research on vision systems for small unmanned vtol vehicles k. p. valavanis, m.kontitsis, r.garcia

83
Research on Vision Systems for Small Unmanned VTOL Vehicles K. P. Valavanis, M.Kontitsis, R.Garcia

Upload: gilbert-powell

Post on 29-Dec-2015

218 views

Category:

Documents


2 download

TRANSCRIPT

Page 1: Research on Vision Systems for Small Unmanned VTOL Vehicles K. P. Valavanis, M.Kontitsis, R.Garcia

Research on Vision Systems for Small Unmanned VTOL

Vehicles

K. P. Valavanis, M.Kontitsis, R.Garcia

Page 2: Research on Vision Systems for Small Unmanned VTOL Vehicles K. P. Valavanis, M.Kontitsis, R.Garcia

A UAV Vision System for Airborne Surveillance

M.Kontitsis, K. Valavanis

Technical University of Crete

University of South Florida

N. Tsourveloudis

Page 3: Research on Vision Systems for Small Unmanned VTOL Vehicles K. P. Valavanis, M.Kontitsis, R.Garcia

Objectives

• Present a methodology for the design of a machine vision system for aerial surveillance by Unmanned Aerial Vehicles (UAVs)

• Identify specified thermal source• Perform these functions on board the

UAV in Real time• Flexible enough to be used in a variety

of applications

Page 4: Research on Vision Systems for Small Unmanned VTOL Vehicles K. P. Valavanis, M.Kontitsis, R.Garcia

Machine Vision System

IR/NIR image Noise reduction

Feature extraction

(Size, Mean intensity)

Feature vectors classification

Alarm on/off

Persistence

Page 5: Research on Vision Systems for Small Unmanned VTOL Vehicles K. P. Valavanis, M.Kontitsis, R.Garcia

Input Images

• IR (3μm ~ 14μm)

• 8bit grayscale

• Near IR camera (1μm ~ 3μm)

Page 6: Research on Vision Systems for Small Unmanned VTOL Vehicles K. P. Valavanis, M.Kontitsis, R.Garcia

Noise Reduction

• 5x5 spatial Gaussian filter

+ Smoothes noise while preserving most of the features on the image

Page 7: Research on Vision Systems for Small Unmanned VTOL Vehicles K. P. Valavanis, M.Kontitsis, R.Garcia

Feature Extraction

• Size of region using a region growing algorithm

• Mean intensity of region defined as

This module attempts to extract information about the regions on the image

Page 8: Research on Vision Systems for Small Unmanned VTOL Vehicles K. P. Valavanis, M.Kontitsis, R.Garcia

Feature Vector Classification Subsystem

Mean Intensity of Region

Size of Region

Target Identification Possibility

Fuzzy Classifier

Page 9: Research on Vision Systems for Small Unmanned VTOL Vehicles K. P. Valavanis, M.Kontitsis, R.Garcia

Mean Intensity Membership Functions

Grayscale values

HighMidLow

Page 10: Research on Vision Systems for Small Unmanned VTOL Vehicles K. P. Valavanis, M.Kontitsis, R.Garcia

Region Size Membership Functions

# of Pixels

Small Medium Large

Page 11: Research on Vision Systems for Small Unmanned VTOL Vehicles K. P. Valavanis, M.Kontitsis, R.Garcia

Objective ID Possibility Membership Functions

Page 12: Research on Vision Systems for Small Unmanned VTOL Vehicles K. P. Valavanis, M.Kontitsis, R.Garcia

Output of the Fuzzy Classifier

Page 13: Research on Vision Systems for Small Unmanned VTOL Vehicles K. P. Valavanis, M.Kontitsis, R.Garcia

Classification Example

Page 14: Research on Vision Systems for Small Unmanned VTOL Vehicles K. P. Valavanis, M.Kontitsis, R.Garcia

Classification Result

p>0.8

0.5<p<0.8

p<0.5

Page 15: Research on Vision Systems for Small Unmanned VTOL Vehicles K. P. Valavanis, M.Kontitsis, R.Garcia

Alarm raising

• Persistent classification of a certain region as of High Possibility raises the alarm

