28 · Review of Recent Experimental and Modeling Progress in the Lower Hybrid Range of Frequencies at ITER

Full-wave LH simulations reveal spectral broadening seen in ray tracing that is needed to fill the spectral gap in weak

damping regimes (Wright, PoP, 2009)

TORLH simulation for C-Mod at ne ~ 5-7 × 1019 m-3, Te(0) = 2.3 keV, n//(0)=-1.55. Damping is based on quasilinear distribution from coupling to CQL3D.

Poloidal power spectrum on several flux surfaces for TORLH-CQL3D simulation exhibits spectral broadening due to poloidal mode coupling and diffraction.

Page 26: Review of Recent Experimental and Modeling Progress in the … · 2013-06-28 · Review of Recent Experimental and Modeling Progress in the Lower Hybrid Range of Frequencies at ITER

Full-wave/ Fokker Planck and ray tracing / Fokker Planck simulations have shown that toroidicity can close the spectral

gap in EAST (C. Yang, ASIPP, to be published, 2013).

• GENRAY/CQL3D and TORLH/CQL3D simulations reveal that toroidal effect is sufficient to close a large spectral gap despite high aspect ratio of device [R0/a = 1.85m / 0.45m]:– ne(0) = 1.0 1019 m-3, Te(0) = 1.5 keV, and Ip = 480 kA, f0 =

2.45 GHz, and n//(0) = 2.1

rho

Seld

(MW

/ m

3 )

TORLH+CQL3DTORLH+CQL3D

GENRAY+CQL3DGENRAY+CQL3D

1000 500 0 500 100010 8

10 6

10 4

10 2

100 ~ r/a0.100.300.500.700.901.00

Spectrum of Re(E ) versus m

|FFT

(Re(

E ))|

Poloidal mode number - m

Page 27: Review of Recent Experimental and Modeling Progress in the … · 2013-06-28 · Review of Recent Experimental and Modeling Progress in the Lower Hybrid Range of Frequencies at ITER

Full-wave FEM solver LHEAF (Meneghini, PoP, 2009) models SOL and vessel geometry accurately simulations at high density reveal spectral broadening at edge that can possibly contribute to HXR decline (Meneghini, PhD Thesis, 2012)

LHEAF-VERD simulation for C-Mod at ne ~ 1.3 × 1020 m-3 shows high Landau absorption inside the LCFS compared to the collisional damping outside the LCFS predicted by GENRAY-CQL3D.

0 0.5 1 1.50

5

10

15

20

25

30

35

r/a

Pow

er a

bs in

r/a

bin

[kW

]

Forward Power Only

LHEAF/VERDGENRAY/CQL3D

Page 28: Review of Recent Experimental and Modeling Progress in the … · 2013-06-28 · Review of Recent Experimental and Modeling Progress in the Lower Hybrid Range of Frequencies at ITER

Edge losses in C-Mod due to collisional damping in the SOL and full-wave spectral effects in the edge cannot

fully explain the decline in HXR at high density

Points to possible role of nonlinear effects in HXR decline (Baek, PPCF, 2013; also Baek, Invited Talk I2.7).

Page 29: Review of Recent Experimental and Modeling Progress in the … · 2013-06-28 · Review of Recent Experimental and Modeling Progress in the Lower Hybrid Range of Frequencies at ITER

In LSN C-Mod plasmas, ion cyclotron PDI is excited near the inner plasma edge above e ≈ 1x1020 m-3 (Baek, PPCF, 2013; RF Conf.

2013, Invited Talk I2.7) At ne≈ 1.2 x1020 m-3 no ion cyclotron PDI

occurs at the outer edge within the detector sensitivity

Inner wall probe detects PDI occurring at the inner edge (decay of LH pump wave into an ion cyclotron quasi-mode).

Underlying cause for onset of PDI on HFS at lower density than expected (Porkolab, PF, 1977) thought to be due to weaker penetration of LH pump wave as the density increases.

Page 30: Review of Recent Experimental and Modeling Progress in the … · 2013-06-28 · Review of Recent Experimental and Modeling Progress in the Lower Hybrid Range of Frequencies at ITER

HXR decline in C-Mod may be mitigated by insuring single pass damping of LH waves (Shiraiwa, RF Conf., 2013)

• Proposed experiment– Double LHCD power to 2MW level– 2nd launcher is located off-midplane in order to realize high single

pass absorption• Goal is to demonstrate recovery of LHCD efficiency at high

density by enhanced single pass absorption

Page 31: Review of Recent Experimental and Modeling Progress in the … · 2013-06-28 · Review of Recent Experimental and Modeling Progress in the Lower Hybrid Range of Frequencies at ITER

Nonlinear PDI has been investigated extensively in FTU as the cause of the HXR decline seen at high density in “Standard Regime”

plasmas (ne ~ 1.5 × 1020 m-3 and low outer Te)

Ion sound quasi-mode is found to be excited in FTU “Standard Regime “plasmas.

