research article continued fractions of order six and new...

7
Research Article Continued Fractions of Order Six and New Eisenstein Series Identities Chandrashekar Adiga, A. Vanitha, and M. S. Surekha Department of Studies in Mathematics, University of Mysore, Manasagangotri, Mysore 570 006, India Correspondence should be addressed to Chandrashekar Adiga; [email protected] Received 25 February 2014; Revised 25 April 2014; Accepted 7 May 2014; Published 27 May 2014 Academic Editor: Ahmed Laghribi Copyright © 2014 Chandrashekar Adiga et al. is is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. We prove two identities for Ramanujan’s cubic continued fraction and a continued fraction of Ramanujan, which are analogues of Ramanujan’s identities for the Rogers-Ramanujan continued fraction. We further derive Eisenstein series identities associated with Ramanujan’s cubic continued fraction and Ramanujan’s continued fraction of order six. 1. Introduction roughout this paper, we assume that || < 1 and for each positive integer , we use the standard product notation (; ) 0 := 1, (; ) := −1 =0 (1 − ), ≥ 1, (; ) := =0 (1 − ). (1) Srinivasa Ramanujan made some significant contributions to the theory of continued fraction expansions. e most beautiful continued fraction expansions can be found in Chapters 12 and 16 of his second notebook [1]. e celebrated Rogers-Ramanujan continued fraction is defined by [2] () := 1/5 (−, − 4 ) (− 2 , − 3 ) = 1/5 1+ 1+ 2 1+ 3 1+⋅⋅⋅ , (2) where (, ) = =−∞ (+1)/2 (−1)/2 , =1+ =1 () (−1)/2 ( + ), || < 1, (3) is Ramanujan’s general theta function. Ramanujan eventually found several generalizations and ramifications of () which can be found in his notebooks [1] and “lost notebook” [3]. Recently, Liu [4] and Chan et al. [5] have established several new identities associated with the Rogers-Ramanujan continued fraction () including Eisen- stein series identities involving (). e beautiful Ramanujan’s cubic continued fraction (), first introduced by Srinivasa Ramanujan in his second letter to Hardy [2, page xxvii], is defined by () := 1/3 (−, − 5 ) (− 3 , − 3 ) = 1/3 1+ + 2 1+ 2 + 4 1+ 3 + 6 1+⋅⋅⋅ . (4) Hindawi Publishing Corporation Journal of Numbers Volume 2014, Article ID 643241, 6 pages http://dx.doi.org/10.1155/2014/643241

Upload: others

Post on 26-Jun-2020

0 views

Category:

Documents


0 download

TRANSCRIPT

Page 1: Research Article Continued Fractions of Order Six and New ...downloads.hindawi.com/journals/jn/2014/643241.pdf · Srinivasa Ramanujan made some signi cant contributions to the theory

Research ArticleContinued Fractions of Order Six and New EisensteinSeries Identities

Chandrashekar Adiga A Vanitha and M S Surekha

Department of Studies in Mathematics University of Mysore Manasagangotri Mysore 570 006 India

Correspondence should be addressed to Chandrashekar Adiga cadigamathsuni-mysoreacin

Received 25 February 2014 Revised 25 April 2014 Accepted 7 May 2014 Published 27 May 2014

Academic Editor Ahmed Laghribi

Copyright copy 2014 Chandrashekar Adiga et al This is an open access article distributed under the Creative Commons AttributionLicense which permits unrestricted use distribution and reproduction in any medium provided the original work is properlycited

We prove two identities for Ramanujanrsquos cubic continued fraction and a continued fraction of Ramanujan which are analogues ofRamanujanrsquos identities for the Rogers-Ramanujan continued fraction We further derive Eisenstein series identities associated withRamanujanrsquos cubic continued fraction and Ramanujanrsquos continued fraction of order six

1 Introduction

Throughout this paper we assume that |119902| lt 1 and for eachpositive integer 119899 we use the standard product notation

(119886 119902)0= 1 (119886 119902)

119899=

119899minus1

prod119895=0

(1 minus 119886119902119895) 119899 ge 1

(119886 119902)infin=

infin

prod119895=0

(1 minus 119886119902119895)

(1)

Srinivasa Ramanujan made some significant contributionsto the theory of continued fraction expansions The mostbeautiful continued fraction expansions can be found inChapters 12 and 16 of his second notebook [1]

The celebrated Rogers-Ramanujan continued fraction isdefined by [2]

119877 (119902) = 11990215

119891 (minus119902 minus1199024)

119891 (minus1199022 minus1199023)=

11990215

1 +119902

1 +1199022

1 +1199023

1 + sdot sdot sdot

(2)

where

119891 (119886 119887) =

infin

sum119899=minusinfin

119886119899(119899+1)2

119887119899(119899minus1)2

= 1 +

infin

sum119899=1

(119886119887)119899(119899minus1)2

(119886119899+ 119887119899)

|119886119887| lt 1

(3)

is Ramanujanrsquos general theta functionRamanujan eventually found several generalizations and

ramifications of 119877(119902)which can be found in his notebooks [1]and ldquolost notebookrdquo [3] Recently Liu [4] and Chan et al [5]have established several new identities associated with theRogers-Ramanujan continued fraction 119877(119902) including Eisen-stein series identities involving 119877(119902)

The beautiful Ramanujanrsquos cubic continued fraction119866(119902)first introduced by Srinivasa Ramanujan in his second letterto Hardy [2 page xxvii] is defined by

119866 (119902) = 11990213

119891 (minus119902 minus1199025)

119891 (minus1199023 minus1199023)

=11990213

1 +119902 + 1199022

1 +1199022+ 1199024

1 +1199023+ 1199026

1 + sdot sdot sdot

(4)

Hindawi Publishing CorporationJournal of NumbersVolume 2014 Article ID 643241 6 pageshttpdxdoiorg1011552014643241

2 Journal of Numbers

Adiga et al [6] Bhargava et al [7] Chan [8] and Vasukiet al [9] have proved several elegant theorems for119866(119902) manyof which are analogues of well-known properties satisfied bythe Rogers-Ramanujan continued fraction

Recently Vasuki et al [10] have studied the followingcontinued fraction of order six

119883(119902) = 11990214

119891 (minus119902 minus1199025)

119891 (minus1199022 minus1199024)

=11990214

(1 minus 119902minus2)

(1 minus 119902minus32) +(11990214

minus 119902minus14

) (119902minus74

minus 11990274)

(1 minus 119902minus32) (1 + 1199023) + sdot sdot sdot

(5)

The continued fraction (5) is a special case of a fascinatingcontinued fraction identity recorded by Ramanujan in hissecond notebook [1] [11 page 24] Furthermore they haveestablished modular relations between the continued frac-tions119883(119902) and119883(119902119899) for 119899 = 2 3 5 7 and 11

In Section 3 of this paper we establish two new identitiesassociated with the continued fractions 119866(119902) and 119883(119902)using the quintuple product identity In Section 4 we deriveEisenstein series identities associated with 119866(119902) and119883(119902)

2 Definitions and Preliminary Results

In this section we present some basic definitions and pre-liminary results One of the most interesting special cases of119891(119886 119887) is [11 Entry 22]

119891 (minus119902) = 119891 (minus119902 minus1199022) =

infin

sum119899=minusinfin

(minus1)119899119902119899(3119899minus1)2

= (119902 119902)infin (6)

