research on mechanical properties of aluminum alloys used ... text.pdf · in order to determine the...

5
114 INŻYNIERIA MATERIAŁOWA MATERIALS ENGINEERING ROK XXXVIII Research on mechanical properties of aluminum alloys used in automotive industry Katarzyna Peta * , Piotr Siwak, Karol Grochalski Institute of Mechanical Technology, Poznan University of Technology, Poznań, Poland * [email protected] The paper presents one of the most important mechanical properties of aluminium alloys used in the automotive industry, which mainly determine the material resistance to mechanical loads. Samples were made of aluminium alloys from the 3xxx series (core) and 4xxx series (clad). The latter material layer begins to melt at the brazing temperature (582°C) and forms brazed joints between the surfaces of the base sheets. Commonly, these alloys are used as aluminium brazing sheets and applied in automotive to heat exchangers manufacturing, i.e. radiators, condensers, evaporators, heaters, oil coolers and charge air coolers. Samples of these materials were subjected to mechanical property measurements. In order to assess the changes in the materials during their life cycle, the properties after the manufacturing process and the exploitation tests were compared. Therefore, brazing process was realized in N 2 con- trolled atmosphere. Moreover, one of the most important investigations in terms of the heat exchangers working conditions simulation which is resistance to thermal shocks, was performed. The material working conditions indicate that they should comply with above test requirements, including liquid contact, whose temperature range may refer to 0÷90°C. Particular attention was focused on properties such as Martens hardness, Vickers hardness, Young`s modulus and plastic strain, which have significant role in evaluation of product performance and improving its lifetime. For the measurements, a Fischer Picodentor HM 500 nanoindenter equipped with a Vickers indenter was used. The main advantages of the nanoindentation technique are the accurate and reliable results which might optimize heat exchanger. Furthermore, an optical microscopy was applied to analyse the indentations on the sample surfaces. Key words: aluminium alloys, automotive, heat exchanger, mechanical properties, Young modulus, nanoindentation. Inżynieria Materiałowa 3 (217) (2017) 114÷118 DOI 10.15199/28.2017.3.1 © Copyright SIGMA-NOT MATERIALS ENGINEERING 1. INTRODUCTION Aluminium alloys are commonly used in numerous fields of indus- try. The main advantages of their usage include: good thermal con- ductivity, low density, good specific strength (tensile strength di- vided by the density), adequate corrosion resistance, easy processes of machining and joining, ability to recycle and cost-effectiveness. Therefore, the automotive, which includes the heat exchangers di- vision is one of the major users of aluminium alloys [1, 2]. Alloys from the aluminium–manganese and aluminum–silicon series, such as 3003, 3004, 3005, 3103, 3203 and 4045, 4047, 4343 have often been used in mentioned sector. The most popular solution for these materials, regarding brazing sheets, is a core alloy (3xxx series) rolled with a clad alloy (4xxx series). Thanks to the layered combi- nation of these materials, brazed joints can be formed using several brazing techniques [3÷9]. Aluminium alloys used in the automotive industry should meet a number of quality requirements. The impor- tant ones are appropriate mechanical properties, such as hardness, plastic deformation, indentation creep, elastic modulus and fracture toughness. Thus, their analysis is significant in the product con- trol stage [5, 10÷12]. Numerous publications about the mechani- cal properties of aluminium alloys used in the automotive sector of industry have been written in the last years. For example, Kahl et al. [13] presented the results of fatigue, tensile and creep properties of the above materials measured at different temperatures. Dubey [14] compared features such as reliability, performance, weight and cost-effectiveness of aluminium and copper alloys. Takagi et al. [15] discussed the effects of creep phenomenon of an aluminium– magnesium alloy using the microindentation technique. Further sci- entific papers correlated the residual strain with the hardness value by the nanoindentation method [16] while another presented evalu- ation of the elastic modulus of a die cast alloy [17]. In scientific reports, analysis of the mechanical properties of aluminium alloys used in the automotive has not been sufficiently described. The mechanical properties description of the all materi- als has been long limited to their hardness values [18]. Therefore, the aim of this paper is to measure the most important mechani- cal properties after the production process and after exploitation tests by the nanoindentation technique. In addition, the properties of the brazing area, including the base materials and brazed joint have also not been fully discussed. Thus, the measurements of the major properties of aluminium alloys used in automotive industry were performed. 2. EXPERIMENTAL PROCEDURE Heat exchanger samples, including a brazed joint zone were sub- jected to mechanical properties measurements. To ensure similar research conditions and minimize divergences of the results, they were sampled from the same area of the above mentioned prod- uct. Samples were 3xxx aluminium–manganese alloy clad on both sides with an aluminium–silicon alloy from the 4xxx series. The thin layer of the clad alloy begins to melt at a lower temperature and forms brazed joints with other elements of the heat exchanger. The material properties before the manufacturing process are presented in Table 1. In order to assess the behaviour of the materials during their work, measurements directly after the manufacturing process and after thermal shock tests were analysed and compared. Therefore, furnace brazing was performed. The samples were passed through the brazing furnace zones in an atmosphere of nitrogen. The most important were [7, 19]: thermal degreaser, which removed the lubricating oils, Table 1. The properties of initial material before the manufacturing process Tabela 1. Właściwości materiału w stanie wyjściowym Material Tensile strength R m N/mm 2 Yield point R p0,2 N/mm 2 Elongation A 50 % AA4343 4% (clad) AA3003 115 58 37