• The region that raised the alarm is pin-pointed by a red cross

• The alarm stays on even if the thermal source is temporarily occluded by surroundings or lost due to violent camera vibration

Page 16: Research on Vision Systems for Small Unmanned VTOL Vehicles K. P. Valavanis, M.Kontitsis, R.Garcia

Alarm raising

Mechanism used : Alarm Registry

Region Coordinates Variable persistancei1,j1 p1

i2,j2 p2

…. ……..

in,jn pn

If pi > Ton => Activate alarm

If pi < Toff => Deactivate alarm

Page 17: Research on Vision Systems for Small Unmanned VTOL Vehicles K. P. Valavanis, M.Kontitsis, R.Garcia

Complexity

• Noise Reduction O(n2) for (nxn) image

• Region Growing O(n2) for (nxn) image

• Fuzzy Logic Classifier* O(nxm)

*in its current implementation

n inputs, m rules

Page 18: Research on Vision Systems for Small Unmanned VTOL Vehicles K. P. Valavanis, M.Kontitsis, R.Garcia

Case Study: Forest fires

Adjusting membership functions manually

Page 19: Research on Vision Systems for Small Unmanned VTOL Vehicles K. P. Valavanis, M.Kontitsis, R.Garcia

Classification Example

Thermal source (fire)

objective present

Page 20: Research on Vision Systems for Small Unmanned VTOL Vehicles K. P. Valavanis, M.Kontitsis, R.Garcia

Classification Result

possibility>0.7 0.5< possibility <0.7 possibility <0.5

objective present

Page 21: Research on Vision Systems for Small Unmanned VTOL Vehicles K. P. Valavanis, M.Kontitsis, R.Garcia

Classification Example

objective absent

Page 22: Research on Vision Systems for Small Unmanned VTOL Vehicles K. P. Valavanis, M.Kontitsis, R.Garcia

Classification Result

possibility>0.7 0.5< possibility <0.7 possibility <0.5

objective absent

Page 23: Research on Vision Systems for Small Unmanned VTOL Vehicles K. P. Valavanis, M.Kontitsis, R.Garcia

Classification Result (Video)

(objective present)

Page 24: Research on Vision Systems for Small Unmanned VTOL Vehicles K. P. Valavanis, M.Kontitsis, R.Garcia

Classification Result (Video) (objective absent)

Page 25: Research on Vision Systems for Small Unmanned VTOL Vehicles K. P. Valavanis, M.Kontitsis, R.Garcia

Automatic Parameter Selection

• aij bij cij dij for i=1 and j =1,2,3 which define the form of the membership functions of Mean Intensity

aijbij cij dij

Page 26: Research on Vision Systems for Small Unmanned VTOL Vehicles K. P. Valavanis, M.Kontitsis, R.Garcia

Basic Elements of the Genetic Algorithm

Fitness function

0.05( ) distfitness x e

fitness(x)=1 correct deactivation of the alarm

fitness(x)=0 in any other case

correct activation of the alarm

• Chromosome => parameters x=(aij bij cij dij)

Page 27: Research on Vision Systems for Small Unmanned VTOL Vehicles K. P. Valavanis, M.Kontitsis, R.Garcia

Basic Elements of the Genetic Algorithm

Selection operator selects individuals for mating as many times as the ratio of their fitness to the total fitness of the population

Crossover operator crossover probability pc=0.7

Mutation operator mutation probability pm=0.001

Page 28: Research on Vision Systems for Small Unmanned VTOL Vehicles K. P. Valavanis, M.Kontitsis, R.Garcia

Mean Intensity M.F. as evolved by GA

Page 29: Research on Vision Systems for Small Unmanned VTOL Vehicles K. P. Valavanis, M.Kontitsis, R.Garcia

Result (using GA for parameter selection)

Page 30: Research on Vision Systems for Small Unmanned VTOL Vehicles K. P. Valavanis, M.Kontitsis, R.Garcia

Remarks

• Adjustable for a variety of applications

• Real time execution

• Correct identification rate of about 90%

• False alarms not entirely avoided (especially in the system evolved by the GA)

Page 31: Research on Vision Systems for Small Unmanned VTOL Vehicles K. P. Valavanis, M.Kontitsis, R.Garcia

Design, Implementation and Testing of a Vision System for

Small Unmanned VTOL Vehicles

K. P. Valavanis, M.Kontitsis, R.Garcia

Page 32: Research on Vision Systems for Small Unmanned VTOL Vehicles K. P. Valavanis, M.Kontitsis, R.Garcia

Aim of the work

• To explore the design alternatives in the attempt to implement a functional vision system for a small Unmanned VTOL.