Note that the Dedekind eta function 120578(120591) = 119902124

119891(minus119902)where 119902 = 119890

2120587119894120591 Im 120591 gt 0 We need the following threelemmas to prove our main results

Lemma 1 (see [11 Entry 30 page 46]) One has

119891 (119886 119887) + 119891 (minus119886 minus119887) = 2119891 (1198863119887 1198861198873) (7)

Lemma 2 (see [11 page 80]) One has

119891(11986131199021199025

1198613) minus 119861

2119891(

119902

1198613 11986131199025)

= 119891 (minus1199022)119891 (minus119861

2 minus11990221198612)

119891 (119861119902 119902119861)

(8)

Lemma 3 (see [12 Lemma 2(ii)]) Let 119898 = [119904(119904 minus 119903)] 119897 =119898(119904minus119903)minus119903 119896 = minus119898(119904minus119903)+119904 and ℎ = 119898119903minus(119898(119898minus1)(119904minus119903))20 le 119903 lt 119904 Here [119909] denotes the largest integer less than or equalto 119909 Then

(i) 119891(119902minus119903 119902119904) = 119902minusℎ119891(119902119897 119902119896)

(ii) 119891(minus119902minus119903 minus119902119904) = (minus1)119898119902minusℎ119891(minus119902119897 minus119902119896)

3 Main Results

The Jacobi triple product identity states thatinfin

sum119899=minusinfin

(minus1)119899119902119899(119899minus1)2

119911119899= (119902 119902)

infin(119911 119902)infin(119902

119911 119902)infin

119911 = 0

(9)

In Ramanujanrsquos notation the Jacobi triple product identitytakes the form

119891 (119886 119887) = (minus119886 119886119887)infin(minus119887 119886119887)

infin(119886119887 119886119887)

infin (10)

The Jacobi triple product identity was first proved by Gauss[13] Using (3) we have

119891 (minus1198902119894119911 minus119902119890minus2119894119911

) = 2119894119890119894119911

infin

sum119899=0

(minus1)119899+1

119902119899(119899+1)2 sin (2119899 + 1) 119911

(11)

Putting 119886 = minus1198902119894119911 and 119887 = minus119902119890minus2119894119911 in (10) we obtain

119891 (minus1198902119894119911 minus119902119890minus2119894119911

) = (1 minus 1198902119894119911) (1199021198902119894119911 119902)infin(119902119890minus2119894119911

119902)infin(119902 119902)infin

(12)

Putting 119911 = 1205876 and 119911 = 21205876 respectively in (12) we obtain

119891 (minus1198901198941205873

minus119902119890minus1198941205873

)

= (1 minus 1198901198941205873

) (1199021198901198941205873

119902)infin(119902119890minus1198941205873

119902)infin(119902 119902)infin

(13)

119891 (minus11989011989421205873

minus119902119890minus11989421205873

)

= (1 minus 11989011989421205873

) (11990211989011989421205873

119902)infin(119902119890minus11989421205873

119902)infin(119902 119902)infin

(14)

Multiplying (13) and (14) together and using the identities

(1 minus 1198901198941205873

) (1 minus 11989011989421205873

) = minus119894radic3

(1 minus 119909) (1 minus 11990911989021205871198946

) (1 minus 119909119890minus21205871198946

) (1 minus 11990911989041205871198946

)

times (1 minus 119909119890minus41205871198946

) (1 minus 11990911989061205871198946

) = (1 minus 1199096)

(15)

in the resulting equation and then after some simplificationswe obtain the following identity

119891 (minus1198901198941205873

minus119902119890minus1198941205873

) 119891 (minus11989011989421205873

minus119902119890minus11989421205873

)

= minus119894radic3119902minus14 1205782(120591) 120578 (6120591)

120578 (2120591)

(16)

Theorem 4 Let |119902| lt 1 120572 = minus1 and 120573 = 1 Theninfin

prod119899=1

1

(1 + 1205721199021198992 + 119902119899)minus

infin

prod119899=1

1

(1 + 1205731199021198992 + 119902119899)

= 4119902124 120578 (120591) 120578

2(3120591)

120578 (120591) 1205782 (31205912) + 1205782 (1205912) 120578 (3120591)119866 (119902)

(17)

infin

prod119899=1

1

(1 + 1205721199021198992 + 119902119899)minus

infin

prod119899=1

1

(1 + 1205731199021198992 + 119902119899)

= 4119902124 120578 (120591) 120578 (2120591) 120578 (6120591)

120578 (120591) 1205782 (31205912) + 1205782 (1205912) 120578 (3120591)119883 (119902)

(18)

Journal of Numbers 3

Proof Wemay rewrite (13) and (14) as follows

119891 (minus1198901198941205873

minus119902119890minus1198941205873

)

= (1 minus 1198901198941205873

) 119902minus124

120578 (120591)

infin

prod119899=1

(1 + 120572119902119899+ 1199022119899)

119891 (minus11989011989421205873

minus119902119890minus11989421205873

)

= (1 minus 11989011989421205873

) 119902minus124

120578 (120591)

infin

prod119899=1

(1 + 120573119902119899+ 1199022119899)

(19)

where

120572 = minus2 cos 1205873= minus1 120573 = minus2 cos 2120587

3= 1 (20)

Then

infin

prod119899=1

(1 + 120572119902119899+ 1199022119899) =

119902124

120578 (120591)

119891 (minus1198901198941205873

minus119902119890minus1198941205873

)

(1 minus 1198901198941205873) (21)

infin

prod119899=1

(1 + 120573119902119899+ 1199022119899) =

119902124

120578 (120591)

119891 (minus11989011989421205873

minus119902119890minus11989421205873

)

(1 minus 11989011989421205873) (22)

Multiplying the above two equations together and then using(16) in resulting identity we find thatinfin

prod119899=1

(1 + 120572119902119899+ 1199022119899) (1 + 120573119902

119899+ 1199022119899) = 119902minus16 120578 (6120591)

120578 (2120591) (23)

Subtracting (22) from (21) we obtaininfin

prod119899=1

(1 + 120572119902119899+ 1199022119899) minus

infin

prod119899=1

(1 + 120573119902119899+ 1199022119899)

=119902124

120578 (120591)(119891 (minus119890

1198941205873 minus119902119890minus1198941205873

)

(1 minus 1198901198941205873)minus119891 (minus119890

11989421205873 minus119902119890minus11989421205873

)

(1 minus 11989011989421205873))

(24)

Using (11) in (24) we deduce thatinfin

prod119899=1

(1 + 120572119902119899+ 1199022119899) minus

infin

prod119899=1

(1 + 120573119902119899+ 1199022119899)

=119902minus112

120578 (120591)

infin

sum119899=0

(minus1)119899119875 (119899) 119902

(2119899+1)28

(25)

where

119875 (119899) =2 sin (2119899 + 1) (1205876)119894119890minus1198941205876 (1 minus 1198901198941205873)

minus2 sin (2119899 + 1) (21205876)119894119890minus11989421205876 (1 minus 11989011989421205873)

(26)

Now by direct computations we find that

119875 (6119898 + 0) = 0 119875 (6119898 + 1) = 2

119875 (6119898 + 2) = 2 119875 (6119898 + 3) = minus2

119875 (6119898 + 4) = minus 2 119875 (6119898 + 5) = 0

(27)

Thereforeinfin

sum119899=0

(minus1)119899119875 (119899) 119902

(2119899+1)28

= 2minus

infin

sum119898=0

119902(12119898+3)