Mode is reduced in “New Regime “ plasmas created with pellet injection and characterized by high outer Te.

Process has been simulated using the LHSTAR code (Cesario, PRL, 2004).

Standard Regime

New Regime

Cesario, Nature Comm, 2010

Page 32: Review of Recent Experimental and Modeling Progress in the … · 2013-06-28 · Review of Recent Experimental and Modeling Progress in the Lower Hybrid Range of Frequencies at ITER

Extensive work has also been done to interpret the FTU results in terms of LH wave scattering from density fluctuations in the SOL (Pericol-Ridolfini, NF, 2011)

• Calculated an optical thickness (OPT) of the plasma SOL due to LH wave scattering from density fluctuations (following Andrews and Perkins, PF, 1983).

• Spectral broadening of LH pump wave simulated by scattering found to be consistent with experimental measurement.

• Found that fluctuation amplitude and OPT are reduced in New Regime discharges.

Page 33: Review of Recent Experimental and Modeling Progress in the … · 2013-06-28 · Review of Recent Experimental and Modeling Progress in the Lower Hybrid Range of Frequencies at ITER

Simulations by Bertelli (PPCF, 2013) applied Monte Carlo wave scattering technique in GENRAY-CQL3D to study role of

fluctuation scattering in density limit on C-Mod

• Effect of scattering is sensitive to matching between k-LH and k-Fluct:– Found that although scattering could broaden RF power density

and HXR profiles, it could not explain decline in HXR emission at high density.

ne = 0.53 × 1020 m-3 ne = 1.47 × 1020 m-3

Page 34: Review of Recent Experimental and Modeling Progress in the … · 2013-06-28 · Review of Recent Experimental and Modeling Progress in the Lower Hybrid Range of Frequencies at ITER

Linear and nonlinear coupling studies of LH waves has been an active area – experimentally and

theoretically

• Large gap (~15 cm) needed to couple LH waves in ITER has been tested experimentally on JT60-U (Ide, NF, 2000):– In plasmas with H-mode edge.– Gap was up to 14 cm.– Discharges were diverted, but relatively quiescent.

Page 35: Review of Recent Experimental and Modeling Progress in the … · 2013-06-28 · Review of Recent Experimental and Modeling Progress in the Lower Hybrid Range of Frequencies at ITER

LH waves have been coupled over large distances (~ 11cm) in JET using a gas puff technique

(Ekedahl, RF Conf., 1997; NF, 2005; PPCF, 2012)

• First experiments were done with D2 gas puffing into L-mode plasmas (Ekedahl, RF Conf, 1997).

• Later experiments used CD4 in H-mode plasmas with edge localized mode activity (Ekedahl, NF, 2005).

• More recently found that gas injection from outboard midplane was more effective than top gas injection system (Ekedahl, PPCF, 2012)

Page 36: Review of Recent Experimental and Modeling Progress in the … · 2013-06-28 · Review of Recent Experimental and Modeling Progress in the Lower Hybrid Range of Frequencies at ITER

Recent measurements from C-Mod have confirmed nonlinear modifications to density profile during LHRF injection

• Profiles measured with an X-mode SOL reflectometer (C. Lau, MIT PhD Thesis, 2103)

• Profiles have been simulated using the “POND” code (Meneghini, MIT PhD Thesis, 2012):– Accounts for nonlinear

ponderomotive force modifications of the density profile by the LHRF power.

• Measured millimeter-like vacuum gap in density profiles:– Consistent with what is needed to

reproduce experimental values of RC in linear coupling codes (“Grill” code, SWAN code, ALOHA).

LH off – dashed linesLH on – solid linesSimulations – solid lines with circles

Page 37: Review of Recent Experimental and Modeling Progress in the … · 2013-06-28 · Review of Recent Experimental and Modeling Progress in the Lower Hybrid Range of Frequencies at ITER

New experimental results may point way to unexpected advantages of LHRF injection

• Co- and counter- current ion toroidal rotation is observed on C-Mod after injecting LH waves (A. Cushman, PRL, 2009) and has been studied theoretically (J. P. Lee, MIT PhD Thesis, 2013):– Initial change in rotation is found to be consistent with simulated torque

density from LH injection.– But need to account for intrinsic rotation in order to explain longer time

behavior of rotation (J.P. Lee, RF Conf., 2013).

Page 38: Review of Recent Experimental and Modeling Progress in the … · 2013-06-28 · Review of Recent Experimental and Modeling Progress in the Lower Hybrid Range of Frequencies at ITER

Co-current rotation also observed in EAST with LHRF injection (Shi, PRL, 2011)

• Rotation change is ~ 40 km/s in the L-mode plasma core and ~20 km/s in the edge.– Simple model based on turbulent equipartition and

thermoelectric pinch can explain this rotation.