Upload: others

Post on 22-Sep-2020

0 views

Category:

Documents


0 download

TRANSCRIPT

Page 1: Research on mechanical properties of aluminum alloys used ... text.pdf · In order to determine the mechanical properties of aluminum alloys, the nanoindentation technique was employed

114 INŻYNIERIA MATERIAŁOWA MATERIALS ENGINEERING ROK XXXVIII

Research on mechanical properties of aluminum alloys used in automotive industry

Katarzyna Peta*, Piotr Siwak, Karol GrochalskiInstitute of Mechanical Technology, Poznan University of Technology, Poznań, Poland

*[email protected]

The paper presents one of the most important mechanical properties of aluminium alloys used in the automotive industry, which mainly determine the material resistance to mechanical loads. Samples were made of aluminium alloys from the 3xxx series (core) and 4xxx series (clad). The latter material layer begins to melt at the brazing temperature (582°C) and forms brazed joints between the surfaces of the base sheets. Commonly, these alloys are used as aluminium brazing sheets and applied in automotive to heat exchangers manufacturing, i.e. radiators, condensers, evaporators, heaters, oil coolers and charge air coolers. Samples of these materials were subjected to mechanical property measurements. In order to assess the changes in the materials during their life cycle, the properties after the manufacturing process and the exploitation tests were compared. Therefore, brazing process was realized in N2 con-trolled atmosphere. Moreover, one of the most important investigations in terms of the heat exchangers working conditions simulation which is resistance to thermal shocks, was performed. The material working conditions indicate that they should comply with above test requirements, including liquid contact, whose temperature range may refer to 0÷90°C. Particular attention was focused on properties such as Martens hardness, Vickers hardness, Young`s modulus and plastic strain, which have significant role in evaluation of product performance and improving its lifetime. For the measurements, a Fischer Picodentor HM 500 nanoindenter equipped with a Vickers indenter was used. The main advantages of the nanoindentation technique are the accurate and reliable results which might optimize heat exchanger. Furthermore, an optical microscopy was applied to analyse the indentations on the sample surfaces.

Key words: aluminium alloys, automotive, heat exchanger, mechanical properties, Young modulus, nanoindentation.

Inżynieria Materiałowa 3 (217) (2017) 114÷118DOI 10.15199/28.2017.3.1© Copyright SIGMA-NOT MATERIALS ENGINEERING