28+

infin

sum119898=0

119902(12119898+5)

28

+

infin

sum119898=0

119902(12119898+7)

28minus

infin

sum119898=0

119902(12119898+9)

28

(28)

In the right-hand side of the above equation changing 119898 to119898minus1 in the first two summations and also changing119898 to minus119898in the last two summations we obtaininfin

sum119899=0

(minus1)119899119875 (119899) 119902

(2119899+1)28

= 2

infin

sum119898=minusinfin

119902(12119898minus7)

28minus

infin

sum119898=minusinfin

119902(12119898minus9)

28

(29)

Now using the definition of 119891(119886 119887) in the right-hand side ofthe above equation we find that

infin

sum119899=0

(minus1)119899119875 (119899) 119902

(2119899+1)28

= minus211990298

119891 (1199029 11990227) minus 1199022119891 (1199023 11990233)

(30)

In the quintuple product identity (8) replacing 119902 by 1199026 andthen setting 119861 = 119902 we find that

119891 (1199029 11990227) minus 1199022119891 (1199023 11990233) =

119891 (minus11990212) 119891 (minus119902

2 minus11990210)

119891 (1199025 1199027) (31)

Combining (25) (30) and (31) we find that

infin

prod119899=1

(1 + 120572119902119899+ 1199022119899) minus

infin

prod119899=1

(1 + 120573119902119899+ 1199022119899)

=minus21199022524

120578 (120591)119891 (minus119902

12) 119891 (minus119902

2 minus11990210)

119891 (1199025 1199027)

(32)

Dividing both sides of (32) byprodinfin119899=1

(1+120572119902119899+1199022119899)(1+120573119902

119899+1199022119899)

and then using (23) we obtain

infin

prod119899=1

(1 + 120572119902119899+ 1199022119899)minus1

minus

infin

prod119899=1

(1 + 120573119902119899+ 1199022119899)minus1

= 21199022924 120578 (2120591)

120578 (120591) 120578 (6120591)119891 (minus119902

12) 119891 (minus119902

2 minus11990210)

119891 (1199025 1199027)

(33)

Replacing 119886 by 119902 and 119887 by 1199022 in (7) we find that

119891 (119902 1199022) + 119891 (minus119902 minus119902

2) = 2119891 (119902

5 1199027) (34)

4 Journal of Numbers

Now using the above equation in the right-hand side of(33) and then changing 119902 to 11990212 throughout we obtain (17)Equation (18) follows from the following identity

119866 (119902) =120578 (2120591) 120578 (6120591)

1205782 (3120591)119883 (119902) (35)

This completes the proof of Theorem 4

4 Eisenstein Series Identities Associatedwith 119866(119902) and 119883(119902)

In this section we present four Eisenstein series identitiesassociated with 119866(119902) and119883(119902)

Theorem 5 Let |119902| lt 1 Then

infin

sum119899=1

119899equiv1(mod 3)

119902119899minus 1199023119899+ 1199025119899

1 minus 1199026119899minus

infin

sum119899=1

119899equiv2(mod 3)

119902119899minus 1199023119899+ 1199025119899

1 minus 1199026119899

=1205783(18120591)

120578 (6120591)[

1

119866 (1199023)minus 1 minus 119866 (119902

3)]

(36)

Proof Changing 119899 tominus119899 in the second summation of the left-hand side of Theorem 5 we have

infin

sum119899=1

119899equiv1(mod 3)

119902119899minus 1199023119899+ 1199025119899

1 minus 1199026119899minus

infin

sum119899=1

119899equiv2(mod 3)

119902119899minus 1199023119899+ 1199025119899

1 minus 1199026119899

=

infin

sum119899=1

119899equiv1(mod 3)

119902119899minus 1199023119899+ 1199025119899

1 minus 1199026119899

minus

minus1

sum119899=minusinfin

119899equiv1(mod 3)

119902minus119899minus 119902minus3119899

+ 119902minus5119899

1 minus 119902minus6119899

=

infin

sum119899=minusinfin

1199023119899+1

1 minus 11990218119899+6minus

infin

sum119899=minusinfin

1199029119899+3

1 minus 11990218119899+6+

infin

sum119899=minusinfin

11990215119899+5

1 minus 11990218119899+6

(37)

Using a corollary of Ramanujanrsquos1Ψ1summation formula [11

Entry 17 page 32]

infin

sum119899=minusinfin

119911119899

1 minus 119886119902119899=(119886119911 119902119886119911 119902 119902 119902)

infin

(119886 119902119886 119911 119902119911 119902)infin

10038161003816100381610038161199021003816100381610038161003816 lt |119911| lt 1 (38)

and Lemma 3 in (37) we find that

infin

sum119899=1

119899equiv1(mod 3)

119902119899minus 1199023119899+ 1199025119899

1 minus 1199026119899minus

infin

sum119899=1

119899equiv2(mod 3)

119902119899minus 1199023119899+ 1199025119899

1 minus 1199026119899

= 119902(1199029 1199029 11990218 11990218 11990218)infin

(1199026 11990212 1199023 11990215 11990218)infin

minus 1199023(11990215 1199023 11990218 11990218 11990218)infin

(1199026 11990212 1199029 1199029 11990218)infin

+ 1199025(11990221 119902minus3 11990218 11990218 11990218)infin

(1199026 11990212 11990215 1199023 11990218)infin

=(11990218 11990218)2

infin

(1199026 11990212 11990218)infin

119902119891 (minus119902

9 minus1199029)

119891 (minus1199023 minus11990215)minus 1199023119891 (minus119902

3 minus11990215)

119891 (minus1199029 minus1199029)

minus1199022119891 (minus119902

3 minus11990215)

119891 (minus1199023 minus11990215)

(39)

Using (4) in (39) and after some simplifications we obtain(36)

Theorem 6 Let |119902| lt 1 Then

infin

sum119899=1

119899equiv1(mod 6)

119902119899minus 1199022119899minus 1199024119899+ 1199025119899

1 minus 1199026119899

minus

infin

sum119899=1

119899equiv5(mod 6)

119902119899minus 1199022119899minus 1199024119899+ 1199025119899

1 minus 1199026119899

=120578 (12120591) 120578 (18120591) 120578 (36120591)

120578 (6120591)

times [1

119883 (1199026)minus

1205782(18120591)

120578 (12120591) 120578 (36120591)minus 119883 (119902

6)]

(40)

Proof Using the identity

infin

sum119899=0

119909119899

1 minus 119910119902119899

=

infin

sum119899=0

infin

sum119898=0

119909119899119910119898119902119898119899

=

infin

sum119899=0

119910119899

1 minus 119909119902119899 |119909|

10038161003816100381610038161199101003816100381610038161003816 lt 1

(41)

the left-hand side of Theorem 6 can be written as

infin

sum119899=1

119899equiv1(mod 6)

119902119899minus 1199022119899minus 1199024119899

1 minus 1199026119899minus

minus1

sum119899=minusinfin

119899equiv1(mod 6)

minus119902minus2119899

minus 119902minus4119899

+ 119902minus5119899

1 minus 119902minus6119899

=

infin

sum119899=minusinfin

1199026119899+1

1 minus 11990236119899+6minus

infin

sum119899=minusinfin

11990212119899+2

1 minus 11990236119899+6minus

infin

sum119899=minusinfin

11990224119899+4

1 minus 11990236119899+6

(42)