Page 39: Review of Recent Experimental and Modeling Progress in the … · 2013-06-28 · Review of Recent Experimental and Modeling Progress in the Lower Hybrid Range of Frequencies at ITER

LHRF injection into edge plasma has dramatically modified edge plasma in EAST

• Strong mitigation of edge-localized modes has been observed on EAST, when LH power is applied to H-mode plasmas with ICRF heating. – ELM peak particle flux (ion) decreases by ~ factor 2 and stored energy

increases during LH pulse. – IP = 0.5 MA, ne-av ~ 4.7 × 1019 m-3, B0 = 1.8T, f0 = 2.45 GHz, PLH = 2

MW. • LH waves appear to

modify magnetic topology by driving helical current filaments along field lines in the SOL.

• Leads to a splitting of the divertor strike-point with stabilization effects similar to what is associated with RMP coils.

Page 40: Review of Recent Experimental and Modeling Progress in the … · 2013-06-28 · Review of Recent Experimental and Modeling Progress in the Lower Hybrid Range of Frequencies at ITER

Pedestal characteristics actively modified with LHRF injection in C-Mod (Hughes, APS, 2010)

• Apply 1MW of LH power to an EDA H-mode produced with ~1.5 MW of ICRF heating.

• “Improved” pedestal characteristics with lower density and higher Te at the edge.

• LH waves not accessible to the plasma core.

Page 41: Review of Recent Experimental and Modeling Progress in the … · 2013-06-28 · Review of Recent Experimental and Modeling Progress in the Lower Hybrid Range of Frequencies at ITER

Innovative concepts may be needed for LHRF applications to ITER and DEMO

• Integrated modeling now includes most advanced LH actuator models available:– Makes it possible to optimize and define the ITER Baseline

Heating and Current Drive System and to study the feasibility of new actuator concept (see F. Poli, Invited Talk I3.1, RF Conf., 2013).

– Several integrated modeling frameworks are now available (ITM, SWIM, TASK, CRONOS, TRANSP/TSC, PTRANSP).

• HFS launch of LH wave may prove to be useful:– Lower n// is accessible to same density so that it’s possible

to “burn through” edge pedestal.

Page 42: Review of Recent Experimental and Modeling Progress in the … · 2013-06-28 · Review of Recent Experimental and Modeling Progress in the Lower Hybrid Range of Frequencies at ITER

TSC(free boundary)

Discharge scenario

T, n, (R,z)eq

PF coil currentsfeedback system

H&CD profilesNB    :  NUBEAMICRH : TORICECRH: TORAY, GENRAYLH:      GENRAY, (LSC)2D Fokker Planck: CQL3D

Transport modelCoppi‐Tang, CDBM(GLF23, BgB, MMM)

JSOLVER (refines eq.)BALMSC (ballooning)PEST (kink)(NOVA‐K)

Linear MHD stability

Target plasmaR=6.2, a=2.0, =1.8, ~0.45n/nG>0.75

Time-dependent simulations evolve plasma equilibrium and H&CD source profiles consistently

SWIM (fully consistent)TRANSP (analysis loop)SWIM (fully consistent)TRANSP (analysis loop)

Francesca Poli 20th RFPPC, Sorrento, Italy, June 25-28

Page 43: Review of Recent Experimental and Modeling Progress in the … · 2013-06-28 · Review of Recent Experimental and Modeling Progress in the Lower Hybrid Range of Frequencies at ITER

Although HFS launch has a clear theoretical advantage, it is necessary to test the concept (Shiraiwa, IAEA-SSO, 2013)

• In reactors, combination of high density + high temperature makes LH wave penetration difficult.

• Higher magnetic field allows use of lower launched n||, therefore reducing the likelihood that LH waves will be absorbed too close to the edge.

Lower-Inside-launch envisioned in the ‘Vulcan’ reactor study (Podpaly, FED, 2012)

Test case on C-Mod shows the possibility of realizing high single pass absorption with lower n//

Page 44: Review of Recent Experimental and Modeling Progress in the … · 2013-06-28 · Review of Recent Experimental and Modeling Progress in the Lower Hybrid Range of Frequencies at ITER

Summary-1• LH current profile control physics needed for ITER has been

demonstrated in a number of devices:– Core ITB control and sustainment in JT60-U and JET. – Current generation at ITER relevant ne, B0, and f0– Demonstrations still needed at slightly higher density (ne ~ 1 × 1020

m-3) and at longer pulse lengths > L/R• Development and validation of a simulation capability for LH

physics has seen great progress: – Widespread use of diagnostics for hard x-ray emission (HXR),

MSE, and synthetic diagnostic codes.– Combined ray tracing / Fokker Planck solvers with 2D SOL for ray

tracing and 3D (r, v, v//) for Fokker Planck.– Development of full-wave solvers and combined with Fokker

Planck.– Many plausible theories for closing spectral gap exist (toroidicity,

scattering, full-wave effects, PDI):• But no direct measurements have been made to support a specific theory.• Understanding underlying cause is important even if ITER will be in the

single pass damping regime.• Different mechanisms may be operative in different experiments.