1. INTRODUCTION

Aluminium alloys are commonly used in numerous fields of indus-try. The main advantages of their usage include: good thermal con-ductivity, low density, good specific strength (tensile strength di-vided by the density), adequate corrosion resistance, easy processes of machining and joining, ability to recycle and cost-effectiveness. Therefore, the automotive, which includes the heat exchangers di-vision is one of the major users of aluminium alloys [1, 2]. Alloys from the aluminium–manganese and aluminum–silicon series, such as 3003, 3004, 3005, 3103, 3203 and 4045, 4047, 4343 have often been used in mentioned sector. The most popular solution for these materials, regarding brazing sheets, is a core alloy (3xxx series) rolled with a clad alloy (4xxx series). Thanks to the layered combi-nation of these materials, brazed joints can be formed using several brazing techniques [3÷9]. Aluminium alloys used in the automotive industry should meet a number of quality requirements. The impor-tant ones are appropriate mechanical properties, such as hardness, plastic deformation, indentation creep, elastic modulus and fracture toughness. Thus, their analysis is significant in the product con-trol stage [5, 10÷12]. Numerous publications about the mechani-cal properties of aluminium alloys used in the automotive sector of industry have been written in the last years. For example, Kahl et al. [13] presented the results of fatigue, tensile and creep properties of the above materials measured at different temperatures. Dubey [14] compared features such as reliability, performance, weight and cost-effectiveness of aluminium and copper alloys. Takagi et al. [15] discussed the effects of creep phenomenon of an aluminium–magnesium alloy using the microindentation technique. Further sci-entific papers correlated the residual strain with the hardness value by the nanoindentation method [16] while another presented evalu-ation of the elastic modulus of a die cast alloy [17].

In scientific reports, analysis of the mechanical properties of aluminium alloys used in the automotive has not been sufficiently described. The mechanical properties description of the all materi-als has been long limited to their hardness values [18]. Therefore,

the aim of this paper is to measure the most important mechani-cal properties after the production process and after exploitation tests by the nanoindentation technique. In addition, the properties of the brazing area, including the base materials and brazed joint have also not been fully discussed. Thus, the measurements of the major properties of aluminium alloys used in automotive industry were performed.

2. EXPERIMENTAL PROCEDURE

Heat exchanger samples, including a brazed joint zone were sub-jected to mechanical properties measurements. To ensure similar research conditions and minimize divergences of the results, they were sampled from the same area of the above mentioned prod-uct. Samples were 3xxx aluminium–manganese alloy clad on both sides with an aluminium–silicon alloy from the 4xxx series. The thin layer of the clad alloy begins to melt at a lower temperature and forms brazed joints with other elements of the heat exchanger. The material properties before the manufacturing process are presented in Table 1.

In order to assess the behaviour of the materials during their work, measurements directly after the manufacturing process and after thermal shock tests were analysed and compared. Therefore, furnace brazing was performed. The samples were passed through the brazing furnace zones in an atmosphere of nitrogen. The most important were [7, 19]: – thermal degreaser, which removed the lubricating oils,

Table 1. The properties of initial material before the manufacturing processTabela 1. Właściwości materiału w stanie wyjściowym

Material Tensile strength Rm N/mm2

Yield point Rp0,2N/mm2

Elongation A50 %

AA4343 4% (clad)AA3003 115 58 37

Page 2: Research on mechanical properties of aluminum alloys used ... text.pdf · In order to determine the mechanical properties of aluminum alloys, the nanoindentation technique was employed

NR 3/2017 INŻYNIERIA MATERIAŁOWA MATERIALS ENGINEERING 115

– noncorrosive flux application area, – convection preheating section, – radiation brazing chamber, – cooling area.

After brazing, a few of the samples were tested in terms of their working conditions. Therefore, assessment of the resistance to thermal shocks with liquid flowing through the material samples was performed. The temperature range of the liquid was set from –20°C to 100°C, and changed after every 60 s (about 120°C). In order to determine the effect of exploitation test, 1500 cycles were performed.

Mechanical properties measurements were carried out in three zones of the samples such as two base materials and a brazed joint area. For this purpose, 3 measuring points in every zone were cho-sen (Fig. 1).

In order to determine the mechanical properties of aluminum alloys, the nanoindentation technique was employed. For the tests, a Fischer Picodentor HM 500 nanoindenter was applied. The measurement stand was equipped with a vibration isolation plate, Low Power TS 140+40, which dampened vibration occur-ring during work. In addition, the measuring device is enclosed in a thermoacoustic sheath, which reduced the effects of air flow and impact of acoustic waves [20].

The nanoindentation technique was used for the mechanical property measurements as: – Martens hardness (HM), N/mm2, – Vickers hardness (HV), N/mm2, – Young`s modulus (elastic modulus) EIT, MPa, – plastic deformation portion ηplast, %.

The studies of the samples were carried out under the same con-ditions. Measurements were performed with a 0.3 N load applied for 5 s.