Journal of Numbers 5

Using (38) in (42) we obtain

infin

sum119899=1

119899equiv1(mod 6)

119902119899minus 1199022119899minus 1199024119899+ 1199025119899

1 minus 1199026119899

minus

infin

sum119899=1

119899equiv5(mod 6)

119902119899minus 1199022119899minus 1199024119899+ 1199025119899

1 minus 1199026119899

=(11990236 11990236)2

infin

(1199026 11990230 11990236)infin

119902(11990212 11990224 11990236)infin

(1199026 11990230 11990236)infin

minus 1199022(11990218 11990218 11990236)infin

(11990212 11990224 11990236)infin

minus1199024(1199026 11990230 11990236)infin

(11990212 11990224 11990236)infin

(43)

Using (5) in (43) and after some simplifications we obtain(40)

Differentiating both sides of (12) and then setting 119911 = 0

yield

1198911015840(minus1 minus119902) = minus2119894(119902 119902)

3

infin (44)

where 1198911015840 denotes the partial derivative of 119891with respect to 119911Now we prove a lemma which is useful to prove Eisen-

stein series identities associated with 119866(119902) and119883(119902)

Lemma 7 Consider the following

infin

sum119899=1

119902119899minus 1199022119899minus 1199024119899+ 1199025119899

1 minus 1199026119899sin 2119899119911

= (minus11989021198941199111198911015840(minus1 minus119902

6) 119891 (minus119902

3 minus1199023) 119891 (minus119902 minus119902

5)

times119891 (minus1198904119894119911 minus1199026119890minus4119894119911

))

times (41199022119891 (minus119902119890

2119894119911 minus1199025119890minus2119894119911

)

times 119891(minus119902minus11198902119894119911 minus1199027119890minus2119894119911

)119891(minus11990221198902119894119911 minus1199024119890minus2119894119911

))minus1

times1

119891 (minus119902minus21198902119894119911 minus1199028119890minus2119894119911)

(45)

Proof For simplicity we use119865(119911 119902) to denote the logarithmicderivative of 11989411990218119890minus119894119911119891(minus1198902119894119911 minus119902119890minus2119894119911) with respect to 119911 Toprove this lemma we need the following identity which canbe found in [14 Theorem 5] [15 Corollary 2]

119865 (1199111 119902) + 119865 (119911

2 119902) + 119865 (119911

3 119902) minus 119865 (119911

1+ 1199112+ 1199113 119902)

= (minus1198911015840(minus1 minus119902) 119891 (minus119890

2119894(1199111+1199112) minus119902119890minus2119894(1199111+1199112))

times119891 (minus1198902119894(1199112+1199113) minus119902119890minus2119894(1199112+1199113)))

times (119891 (minus11989021198941199111 minus119902119890minus21198941199111)

times 119891(minus11989021198941199112 minus119902119890minus21198941199112)119891(minus119890

21198941199113 minus119902119890minus21198941199113))minus1

times119891 (minus119890

2119894(1199111+1199113) minus119902119890minus2119894(1199111+1199113))

119891 (minus1198902119894(1199111+1199112+1199113) minus119902119890minus2119894(1199111+1199112+1199113))

(46)

As the proof of this lemma is similar to that of Lemma 1 in[4] we omit the details

Using (45) we derive the following Eisenstein seriesidentity

Theorem 8 Let |119902| lt 1 Then

infin

sum119899=1

119899 (119902119899minus 1199022119899minus 1199024119899+ 1199025119899)

1 minus 1199026119899

=1205786(3120591)

1205782 (120591)119866 (119902) =

1205784(3120591) 120578 (6120591) 120578 (2120591)

1205782 (120591)119883 (119902)

(47)

Proof Dividing both sides of (45) by 119911 and then letting 119911 rarr

0 we obtain

infin

sum119899=1

119899 (119902119899minus 1199022119899minus 1199024119899+ 1199025119899)

1 minus 1199026119899

= ((1199026 1199026)6

infin119891 (minus119902

3 minus1199023) 119891 (minus119902

1 minus1199025))

times (1199022119891 (minus119902

1 minus1199025) 119891 (minus119902

minus1 minus1199027)

times 119891(minus1199022 minus1199024)119891(minus119902

minus2 minus1199028))minus1

(48)

Using Lemma 3 in (48) we complete the proof ofTheorem 8

We use (sdot119901) to denote the Legendre symbol modulo119901 Setting 119911 = 1205873 in (45) and noting that sin (21198991205873) =

(radic32)(1198993) we find that

radic3

2

infin

sum119899=1

(119899

3)119902119899minus 1199022119899minus 1199024119899+ 1199025119899

1 minus 1199026119899

= (minus11989021198941205873

1198911015840(minus1 minus119902

6) 119891 (minus119902

3 minus1199023)

times119891 (minus1199021 minus1199025) 119891 (minus119890

41198941205873 minus1199026119890minus41198941205873

))

times (41199022119891 (minus119890

2119894((1205873)+120587120591) minus1199026119890minus2119894((1205873)+120587120591)

)

times 119891(minus1198902119894((1205873)minus120587120591)

minus1199026119890minus2119894((1205873)minus120587120591)

))minus1

times (1) (119891 (minus1198902119894((1205873)+2120587120591)

minus1199026119890minus2119894((1205873)+2120587120591)

)

times 119891(minus1198902119894((1205873)minus2120587120591)

minus1199026119890minus2119894((1205873)minus2120587120591)

))minus1

(49)

6 Journal of Numbers

Recall the identity [16 Eq (3 1)]

119891 (minus1198902119894((1205873)minus119911)

minus119902119890minus2119894((1205873)minus119911)

)

times 119891 (minus1198902119894((1205873)+119911)

minus119902119890minus2119894((1205873)+119911)

)

=119890minus2119894119911

(119902 119902)3

infin

119890(minus1198942120587)3(1199023 1199023)infin

119891 (minus1198906119894119911 minus1199023119890minus6119894119911

)

119891 (minus1198902119894119911 minus119902119890minus2119894119911)

(50)

Using the above identity in (49) we obtain the followingEisenstein series identity

Theorem 9 Let |119902| lt 1 Then

infin

sum119899=1

(119899

3)119902119899minus 1199022119899minus 1199024119899+ 1199025119899

1 minus 1199026119899

=1205782(3120591) 120578 (120591) 120578 (9120591) 120578 (18120591)

1205783 (6120591)119866 (119902)

=120578 (120591) 120578 (2120591) 120578 (9120591) 120578 (18120591)

1205782 (6120591)119883 (119902)

(51)

Conflict of Interests

The authors declare that there is no conflict of interestsregarding the publication of this paper

Acknowledgments

The authors would like to thank the referees for their severalhelpful comments and suggestions The first author is thank-ful to the University Grants Commission Government ofIndia for the financial support under the Grant F5102SAP-DRS2011 The second author is thankful to DST NewDelhi for awarding INSPIRE Fellowship (no DSTINSPIREFellowship2012122) The third author is thankful to UGCNew Delhi for UGC-BSR fellowship under which this workhas been done

References

[1] S RamanujanNotebooks Vols 1 2 Tata Institute of Fundamen-tal Research Bombay India 1957

[2] S Ramanujan Collected Papers Cambridge University PressCambridge UK 1927 repriented by Chelsea New York NYUSA 1962 reprinted by the American Mathematical SocietyProvidence RI USA 2000