• Two different approaches examined: – On board processing– On the ground processing

Page 33: Research on Vision Systems for Small Unmanned VTOL Vehicles K. P. Valavanis, M.Kontitsis, R.Garcia

Limitations

• Weight Limitations

• Power Supply Limitations

• Processing power issues

• Communications

Page 34: Research on Vision Systems for Small Unmanned VTOL Vehicles K. P. Valavanis, M.Kontitsis, R.Garcia

Ground Control Station (GCS )

UAV / VTOL

Data link (telem

etry + video)

•Sensing (camera)

•Transmitting data to GCS

•Map Building

•Target Identification

•Command Issuing

Com

man

ds

Centralized approach (processing wise)

Processing is left to the PC on the Ground Control Station

Page 35: Research on Vision Systems for Small Unmanned VTOL Vehicles K. P. Valavanis, M.Kontitsis, R.Garcia

Ground Control Station (GCS )

UAV / VTOL

Data link (telem

etry + video)

•Sensing (camera)

•Map Building

•Target Identification

•Transmitting data and alarm signal to GCS

•Command Issuing

Com

man

ds

De-centralized approach (processing wise)

Processing is carried out locally on the PC onboard the UAV / VTOL

Page 36: Research on Vision Systems for Small Unmanned VTOL Vehicles K. P. Valavanis, M.Kontitsis, R.Garcia

General trends in the area

Institution

Machine Vision techniques

used Processing unit VehicleBerkeley University [6] No details provided No details provided BEAR

Georgia Tech [18] [19]

Edge detectors, morphing,statistical pattern matching

On- board Rmax by Yamaha

Standford University [10] [12]

YUV color segmentation, signum of Laplacian of Gaussian (sLoG)

On-the-ground Hummingbird Aerospace Robotic Laboratory at Standford

MIT [21] Template matching On-the-ground Black Star by TSK

Rose Hulman IT (RHIT) [22] Template comparison On-board Bergen Twin

IT Berlin [15] No details provided On-the-ground MARVIN by SSM Technik

University of Texas [13] Edge linking matching On-the-ground XCell .60

Swiss Federal Institute of Technology (ETH) [23]

No details providedOn-board integrated in

camera Huner Technik

Carnegie Mellon University [24]

Template matching and RGB color

On-the-ground Rmax by Yamaha

USC [3] [5]Omnidirectional, optic flow

On-board Bergen Twin

Southern Polytechnic State Univesity [14]

Stereo vision, Sobel egde detector

On-the-ground Vario Robinson R22

Linkoping University, Sweden (WITAS) [25]

No details provided On-board Rmax by Yamaha

Page 37: Research on Vision Systems for Small Unmanned VTOL Vehicles K. P. Valavanis, M.Kontitsis, R.Garcia

Functionality and characteristics

Institution Berkeley University

Georgia Tech

Univ. of South

California

COMETS*

[26]WITAS

+[25]CNRS~

[27]

Experimental setup

Dynamic observer X X X X X X

Dynamic environment

X X

Static / man-made environment

X X X

Known landmarks X X X

Natural landmarks X

Calibrated cameras X

Capabilities 3D reconstruction / depth mapping

X X

Object identification

X X X X

Object tracking X X X

Methods used

Optic flow X X X

Motion estimation X X X X

IMU data X

Template matching X X X X

Page 38: Research on Vision Systems for Small Unmanned VTOL Vehicles K. P. Valavanis, M.Kontitsis, R.Garcia

Processing on the Ground

Page 39: Research on Vision Systems for Small Unmanned VTOL Vehicles K. P. Valavanis, M.Kontitsis, R.Garcia