3. RESULTS AND DISCUSSION

The main mechanical properties obtained of the samples after the manufacturing process are presented in Table 2. All of the sample zones have similar values of hardness, Young`s modulus and plastic deformation portion. Such results mean that the choice of materials is appropriate and the brazing process does not diminish the quality of the product. Therefore, this method of assembly joining, appears to be adequate for the manufactured heat exchangers.

The nanoindentation curves of the samples after manufacturing are shown in Figure 2. Based on the presented results, it is possible to confirm adequate correlation between the analysed zones.

The main mechanical properties of the samples after the man-ufacturing stage process and thermal shock tests are presented in Table 3. The nanoindentation curves are shown in Figure 3. The obtained results of Martens and Vickers hardness, Young`s modulus and plastic deformation portion are different than those measured directly after the manufacturing process. Firstly, the properties are different in all three zones of the samples, which means that the test factors caused irregular changes in the properties in various places

Fig. 1. Diagram of measuring points location on the surface of the sampleRys. 1. Schemat rozmieszczenia punktów pomiarowych na powierzchni próbki

Table 2. Mean values of mechanical properties measurement results of the samples after manufacturing processTabela 2. Wartości średnie właściwości mechanicznych próbek po proce-sie wytwarzania

MaterialMartens hardness N/mm2

Vickers hardness N/mm2

Young`s modulus

MPa

Plastic deformation

%

1 – joined material I 465.69±1 52.23±1 84 560±1 94.94±1

2 – brazed joint 472.46±1 53.00±1 84 200±1 94.86±1

3 – joined material II 475.74±1 53.67±1 77 780±1 94.45±1

Fig. 2. Nanoindentation load–displacement curves of the samples after heat exchanger manufacturing (three measurements in each zone): a) material I (aluminium alloy 3xxx series), b) brazed joint, c) material II (aluminium alloy 3xxx series)Rys. 2. Wykres obciążenie–odkształcenie dla próbek po procesie wytwa-rzania chłodnicy (trzy pomiary w każdej strefie): a) materiał I (stop alu-minium serii 3xxx), b) połączenie lutowane, c) materiał II (stop alumi-nium serii 3xxx)

Page 3: Research on mechanical properties of aluminum alloys used ... text.pdf · In order to determine the mechanical properties of aluminum alloys, the nanoindentation technique was employed

116 INŻYNIERIA MATERIAŁOWA MATERIALS ENGINEERING ROK XXXVIII

of the sample. The average value of Vickers hardness was different in the joined material I and joined material II areas — about 12.7 N/mm2, also the elastic modulus — about 6690 MPa. Secondly, re-sults have changed in relation to the sample after the manufacturing process. The discrepancies in the values are caused by the product working conditions simulation, realized in the thermal shock test stand. The average value of Vickers hardness after the manufactur-ing process in joined material I deviates in comparison with the same zone after thermal shock about 12.2 N/mm2. However, the differences do not exceed the acceptable assumptions of produc-tion, because after the test, liquid leakage or visual damage was not observed. They only indicate that some changes of the mechanical properties have occurred.

Based on the nanoindentation results (Fig. 3), it is possible to confirm proper correlation between the analysed zones.

Noteworthy are the indentations formed on the sample surfaces, which are presented in Figure 4.

Table 3. Mean values of main mechanical properties measurement re-sults of samples after thermal shock resistance testTabela 3. Wartości średnie wyników właściwości mechanicznych próbek po próbie odporności na szoki cieplne

MaterialMartens hardnessN/mm2

Vickers hardness N/mm2

Young`s modulus

MPa

Plastic deformation portion, %

1 – joined material I 555.79±1 64.43±1 72 480±1 93.03±1

2 – brazed joint 496.68±1 56.43±1 68 330±1 92.34±1

3 – joined material II 453.18±1 51.73±1 65 790±1 94.55±1

Fig. 3. Nanoindentation load–displacement curves of samples after heat exchanger manufacturing and thermal shock test (three meas-urements in each zone): a) material I (aluminium alloy 3xxx series), b) brazed joint, c) material II (aluminium alloy 3xxx series)Rys 3. Wykres obciążenie–odkształcenie dla próbek po procesie wytwa-rzania chłodnicy i po próbie odporności na szoki cieplne (trzy pomiary w każdej strefie): a) materiał I (stop aluminium serii 3xxx), b) połączenie lutowane, c) materiał II (stop aluminium serii 3xxx)