[3] S RamanujanTheLostNotebook andOtherUnpublished PapersSpringer Berlin Germany Narosa Publishing House NewDelhi India 1988

[4] Z-G Liu ldquoA theta function identity and the Eisenstein series onΓ0(5)rdquo Journal of the Ramanujan Mathematical Society vol 22

no 3 pp 283ndash298 2007[5] HH Chan S H Chan and Z-G Liu ldquoTheRogers-Ramanujan

continued fraction and a new Eisenstein series identityrdquo Journalof Number Theory vol 129 no 7 pp 1786ndash1797 2009

[6] C Adiga T Kim M S Mahadeva Naika and H S Madhusud-han ldquoOn Ramanujanrsquos cubic continued fraction and explicit

evaluations of theta-functionsrdquo Indian Journal of Pure andApplied Mathematics vol 35 no 9 pp 1047ndash1062 2004

[7] S Bhargava K R Vasuki and T G Sreeramamurthy ldquoSomeevaluations of Ramanujanrsquos cubic continued fractionrdquo IndianJournal of Pure andAppliedMathematics vol 35 no 8 pp 1003ndash1025 2004

[8] H H Chan ldquoOn Ramanujanrsquos cubic continued fractionrdquo ActaArithmetica vol 73 no 4 pp 343ndash355 1995

[9] K R Vasuki A A Abdulrawf Kahatan andG Sharath ldquoOn theseries expansion of the Ramanujan cubic continued fractionrdquoInternational Journal of Mathematical Combinatorics vol 4 pp84ndash95 2011

[10] K R Vasuki N Bhaskar and G Sharath ldquoOn a continuedfraction of order sixrdquo Annali dellrsquoUniversita di Ferrara vol 56no 1 pp 77ndash89 2010

[11] C Adiga B C Berndt S Bhargava andG NWatson ldquoChapter16 of Ramanujanrsquos second notebook theta functions and q-seriesrdquoMemoirs of the American Mathematical Society vol 315pp 1ndash91 1985

[12] CAdiga andN SA Bulkhali ldquoIdentities for certain products oftheta functions with applications to modular relationsrdquo Journalof Analysis amp Number Theory vol 2 no 1 pp 1ndash15 2014

[13] C F Gauss ldquoHundert Theorems uber die neuen Transscen-dentenrdquo in Werke 3 pp 461ndash469 Konigliche Gesellschaft derWissenschaften zu Gottingen Gottingen Germany 1876

[14] Z-G Liu ldquoA three-term theta function identity and its applica-tionsrdquo Advances in Mathematics vol 195 no 1 pp 1ndash23 2005

[15] S McCullough and L-C Shen ldquoOn the Szego kernel of anannulusrdquo Proceedings of the AmericanMathematical Society vol121 no 4 pp 1111ndash1121 1994

[16] Z-G Liu ldquoA theta function identity and its implicationsrdquoTransactions of the American Mathematical Society vol 357 no2 pp 825ndash835 2005

Submit your manuscripts athttpwwwhindawicom

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

MathematicsJournal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Mathematical Problems in Engineering

Hindawi Publishing Corporationhttpwwwhindawicom

Differential EquationsInternational Journal of

Volume 2014

Applied MathematicsJournal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Probability and StatisticsHindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Journal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Mathematical PhysicsAdvances in

Complex AnalysisJournal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

OptimizationJournal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

CombinatoricsHindawi Publishing Corporationhttpwwwhindawicom Volume 2014

International Journal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Operations ResearchAdvances in

Journal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Function Spaces

Abstract and Applied AnalysisHindawi Publishing Corporationhttpwwwhindawicom Volume 2014

International Journal of Mathematics and Mathematical Sciences

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

The Scientific World JournalHindawi Publishing Corporation httpwwwhindawicom Volume 2014

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Algebra

Discrete Dynamics in Nature and Society

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Decision SciencesAdvances in

Discrete MathematicsJournal of

Hindawi Publishing Corporationhttpwwwhindawicom

Volume 2014 Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Stochastic AnalysisInternational Journal of

Page 2: Research Article Continued Fractions of Order Six and New ...downloads.hindawi.com/journals/jn/2014/643241.pdf · Srinivasa Ramanujan made some signi cant contributions to the theory

2 Journal of Numbers

Adiga et al [6] Bhargava et al [7] Chan [8] and Vasukiet al [9] have proved several elegant theorems for119866(119902) manyof which are analogues of well-known properties satisfied bythe Rogers-Ramanujan continued fraction

Recently Vasuki et al [10] have studied the followingcontinued fraction of order six

119883(119902) = 11990214

119891 (minus119902 minus1199025)

119891 (minus1199022 minus1199024)

=11990214

(1 minus 119902minus2)

(1 minus 119902minus32) +(11990214

minus 119902minus14

) (119902minus74

minus 11990274)

(1 minus 119902minus32) (1 + 1199023) + sdot sdot sdot

(5)

The continued fraction (5) is a special case of a fascinatingcontinued fraction identity recorded by Ramanujan in hissecond notebook [1] [11 page 24] Furthermore they haveestablished modular relations between the continued frac-tions119883(119902) and119883(119902119899) for 119899 = 2 3 5 7 and 11

In Section 3 of this paper we establish two new identitiesassociated with the continued fractions 119866(119902) and 119883(119902)using the quintuple product identity In Section 4 we deriveEisenstein series identities associated with 119866(119902) and119883(119902)

2 Definitions and Preliminary Results

In this section we present some basic definitions and pre-liminary results One of the most interesting special cases of119891(119886 119887) is [11 Entry 22]

119891 (minus119902) = 119891 (minus119902 minus1199022) =

infin

sum119899=minusinfin

(minus1)119899119902119899(3119899minus1)2

= (119902 119902)infin (6)

Note that the Dedekind eta function 120578(120591) = 119902124

119891(minus119902)where 119902 = 119890

2120587119894120591 Im 120591 gt 0 We need the following threelemmas to prove our main results

Lemma 1 (see [11 Entry 30 page 46]) One has

119891 (119886 119887) + 119891 (minus119886 minus119887) = 2119891 (1198863119887 1198861198873) (7)

Lemma 2 (see [11 page 80]) One has

119891(11986131199021199025

1198613) minus 119861

2119891(

119902

1198613 11986131199025)

= 119891 (minus1199022)119891 (minus119861

2 minus11990221198612)

119891 (119861119902 119902119861)

(8)

Lemma 3 (see [12 Lemma 2(ii)]) Let 119898 = [119904(119904 minus 119903)] 119897 =119898(119904minus119903)minus119903 119896 = minus119898(119904minus119903)+119904 and ℎ = 119898119903minus(119898(119898minus1)(119904minus119903))20 le 119903 lt 119904 Here [119909] denotes the largest integer less than or equalto 119909 Then

(i) 119891(119902minus119903 119902119904) = 119902minusℎ119891(119902119897 119902119896)

(ii) 119891(minus119902minus119903 minus119902119904) = (minus1)119898119902minusℎ119891(minus119902119897 minus119902119896)

3 Main Results

The Jacobi triple product identity states thatinfin

sum119899=minusinfin

(minus1)119899119902119899(119899minus1)2

119911119899= (119902 119902)

infin(119911 119902)infin(119902

119911 119902)infin

119911 = 0

(9)