Hardware configuration (on the ground processing)

Page 40: Research on Vision Systems for Small Unmanned VTOL Vehicles K. P. Valavanis, M.Kontitsis, R.Garcia

Vision algorithm overview

Page 41: Research on Vision Systems for Small Unmanned VTOL Vehicles K. P. Valavanis, M.Kontitsis, R.Garcia

Experimental Results

Page 42: Research on Vision Systems for Small Unmanned VTOL Vehicles K. P. Valavanis, M.Kontitsis, R.Garcia

“Mine” detection results

Page 43: Research on Vision Systems for Small Unmanned VTOL Vehicles K. P. Valavanis, M.Kontitsis, R.Garcia

“Mine” detection results 2

Page 44: Research on Vision Systems for Small Unmanned VTOL Vehicles K. P. Valavanis, M.Kontitsis, R.Garcia

“Mine” detection results 3

Page 45: Research on Vision Systems for Small Unmanned VTOL Vehicles K. P. Valavanis, M.Kontitsis, R.Garcia

“Mine” detection results 4

Page 46: Research on Vision Systems for Small Unmanned VTOL Vehicles K. P. Valavanis, M.Kontitsis, R.Garcia

Processing on board the VTOL

Page 47: Research on Vision Systems for Small Unmanned VTOL Vehicles K. P. Valavanis, M.Kontitsis, R.Garcia

Raptor 90 with on board vision system.

Page 48: Research on Vision Systems for Small Unmanned VTOL Vehicles K. P. Valavanis, M.Kontitsis, R.Garcia

On board processing

Firewire camera

Onboard PC Wireless 802.11b

Wireless 802.11b

Ground Computer

Used for processing

Used for monitoring

Page 49: Research on Vision Systems for Small Unmanned VTOL Vehicles K. P. Valavanis, M.Kontitsis, R.Garcia

On board system

Page 50: Research on Vision Systems for Small Unmanned VTOL Vehicles K. P. Valavanis, M.Kontitsis, R.Garcia

Onboard system architecture (hardware)

Page 51: Research on Vision Systems for Small Unmanned VTOL Vehicles K. P. Valavanis, M.Kontitsis, R.Garcia

On board system• 1.2 GHz EPIA Processor• Via Embedded motherboard• Unibrain Firewire Camera• 1 Gig 266 MHz RAM• 1 Gig Compact Flash• Compact Flash to IDE adapter• Motorola M12+ GPS Receiver• 8 Channel Servo Controller• 200 W Power Supply• 14.8 V LiPo Battery• 12 V Voltage Regulator• 802.11B Cardbus

Page 52: Research on Vision Systems for Small Unmanned VTOL Vehicles K. P. Valavanis, M.Kontitsis, R.Garcia

Key Hardware Components

• Mini-ATX motherboard– Low weight– Small size

• Unibrain Firewire camera– Lightweight (60g)– Built-in Firewire interface

• 1 Gig Compact Flash– Substitutes the vibration sensitive hard-drive

• Lithium Polymer (LiPo) batteries– High amperage output for it’s size

Page 53: Research on Vision Systems for Small Unmanned VTOL Vehicles K. P. Valavanis, M.Kontitsis, R.Garcia

Software Details

• Linux operating system (Slackware v10)

• Open source libraries libdv, libraw1394, libavc1394, libdc1394 used for Firewire access

• Vision code written in C-language for speed

Page 54: Research on Vision Systems for Small Unmanned VTOL Vehicles K. P. Valavanis, M.Kontitsis, R.Garcia

Minor Software Enhancements and

Experimental Results

Page 55: Research on Vision Systems for Small Unmanned VTOL Vehicles K. P. Valavanis, M.Kontitsis, R.Garcia

Detection of more than one objects

• Using the same vision algorithm• Employing Regions of Interest (ROIs) on the

image to separate objects– Byproduct execution speedup (x2 in average) since

only the pixels in the ROIs are processed over every frame.

• Every X (typically 510) frames the algorithm searches the whole image for new objects.