Fig. 4. Image of examples of Vickers indentations formed on sample surfaces: material I (aluminium alloy 3xxx series), b) brazed joint, c) material II (aluminium alloy 3xxx series)Rys. 4. Widok odcisków Vickersa na powierzchni próbek: a) materiał I (stop aluminium serii 3xxx), b) połączenie lutowane, c) materiał II (stop aluminium serii 3xxx)

Page 4: Research on mechanical properties of aluminum alloys used ... text.pdf · In order to determine the mechanical properties of aluminum alloys, the nanoindentation technique was employed

NR 3/2017 INŻYNIERIA MATERIAŁOWA MATERIALS ENGINEERING 117

4. CONCLUSIONSThe nanoindentation method have determined the mechanical prop-erties of the analysed materials. The samples after the manufactur-ing process have similar mechanical properties for all of the ana-lysed zones, which are related to structural homogeneity of brazed joint area and associated with negligible possibility of crack growth caused by diversity of structural and mechanical properties occurred in that zones. Thus, it might be concluded that the brazing process and material selection were realized correctly. After the exploitation test (thermal shock test) the results have changed in an irregular manner. The most significant changes occurred in joined material I, which has direct contact with cooling liquid (heat exchanger tube) and it is the most exposed to a thermal shock. The changes in the values of material hardness and other mechanical properties are caused by the specific thermal processes, occurred during the test. Whereas, in the other zones of brazed joint the changes of these pa-rameters were not observed. The differences do not exceed over the prescribed production assumptions (not leakage of cooling liquid and damage of heat exchanger components), because tightness is regarded as the main parameter of heat exchangers quality control stage. After the shock test, leakage did not appear, so it might be assumed that all of the property changes and differences are within acceptable limits.

REFERENCES

[1] Zhao H., Elbel S., Hrnjak P.: Influence of surface morphology on wetting behaviors of liquid metal during aluminum heat exchanger fabrication. 15th International Refrigeration and Air Conditioning Conference, Purdue, July 14th-17th (2014) 1÷8.

[2] Moćko W.: Dynamic properties of aluminium alloys used in automotive industry. Journal of KONES Powertrain and Transport 19 (2012) 345÷351.

[3] Kutz M.: Mechanical Engineers Handbook. Materials and Engineering Mechanics. Wiley, Hoboken (2015).

[4] Pokova M., Cieslar M., Lacaze J.: Enhanced AW3003 aluminum alloys for heat exchangers. WDS’11 Proceedings of Contributed Papers, Prague, July 31th May-3rd May (2011) 141÷146.

[5] Kłyszewski A., Żelechowski J., Frontczak A., Rutecki P., Szymański W., Zamkotowicz Z., Nowak M.: New rolled aluminium alloy products for the automotive industry. Archives of Metallurgy and Materials 59 (2014) 393÷396.

[6] Kim H., Lee S.: Effect of a brazing process on mechanical and fatigue behavior of a clad aluminium 3005. Journal of Mechanical Science and Technology 26 (2012) 2111÷2115.

[7] Thulukkanam K.: Heat exchanger design handbook. CRC Press, Boca Raton (2013).

[8] Tu Y., Tong Z., Jiang J.: Effect of microstructure on diffusional solidifica-tion of 4343/3005/4343 multi-layer aluminium brazing sheet. Metallurgi-cal and Materials Transactions A 44 (2013) 1762÷1766.

[9] Nayeb-Hashemi H., Lockwood M.: The effect of processing variables on the microstructures and properties of aluminium brazed joints. Journal of Materials Science 37 (2002) 3705÷3713.

[10] Nikanarov S. P., Volkov M. P., Gurin V. N., Burenkov Y. A., Derkachenko L. I., Kardashev B. K., Regel L., Wilcox W. R.: Structural and mechani-cal properties of Al–Si alloys obtained by fast cooling of a levitated melt. Materials Science and Engineering A 390 (2005) 63÷69.

[11] Garbiec D., Siwak P., Mróz A.: Effect of compaction pressure and heating rate on microstructure and mechanical properties of spark plasma sintered Ti6Al4V alloy. Archives of Civil and Mechanical Engineering 16 (2016) 702÷707.