Page 45: Review of Recent Experimental and Modeling Progress in the … · 2013-06-28 · Review of Recent Experimental and Modeling Progress in the Lower Hybrid Range of Frequencies at ITER

Summary-2• Anomalous decline in LH wave – electron interaction at ne > 1 × 1020 m-3 still

not completely understood:– Several plausible theories exist for the anomalous decline in HXR

emissivity:• Collisional damping, large spectral upshifts due to full-wave effects

(diffraction at edge), nonlinear PDI, wave scattering.• Experimental evidence does not point to one specific cause for HXR

decline in all experiments.• Hotter plasma (single pass damping) and hotter edge/SOL would

probably help in all cases.– Experimental evidence, supported by ray tracing / Fokker Planck

simulations supports notion that fast electrons used for LH current profile control in ITER should undergo minimal spatial diffusion.

• Long distance coupling needed for ITER (10-15 cm) has been demonstrated on a number of devices although further work is needed:– Linear coupling codes work well once the density profile in the SOL is

known.– Most recent JET results did not find optimal coupling using gas injectors

that were magnetically connected to LH launcher, although gas injection from injectors at the midplane is still quite effective.

– LH power causes nonlinear modifications to SOL density that are only now starting to be simulated with some confidence.

Page 46: Review of Recent Experimental and Modeling Progress in the … · 2013-06-28 · Review of Recent Experimental and Modeling Progress in the Lower Hybrid Range of Frequencies at ITER

Summary-3• Un-anticipated benefits of LH power injection have been

observed:– Observed changes in toroidal ion rotation direction can be

significant (up to 50 km/s):• Mechanism is not well-established and may be different in each device.

– Modification of ELM behavior and pedestal characteristics with edge LHCD is quite desirable:

• Again mechanisms are not well-understood.• Integrated modeling frameworks have been developed that

should allow optimization of the ITER Heating and CD System:– Will also be a useful tool for predicting performance at DEMO

relevant parameters.• Innovative concepts for overcoming reactor limitations should

be pursued more aggressively:– HFS launch of LH power may make it possible to “burn through”

the high pedestal temperatures expected in DEMO.

Page 47: Review of Recent Experimental and Modeling Progress in the … · 2013-06-28 · Review of Recent Experimental and Modeling Progress in the Lower Hybrid Range of Frequencies at ITER

Acknowledgements• Thank you to colleagues for discussions and material• MIT:

– John Wright, Syun’ichi Shiraiwa, Greg Wallace, Seung Gyou Baek, Amanda Hubbard, Cornwall Lau, Orso Meneghini, Bob Mumgaard, Ron Parker, Miklos Porkolab

• PPPL– Nicola, Bertelli, Randy Wilson

• Tore Supra:– Yves Peysson, Joan Decker, Gerardo Giruzzo, Marc Goniche,

Mélanie Preynas• FTU:

– Angelo Tuccillo, Emilia Barbato, Roberto Cesario• EAST:

– Bojiang Ding, Cheng Yang• IPP – Garching

– Marco Brambilla

Page 48: Review of Recent Experimental and Modeling Progress in the … · 2013-06-28 · Review of Recent Experimental and Modeling Progress in the Lower Hybrid Range of Frequencies at ITER

C-Mod: Measured HXR found to be consistent with ray tracing / Fokker Planck if 2D SOL is added to GENRAY ray tracing code

• Rapid decline in HXR at ne > 1.1 × 1019 m-3 consistent with collisional damping of LH waves in SOL (f0=4.6Ghz, B0=5.4T):– HXR simulated using GENRAY-CQL3D and a synthetic code– Caveat: PDI also observed in these discharges.

0.4 0.6 0.8 1 1.2 1.4 1.6

x 1020

103

104

105

106

107

Line Integrated HXR Count Rate

Line Averaged ne

[m−3]

Cou

nt R

ate

(Cho

rds

9−24

, 40−

200

keV)

[s−

1 ]

n||=1.9, 5.4T, 800kA

n||=2.3, 5.4T, 800kA

n||=1.9, 7.0T, 800kA

n||=2.3, 7.0T, 800kA

n||=1.9, 5.4T, 1.1MA

n||=2.3, 5.4T, 1.1MA

GENRAY-CQL3D w/o SOL

GENRAY-CQL3D with SOL

Wallace, PoP, 2010; NF, 2011 Mumgard, RF Conf., 2013

Evidence from MSE that JLH is moving outward as ne increases