In Ramanujanrsquos notation the Jacobi triple product identitytakes the form

119891 (119886 119887) = (minus119886 119886119887)infin(minus119887 119886119887)

infin(119886119887 119886119887)

infin (10)

The Jacobi triple product identity was first proved by Gauss[13] Using (3) we have

119891 (minus1198902119894119911 minus119902119890minus2119894119911

) = 2119894119890119894119911

infin

sum119899=0

(minus1)119899+1

119902119899(119899+1)2 sin (2119899 + 1) 119911

(11)

Putting 119886 = minus1198902119894119911 and 119887 = minus119902119890minus2119894119911 in (10) we obtain

119891 (minus1198902119894119911 minus119902119890minus2119894119911

) = (1 minus 1198902119894119911) (1199021198902119894119911 119902)infin(119902119890minus2119894119911

119902)infin(119902 119902)infin

(12)

Putting 119911 = 1205876 and 119911 = 21205876 respectively in (12) we obtain

119891 (minus1198901198941205873

minus119902119890minus1198941205873

)

= (1 minus 1198901198941205873

) (1199021198901198941205873

119902)infin(119902119890minus1198941205873

119902)infin(119902 119902)infin

(13)

119891 (minus11989011989421205873

minus119902119890minus11989421205873

)

= (1 minus 11989011989421205873

) (11990211989011989421205873

119902)infin(119902119890minus11989421205873

119902)infin(119902 119902)infin

(14)

Multiplying (13) and (14) together and using the identities

(1 minus 1198901198941205873

) (1 minus 11989011989421205873

) = minus119894radic3

(1 minus 119909) (1 minus 11990911989021205871198946

) (1 minus 119909119890minus21205871198946

) (1 minus 11990911989041205871198946

)

times (1 minus 119909119890minus41205871198946

) (1 minus 11990911989061205871198946

) = (1 minus 1199096)

(15)

in the resulting equation and then after some simplificationswe obtain the following identity

119891 (minus1198901198941205873

minus119902119890minus1198941205873

) 119891 (minus11989011989421205873

minus119902119890minus11989421205873

)

= minus119894radic3119902minus14 1205782(120591) 120578 (6120591)

120578 (2120591)

(16)

Theorem 4 Let |119902| lt 1 120572 = minus1 and 120573 = 1 Theninfin

prod119899=1

1

(1 + 1205721199021198992 + 119902119899)minus

infin

prod119899=1

1

(1 + 1205731199021198992 + 119902119899)

= 4119902124 120578 (120591) 120578

2(3120591)

120578 (120591) 1205782 (31205912) + 1205782 (1205912) 120578 (3120591)119866 (119902)

(17)

infin

prod119899=1

1

(1 + 1205721199021198992 + 119902119899)minus

infin

prod119899=1

1

(1 + 1205731199021198992 + 119902119899)

= 4119902124 120578 (120591) 120578 (2120591) 120578 (6120591)

120578 (120591) 1205782 (31205912) + 1205782 (1205912) 120578 (3120591)119883 (119902)

(18)

Journal of Numbers 3

Proof Wemay rewrite (13) and (14) as follows

119891 (minus1198901198941205873

minus119902119890minus1198941205873

)

= (1 minus 1198901198941205873

) 119902minus124

120578 (120591)

infin

prod119899=1

(1 + 120572119902119899+ 1199022119899)

119891 (minus11989011989421205873

minus119902119890minus11989421205873

)

= (1 minus 11989011989421205873

) 119902minus124

120578 (120591)

infin

prod119899=1

(1 + 120573119902119899+ 1199022119899)

(19)

where

120572 = minus2 cos 1205873= minus1 120573 = minus2 cos 2120587

3= 1 (20)

Then

infin

prod119899=1

(1 + 120572119902119899+ 1199022119899) =

119902124

120578 (120591)

119891 (minus1198901198941205873

minus119902119890minus1198941205873

)

(1 minus 1198901198941205873) (21)

infin

prod119899=1

(1 + 120573119902119899+ 1199022119899) =

119902124

120578 (120591)

119891 (minus11989011989421205873

minus119902119890minus11989421205873

)

(1 minus 11989011989421205873) (22)

Multiplying the above two equations together and then using(16) in resulting identity we find thatinfin

prod119899=1

(1 + 120572119902119899+ 1199022119899) (1 + 120573119902

119899+ 1199022119899) = 119902minus16 120578 (6120591)

120578 (2120591) (23)

Subtracting (22) from (21) we obtaininfin

prod119899=1

(1 + 120572119902119899+ 1199022119899) minus

infin

prod119899=1

(1 + 120573119902119899+ 1199022119899)

=119902124

120578 (120591)(119891 (minus119890

1198941205873 minus119902119890minus1198941205873

)

(1 minus 1198901198941205873)minus119891 (minus119890

11989421205873 minus119902119890minus11989421205873

)

(1 minus 11989011989421205873))

(24)

Using (11) in (24) we deduce thatinfin

prod119899=1

(1 + 120572119902119899+ 1199022119899) minus

infin

prod119899=1

(1 + 120573119902119899+ 1199022119899)

=119902minus112

120578 (120591)

infin

sum119899=0

(minus1)119899119875 (119899) 119902

(2119899+1)28

(25)

where

119875 (119899) =2 sin (2119899 + 1) (1205876)119894119890minus1198941205876 (1 minus 1198901198941205873)

minus2 sin (2119899 + 1) (21205876)119894119890minus11989421205876 (1 minus 11989011989421205873)

(26)

Now by direct computations we find that

119875 (6119898 + 0) = 0 119875 (6119898 + 1) = 2

119875 (6119898 + 2) = 2 119875 (6119898 + 3) = minus2

119875 (6119898 + 4) = minus 2 119875 (6119898 + 5) = 0

(27)

Thereforeinfin

sum119899=0

(minus1)119899119875 (119899) 119902

(2119899+1)28

= 2minus

infin

sum119898=0

119902(12119898+3)

28+

infin

sum119898=0

119902(12119898+5)

28

+

infin

sum119898=0

119902(12119898+7)

28minus

infin

sum119898=0

119902(12119898+9)

28

(28)

In the right-hand side of the above equation changing 119898 to119898minus1 in the first two summations and also changing119898 to minus119898in the last two summations we obtaininfin

sum119899=0

(minus1)119899119875 (119899) 119902

(2119899+1)28

= 2

infin

sum119898=minusinfin

119902(12119898minus7)

28minus

infin

sum119898=minusinfin

119902(12119898minus9)

28

(29)

Now using the definition of 119891(119886 119887) in the right-hand side ofthe above equation we find that

infin

sum119899=0

(minus1)119899119875 (119899) 119902

(2119899+1)28

= minus211990298

119891 (1199029 11990227) minus 1199022119891 (1199023 11990233)

(30)

In the quintuple product identity (8) replacing 119902 by 1199026 andthen setting 119861 = 119902 we find that

119891 (1199029 11990227) minus 1199022119891 (1199023 11990233) =

119891 (minus11990212) 119891 (minus119902

2 minus11990210)

119891 (1199025 1199027) (31)

Combining (25) (30) and (31) we find that

infin

prod119899=1

(1 + 120572119902119899+ 1199022119899) minus

infin

prod119899=1

(1 + 120573119902119899+ 1199022119899)

=minus21199022524

120578 (120591)119891 (minus119902

12) 119891 (minus119902

2 minus11990210)

119891 (1199025 1199027)

(32)