– Regions can be tracked using the pan/tilt to keep the object inside the frame while the VTOL moves

Page 56: Research on Vision Systems for Small Unmanned VTOL Vehicles K. P. Valavanis, M.Kontitsis, R.Garcia

Objects of interest are enclosed in a rectangle

Detection of more than one objects

Page 57: Research on Vision Systems for Small Unmanned VTOL Vehicles K. P. Valavanis, M.Kontitsis, R.Garcia

Detection of more than one objects

Objects of interest are enclosed in a rectangle

False alarm

Page 58: Research on Vision Systems for Small Unmanned VTOL Vehicles K. P. Valavanis, M.Kontitsis, R.Garcia

Detection of more than one objects

Objects of interestNot well positioned rectangle

Page 59: Research on Vision Systems for Small Unmanned VTOL Vehicles K. P. Valavanis, M.Kontitsis, R.Garcia

Communication Issues (for the on-board system)

Page 60: Research on Vision Systems for Small Unmanned VTOL Vehicles K. P. Valavanis, M.Kontitsis, R.Garcia

Communication channels on the VTOL

On board computer

IMU

802.11b/g

GPS

Pan/tilt servos

Control servos

autonomous operation

Page 61: Research on Vision Systems for Small Unmanned VTOL Vehicles K. P. Valavanis, M.Kontitsis, R.Garcia

Communication channels on the VTOL

On board computer

IMU

802.11b/g

GPS

Pan/tilt servos

Control servos

Critical channels

autonomous operation

Page 62: Research on Vision Systems for Small Unmanned VTOL Vehicles K. P. Valavanis, M.Kontitsis, R.Garcia

Data going into the PC

• Uncompressed images at 30 frames / sec (critical for object recognition/navigation)

• Inertial Measurement Unit (IMU) data 4 to 10 Hz (critical for navigation)

• GPS data (critical for navigation)

Page 63: Research on Vision Systems for Small Unmanned VTOL Vehicles K. P. Valavanis, M.Kontitsis, R.Garcia

Data coming out of the PC

• For monitoring purposes (not critical)

– Compressed images at 30 frames / sec– IMU data 4 to 10 Hz– GPS data

• Critical to the operation of the VTOL– Commands to servo-boards– Object identification alarms

Page 64: Research on Vision Systems for Small Unmanned VTOL Vehicles K. P. Valavanis, M.Kontitsis, R.Garcia

Bandwidth requirements for input channels

• 640x480 images at 30 frames / sec approx 220Mbps– Firewire link IEEE 1394 (400Mbps)

• IMU data at 10 Hz approx 6kbps– Serial RS-232

• GPS data at 4 Hz < 1kbps– Serial RS-232

Page 65: Research on Vision Systems for Small Unmanned VTOL Vehicles K. P. Valavanis, M.Kontitsis, R.Garcia

Bandwidth requirements for output channels

• Commands to servos < 1 kbps– Serial RS-232

• Telemetry data and compressed video at 30 fps approx 1.5 to 4 Mbps (depending on image quality)

– 802.11 b/g (11/54 Mbps)

Page 66: Research on Vision Systems for Small Unmanned VTOL Vehicles K. P. Valavanis, M.Kontitsis, R.Garcia

Bandwidth issues of the 802.11

• Video data flood the wireless channel

• Bandwidth decreases with range

– As a result the video displayed on the ground station at less than 30 fps.

Page 67: Research on Vision Systems for Small Unmanned VTOL Vehicles K. P. Valavanis, M.Kontitsis, R.Garcia

Analog video channel

• Substitutes the digital firewire (IEEE 1394)

• Delivers 30 fps regardless of range

• Independent from the onboard PC

• Frees bandwidth of the 802.11 to be used for other purposes

– Frame grabber required for digitization in order for the PC to process the images.

Page 68: Research on Vision Systems for Small Unmanned VTOL Vehicles K. P. Valavanis, M.Kontitsis, R.Garcia

Communication channels on the VTOL

On board computer

IMU

802.11b/g

GPS

RF Transmitter (900MHz)

Pan/tilt servos

Control servos

(alternative design)

Page 69: Research on Vision Systems for Small Unmanned VTOL Vehicles K. P. Valavanis, M.Kontitsis, R.Garcia

Communication channels on the VTOL

On board computer

IMU802.11b/g

GPS

Pan/tilt servos

Control servos

Critical channels

RF Transceiver (72MHz)

semi-autonomous operation

Page 70: Research on Vision Systems for Small Unmanned VTOL Vehicles K. P. Valavanis, M.Kontitsis, R.Garcia

EM compatibility

• The onboard digital channels exhibited no compatibility problems

• Theoretically the RF channels are very well separated in frequency but….