[12] Garbiec D., Siwak P.: Study on microstructure and mechanical proper-ties of spark plasma sintered Alumix 431 powder. Powder Metallurgy 4 (2016) 1÷7.

[13] Kahl S., Ekstrom H. E., Mendoza J.: Tensile, fatigue, and creep properties of aluminum heat exchanger tube alloys for temperatures from 293 K to 573 K. Metallurgical and Materials Transactions A 45 (2014) 663÷681.

[14] Dubey A.: Investigation on suitability of aluminium to copper in a radia-tor. Manufacturing Science and Technology 3 (2015) 16÷23.

[15] Takagi H., Dao M., Fujiwara M., Otsuka M.: Creep characterization of aluminum–magnesium solid-solution alloy through self-similar microin-dentation. Materials Transactions 47 (2006) 2006÷2014.

[16] Wang Y., Qu S., Gai Y., Dong S., Liang Y.: Residual strains of aluminium alloy characterized by nanoindentation. Transactions of Nonferrous Met-als Society of China 19 (2009) 767÷771.

[17] Yabushita M., Goda T., Ono Y., Tezuka H., Sato T., Oda K., Shioda M., Evaluation of Young`s modulus of high stiffness aluminium die cast al-loys using nanoindentation technique. International Journal of Cast Metals Research 21 (2008) 180÷185.

[18] Guo W. C., Xu H., Gao X. Q., Hou X. L., Li Y.: A modified method for hardness determination from nanoindentation experiments with imperfect indenters. Advances in Materials Science and Engineering (2016) 1÷8.

[19] Skarbiński P.: Linie technologiczne Seco/Warvick do lutowania aluminio-wych wymienników ciepła. Przegląd mechaniczny 6 (2008) 21÷28.

[20] Siwak P., Garbiec D., Chwalczuk T.: Badania właściwości technologicz-nych płytek skrawających z węglików spiekanych typu WC6Co wytwa-rzanych metodą impulsowo plazmową. Mechanik 88 (2015) 113÷122.

Page 5: Research on mechanical properties of aluminum alloys used ... text.pdf · In order to determine the mechanical properties of aluminum alloys, the nanoindentation technique was employed

118 INŻYNIERIA MATERIAŁOWA MATERIALS ENGINEERING ROK XXXVIII

Badania właściwości mechanicznych stopów aluminium sto-sowanych w przemyśle motoryzacyjnym

Katarzyna Peta*, Piotr Siwak, Karol GrochalskiInstytut Technologii Mechanicznej, Politechnika Poznańska, Poznań, *[email protected]

Inżynieria Materiałowa 3 (217) (2017) 114÷118DOI 10.15199/28.2017.3.1© Copyright SIGMA-NOT MATERIALS ENGINEERING

Słowa kluczowe: stopy aluminium, motoryzacja, wymienniki ciepła, właściwości mechaniczne, moduł Younga, nanoindentacja.

1. CEL PRACYW pracy omówiono ważniejsze właściwości mechaniczne sto-pów aluminium stosowanych w przemyśle motoryzacyjnym, w tym w produkcji samochodowych wymienników ciepła. Szcze-gólną uwagę zwrócono na takie właściwości, jak: twardość Marten-sa, twardość Vickersa, moduł Younga i odkształcenie plastyczne. Decydują one o odporności materiału na działanie obciążeń me-chanicznych, natomiast ich analiza ma znaczenie w ocenie jakości finalnej wyrobu.

Głównym celem pracy było porównanie właściwości mecha-nicznych stopów aluminium po procesie wytwarzania oraz po pró-bie wytrzymałościowej, aby zaobserwować zmiany właściwości materiałów podczas ich pracy.

2. MATERIAŁ I METODYKA BADAŃ

Badaniom właściwości mechanicznych poddano fragmenty chłod-nicy cieczy z obszarami połączeń lutowanych. Próbki wykonane były ze stopu aluminium–mangan (seria 3xxx) platerowanego sto-pem aluminium–krzem (seria 4xxx). Ten drugi rozpoczyna topnie-nie w temperaturze około 582°C i tworzy połączenia lutowane z in-nymi częściami samochodowego wymiennika ciepła.