Dividing both sides of (32) byprodinfin119899=1

(1+120572119902119899+1199022119899)(1+120573119902

119899+1199022119899)

and then using (23) we obtain

infin

prod119899=1

(1 + 120572119902119899+ 1199022119899)minus1

minus

infin

prod119899=1

(1 + 120573119902119899+ 1199022119899)minus1

= 21199022924 120578 (2120591)

120578 (120591) 120578 (6120591)119891 (minus119902

12) 119891 (minus119902

2 minus11990210)

119891 (1199025 1199027)

(33)

Replacing 119886 by 119902 and 119887 by 1199022 in (7) we find that

119891 (119902 1199022) + 119891 (minus119902 minus119902

2) = 2119891 (119902

5 1199027) (34)

4 Journal of Numbers

Now using the above equation in the right-hand side of(33) and then changing 119902 to 11990212 throughout we obtain (17)Equation (18) follows from the following identity

119866 (119902) =120578 (2120591) 120578 (6120591)

1205782 (3120591)119883 (119902) (35)

This completes the proof of Theorem 4

4 Eisenstein Series Identities Associatedwith 119866(119902) and 119883(119902)

In this section we present four Eisenstein series identitiesassociated with 119866(119902) and119883(119902)

Theorem 5 Let |119902| lt 1 Then

infin

sum119899=1

119899equiv1(mod 3)

119902119899minus 1199023119899+ 1199025119899

1 minus 1199026119899minus

infin

sum119899=1

119899equiv2(mod 3)

119902119899minus 1199023119899+ 1199025119899

1 minus 1199026119899

=1205783(18120591)

120578 (6120591)[

1

119866 (1199023)minus 1 minus 119866 (119902

3)]

(36)

Proof Changing 119899 tominus119899 in the second summation of the left-hand side of Theorem 5 we have

infin

sum119899=1

119899equiv1(mod 3)

119902119899minus 1199023119899+ 1199025119899

1 minus 1199026119899minus

infin

sum119899=1

119899equiv2(mod 3)

119902119899minus 1199023119899+ 1199025119899

1 minus 1199026119899

=

infin

sum119899=1

119899equiv1(mod 3)

119902119899minus 1199023119899+ 1199025119899

1 minus 1199026119899

minus

minus1

sum119899=minusinfin

119899equiv1(mod 3)

119902minus119899minus 119902minus3119899

+ 119902minus5119899

1 minus 119902minus6119899

=

infin

sum119899=minusinfin

1199023119899+1

1 minus 11990218119899+6minus

infin

sum119899=minusinfin

1199029119899+3

1 minus 11990218119899+6+

infin

sum119899=minusinfin

11990215119899+5

1 minus 11990218119899+6

(37)

Using a corollary of Ramanujanrsquos1Ψ1summation formula [11

Entry 17 page 32]

infin

sum119899=minusinfin

119911119899

1 minus 119886119902119899=(119886119911 119902119886119911 119902 119902 119902)

infin

(119886 119902119886 119911 119902119911 119902)infin

10038161003816100381610038161199021003816100381610038161003816 lt |119911| lt 1 (38)

and Lemma 3 in (37) we find that

infin

sum119899=1

119899equiv1(mod 3)

119902119899minus 1199023119899+ 1199025119899

1 minus 1199026119899minus

infin

sum119899=1

119899equiv2(mod 3)

119902119899minus 1199023119899+ 1199025119899

1 minus 1199026119899

= 119902(1199029 1199029 11990218 11990218 11990218)infin

(1199026 11990212 1199023 11990215 11990218)infin

minus 1199023(11990215 1199023 11990218 11990218 11990218)infin

(1199026 11990212 1199029 1199029 11990218)infin

+ 1199025(11990221 119902minus3 11990218 11990218 11990218)infin

(1199026 11990212 11990215 1199023 11990218)infin

=(11990218 11990218)2

infin

(1199026 11990212 11990218)infin

119902119891 (minus119902

9 minus1199029)

119891 (minus1199023 minus11990215)minus 1199023119891 (minus119902

3 minus11990215)

119891 (minus1199029 minus1199029)

minus1199022119891 (minus119902

3 minus11990215)

119891 (minus1199023 minus11990215)

(39)

Using (4) in (39) and after some simplifications we obtain(36)

Theorem 6 Let |119902| lt 1 Then

infin

sum119899=1

119899equiv1(mod 6)

119902119899minus 1199022119899minus 1199024119899+ 1199025119899

1 minus 1199026119899

minus

infin

sum119899=1

119899equiv5(mod 6)

119902119899minus 1199022119899minus 1199024119899+ 1199025119899

1 minus 1199026119899

=120578 (12120591) 120578 (18120591) 120578 (36120591)

120578 (6120591)

times [1

119883 (1199026)minus

1205782(18120591)

120578 (12120591) 120578 (36120591)minus 119883 (119902

6)]

(40)

Proof Using the identity

infin

sum119899=0

119909119899

1 minus 119910119902119899

=

infin

sum119899=0

infin

sum119898=0

119909119899119910119898119902119898119899

=

infin

sum119899=0

119910119899

1 minus 119909119902119899 |119909|

10038161003816100381610038161199101003816100381610038161003816 lt 1

(41)

the left-hand side of Theorem 6 can be written as

infin

sum119899=1

119899equiv1(mod 6)

119902119899minus 1199022119899minus 1199024119899

1 minus 1199026119899minus

minus1

sum119899=minusinfin

119899equiv1(mod 6)

minus119902minus2119899

minus 119902minus4119899

+ 119902minus5119899

1 minus 119902minus6119899

=

infin

sum119899=minusinfin

1199026119899+1

1 minus 11990236119899+6minus

infin

sum119899=minusinfin

11990212119899+2

1 minus 11990236119899+6minus

infin

sum119899=minusinfin

11990224119899+4

1 minus 11990236119899+6

(42)

Journal of Numbers 5

Using (38) in (42) we obtain

infin

sum119899=1

119899equiv1(mod 6)

119902119899minus 1199022119899minus 1199024119899+ 1199025119899

1 minus 1199026119899

minus

infin

sum119899=1

119899equiv5(mod 6)

119902119899minus 1199022119899minus 1199024119899+ 1199025119899

1 minus 1199026119899

=(11990236 11990236)2

infin

(1199026 11990230 11990236)infin

119902(11990212 11990224 11990236)infin

(1199026 11990230 11990236)infin

minus 1199022(11990218 11990218 11990236)infin

(11990212 11990224 11990236)infin

minus1199024(1199026 11990230 11990236)infin

(11990212 11990224 11990236)infin

(43)

Using (5) in (43) and after some simplifications we obtain(40)

Differentiating both sides of (12) and then setting 119911 = 0

yield

1198911015840(minus1 minus119902) = minus2119894(119902 119902)

3

infin (44)

where 1198911015840 denotes the partial derivative of 119891with respect to 119911Now we prove a lemma which is useful to prove Eisen-

stein series identities associated with 119866(119902) and119883(119902)

Lemma 7 Consider the following

infin

sum119899=1

119902119899minus 1199022119899minus 1199024119899+ 1199025119899

1 minus 1199026119899sin 2119899119911

= (minus11989021198941199111198911015840(minus1 minus119902

6) 119891 (minus119902

3 minus1199023) 119891 (minus119902 minus119902

5)

times119891 (minus1198904119894119911 minus1199026119890minus4119894119911

))

times (41199022119891 (minus119902119890

2119894119911 minus1199025119890minus2119894119911

)

times 119891(minus119902minus11198902119894119911 minus1199027119890minus2119894119911