• The RF are still vulnerable to interference

Page 71: Research on Vision Systems for Small Unmanned VTOL Vehicles K. P. Valavanis, M.Kontitsis, R.Garcia

Security issues

• Both 802.11 and RF channels can be made secure using encryption

• Easier done on the 802.11

Page 72: Research on Vision Systems for Small Unmanned VTOL Vehicles K. P. Valavanis, M.Kontitsis, R.Garcia

Conclusions

• Real time processing rate achieved

• On board system preferred because it promotes autonomy

Page 73: Research on Vision Systems for Small Unmanned VTOL Vehicles K. P. Valavanis, M.Kontitsis, R.Garcia

Future work

• Motion estimation

• Structure from motion

• Expand the feature space (size,colortexture,shape etc)

• Visual Simultaneous Localization And Mapping

• Quantify relationship between weight-power-algorithmic complexity

• Optimization of vision routines

• Use of a better processor

Page 74: Research on Vision Systems for Small Unmanned VTOL Vehicles K. P. Valavanis, M.Kontitsis, R.Garcia

Application on real-time traffic data extraction

Page 75: Research on Vision Systems for Small Unmanned VTOL Vehicles K. P. Valavanis, M.Kontitsis, R.Garcia

Aim of the work

• Design a vision algorithm to run on a small VTOL capable of extracting real time traffic data from video.

• The data will be used as input to traffic simulation models

Page 76: Research on Vision Systems for Small Unmanned VTOL Vehicles K. P. Valavanis, M.Kontitsis, R.Garcia

Algorithm overview

Stabilization

Motion Extraction

Feature Extraction

Feature Grouping

Vehicle Tracking

IMU & GPS data

Environment Setup Selection

Traffic Statistics

Images from camera

Page 77: Research on Vision Systems for Small Unmanned VTOL Vehicles K. P. Valavanis, M.Kontitsis, R.Garcia

Motion estimation• Motion is extracted by differencing two consecutive frames

( - ) ( = )

Page 78: Research on Vision Systems for Small Unmanned VTOL Vehicles K. P. Valavanis, M.Kontitsis, R.Garcia

Feature extraction and grouping

• A morphological operator (dilation) is used on the image of differences to group together scattered pixels of an object

(dilation x2)

Page 79: Research on Vision Systems for Small Unmanned VTOL Vehicles K. P. Valavanis, M.Kontitsis, R.Garcia

Grouping (continued)

• The extracted regions are enclosed in Minimum Bounding Rectangles (MBRs)

Page 80: Research on Vision Systems for Small Unmanned VTOL Vehicles K. P. Valavanis, M.Kontitsis, R.Garcia

Selecting “counting zones”

• Regions of the image are selected as counting zones.

• Cars are counted as they enter and leave them.

• Shaded areas mark the counting zones.

• Colors are used to differentiate between them.

Page 81: Research on Vision Systems for Small Unmanned VTOL Vehicles K. P. Valavanis, M.Kontitsis, R.Garcia

Sample result

Relative traffic load per regionInput with overlaid region markers

Page 82: Research on Vision Systems for Small Unmanned VTOL Vehicles K. P. Valavanis, M.Kontitsis, R.Garcia

Output Data

• Algorithm can provide the following data:

– # of cars on a specific link at any point in time• Assuming that a link is sufficiently small to fit in the

camera’s field of view. (multiple VTOLs needed to cover a significant area)

– Average flow per link

Page 83: Research on Vision Systems for Small Unmanned VTOL Vehicles K. P. Valavanis, M.Kontitsis, R.Garcia

Ongoing work

• Automatic selection and placement of “counting zones”

• Create tables of data suitable for the simulation software

• New input data available (show video)