Głównym celem pracy była ocena zmian właściwości mecha-nicznych chłodnicy cieczy podczas pracy. Dlatego pobrano jej frag-menty po procesie wytwarzania oraz po próbie odporności na szoki cieplne. Chłodnice cieczy lutowano w atmosferze azotu w piecu radiacyjno-konwekcyjnym, który składa się ze stref: odtłuszczania cieplnego, nanoszenia topnika, nagrzewania, lutowania oraz chło-dzenia. Następnie wykonano badanie imitujące warunki ich pracy, umożliwiające określenie odporności materiału na szoki cieplne. Polegało ono na przepływie cieczy chłodzącej przez wymiennik ciepła, której temperaturę po każdych 60 s zmieniano od wartości –20°C do wartości 100°C i odwrotnie. Próbki chłodnicy cieczy po-brano po wykonaniu 1500 cykli ich nagrzewania i chłodzenia.

Do pomiarów właściwości mechanicznych zastosowano nano-intender Picodentor HM500 firmy Fischer, który umieszczono na płycie wibroizolacyjnej TS-140+40 Low Power tłumiącej drgania występujące w otoczeniu stanowiska badawczego. Ponadto urzą-dzenie pomiarowe zamknięto w osłonie termiczno-akustycznej, aby zminimalizować wpływ przepływu powietrza i fali akustycznej na wyniki pomiarów. Technikę nanoindentacji użyto do określenia właściwości mechanicznych, takich jak: – twardość Martensa (HM), N/mm2, – twardość Vickersa (HV), N/mm2, – moduł Younga (E), MPa, – odkształcenie plastyczne (ηplast), %.

Do wykonania pomiarów zastosowano wgłębnik Vickersa i ob-ciążenie 0,3 N przyłożone przez 5 s.

Pomiary przeprowadzono w trzech strefach próbek. Pierwsze dwie zawierały materiały łączone, natomiast trzecia połączenie lutowane. W każdej wykonano po trzy pomiary, a następnie obli-czono średnią arytmetyczną z otrzymanych wyników. Badania uzu-pełniono obserwacjami odcisków Vickersa za pomocą mikroskopu świetlnego.

3. WYNIKI I ICH DYSKUSJA

Po procesie wytwarzania właściwości mechaniczne były zbliżone w trzech analizowanych strefach próbki. Uzyskane wyniki uznano za jeden z czynników potwierdzających poprawność ustalonych pa-rametrów procesu lutowania, a także doboru materiałów stosowa-nych w produkcji samochodowych wymienników ciepła.

Po wykonaniu próby odporności na szoki cieplne zauważono zmianę właściwości mechanicznych w odniesieniu do wyników uzyskanych dla chłodnicy w stanie wyjściowym. Zaobserwowa-no zróżnicowane wyniki w analizowanych obszarach próbki, to znaczy w strefach materiałów łączonych i połączenia lutowanego. Wszystkie wyniki nie przekraczały założonych wymagań jakościo-wych. Z warunków pracy wymienników ciepła wynika, że powin-ny one spełniać szereg wymagań eksploatacyjnych, z których pod-stawowym jest szczelność. Po badaniach imitujących warunki ich pracy nie zaobserwowano wycieku cieczy chłodzącej, co oznacza spełnienie podstawowego kryterium oceny wytwarzanych wymien-ników ciepła.

4. PODSUMOWANIE

Technika nanoindentacji pozwala na pomiary właściwości me-chanicznych materiałów inżynierskich, w tym stopów aluminium stosowanych w przemyśle motoryzacyjnym. W pracy przedstawio-no przykład jej zastosowania do oceny jakości samochodowych chłodnic cieczy, z uwzględnieniem połączeń montażowych (lu-towanych). Zadanie kontroli materiałów używanych w produkcji tych wyrobów jest szczególnie ważne ze względu na stawiane im wymagania jakościowe wynikające z warunków pracy. Wszelkie nieprawidłowości mogą skutkować wyciekiem cieczy chłodzącej, a w konsekwencji awarią układu chłodzenia silnika.

Po procesie wytwarzania uzyskano podobne właściwości me-chaniczne w strefach łączonych materiałów i połączenia lutowa-nego. Po próbie odporności na szoki cieplne nastąpiła ich zmiana, która jednak jest dopuszczalna, ponieważ spełnia założone wyma-gania jakościowe.