)119891(minus11990221198902119894119911 minus1199024119890minus2119894119911

))minus1

times1

119891 (minus119902minus21198902119894119911 minus1199028119890minus2119894119911)

(45)

Proof For simplicity we use119865(119911 119902) to denote the logarithmicderivative of 11989411990218119890minus119894119911119891(minus1198902119894119911 minus119902119890minus2119894119911) with respect to 119911 Toprove this lemma we need the following identity which canbe found in [14 Theorem 5] [15 Corollary 2]

119865 (1199111 119902) + 119865 (119911

2 119902) + 119865 (119911

3 119902) minus 119865 (119911

1+ 1199112+ 1199113 119902)

= (minus1198911015840(minus1 minus119902) 119891 (minus119890

2119894(1199111+1199112) minus119902119890minus2119894(1199111+1199112))

times119891 (minus1198902119894(1199112+1199113) minus119902119890minus2119894(1199112+1199113)))

times (119891 (minus11989021198941199111 minus119902119890minus21198941199111)

times 119891(minus11989021198941199112 minus119902119890minus21198941199112)119891(minus119890

21198941199113 minus119902119890minus21198941199113))minus1

times119891 (minus119890

2119894(1199111+1199113) minus119902119890minus2119894(1199111+1199113))

119891 (minus1198902119894(1199111+1199112+1199113) minus119902119890minus2119894(1199111+1199112+1199113))

(46)

As the proof of this lemma is similar to that of Lemma 1 in[4] we omit the details

Using (45) we derive the following Eisenstein seriesidentity

Theorem 8 Let |119902| lt 1 Then

infin

sum119899=1

119899 (119902119899minus 1199022119899minus 1199024119899+ 1199025119899)

1 minus 1199026119899

=1205786(3120591)

1205782 (120591)119866 (119902) =

1205784(3120591) 120578 (6120591) 120578 (2120591)

1205782 (120591)119883 (119902)

(47)

Proof Dividing both sides of (45) by 119911 and then letting 119911 rarr

0 we obtain

infin

sum119899=1

119899 (119902119899minus 1199022119899minus 1199024119899+ 1199025119899)

1 minus 1199026119899

= ((1199026 1199026)6

infin119891 (minus119902

3 minus1199023) 119891 (minus119902

1 minus1199025))

times (1199022119891 (minus119902

1 minus1199025) 119891 (minus119902

minus1 minus1199027)

times 119891(minus1199022 minus1199024)119891(minus119902

minus2 minus1199028))minus1

(48)

Using Lemma 3 in (48) we complete the proof ofTheorem 8

We use (sdot119901) to denote the Legendre symbol modulo119901 Setting 119911 = 1205873 in (45) and noting that sin (21198991205873) =

(radic32)(1198993) we find that

radic3

2

infin

sum119899=1

(119899

3)119902119899minus 1199022119899minus 1199024119899+ 1199025119899

1 minus 1199026119899

= (minus11989021198941205873

1198911015840(minus1 minus119902

6) 119891 (minus119902

3 minus1199023)

times119891 (minus1199021 minus1199025) 119891 (minus119890

41198941205873 minus1199026119890minus41198941205873

))

times (41199022119891 (minus119890

2119894((1205873)+120587120591) minus1199026119890minus2119894((1205873)+120587120591)

)

times 119891(minus1198902119894((1205873)minus120587120591)

minus1199026119890minus2119894((1205873)minus120587120591)

))minus1

times (1) (119891 (minus1198902119894((1205873)+2120587120591)

minus1199026119890minus2119894((1205873)+2120587120591)

)

times 119891(minus1198902119894((1205873)minus2120587120591)

minus1199026119890minus2119894((1205873)minus2120587120591)

))minus1

(49)

6 Journal of Numbers

Recall the identity [16 Eq (3 1)]

119891 (minus1198902119894((1205873)minus119911)

minus119902119890minus2119894((1205873)minus119911)

)

times 119891 (minus1198902119894((1205873)+119911)

minus119902119890minus2119894((1205873)+119911)

)

=119890minus2119894119911

(119902 119902)3

infin

119890(minus1198942120587)3(1199023 1199023)infin

119891 (minus1198906119894119911 minus1199023119890minus6119894119911

)

119891 (minus1198902119894119911 minus119902119890minus2119894119911)

(50)

Using the above identity in (49) we obtain the followingEisenstein series identity

Theorem 9 Let |119902| lt 1 Then

infin

sum119899=1

(119899

3)119902119899minus 1199022119899minus 1199024119899+ 1199025119899

1 minus 1199026119899

=1205782(3120591) 120578 (120591) 120578 (9120591) 120578 (18120591)

1205783 (6120591)119866 (119902)

=120578 (120591) 120578 (2120591) 120578 (9120591) 120578 (18120591)

1205782 (6120591)119883 (119902)

(51)

Conflict of Interests

The authors declare that there is no conflict of interestsregarding the publication of this paper

Acknowledgments

The authors would like to thank the referees for their severalhelpful comments and suggestions The first author is thank-ful to the University Grants Commission Government ofIndia for the financial support under the Grant F5102SAP-DRS2011 The second author is thankful to DST NewDelhi for awarding INSPIRE Fellowship (no DSTINSPIREFellowship2012122) The third author is thankful to UGCNew Delhi for UGC-BSR fellowship under which this workhas been done

References

[1] S RamanujanNotebooks Vols 1 2 Tata Institute of Fundamen-tal Research Bombay India 1957

[2] S Ramanujan Collected Papers Cambridge University PressCambridge UK 1927 repriented by Chelsea New York NYUSA 1962 reprinted by the American Mathematical SocietyProvidence RI USA 2000

[3] S RamanujanTheLostNotebook andOtherUnpublished PapersSpringer Berlin Germany Narosa Publishing House NewDelhi India 1988

[4] Z-G Liu ldquoA theta function identity and the Eisenstein series onΓ0(5)rdquo Journal of the Ramanujan Mathematical Society vol 22

no 3 pp 283ndash298 2007[5] HH Chan S H Chan and Z-G Liu ldquoTheRogers-Ramanujan

continued fraction and a new Eisenstein series identityrdquo Journalof Number Theory vol 129 no 7 pp 1786ndash1797 2009

[6] C Adiga T Kim M S Mahadeva Naika and H S Madhusud-han ldquoOn Ramanujanrsquos cubic continued fraction and explicit

evaluations of theta-functionsrdquo Indian Journal of Pure andApplied Mathematics vol 35 no 9 pp 1047ndash1062 2004

[7] S Bhargava K R Vasuki and T G Sreeramamurthy ldquoSomeevaluations of Ramanujanrsquos cubic continued fractionrdquo IndianJournal of Pure andAppliedMathematics vol 35 no 8 pp 1003ndash1025 2004

[8] H H Chan ldquoOn Ramanujanrsquos cubic continued fractionrdquo ActaArithmetica vol 73 no 4 pp 343ndash355 1995

[9] K R Vasuki A A Abdulrawf Kahatan andG Sharath ldquoOn theseries expansion of the Ramanujan cubic continued fractionrdquoInternational Journal of Mathematical Combinatorics vol 4 pp84ndash95 2011

[10] K R Vasuki N Bhaskar and G Sharath ldquoOn a continuedfraction of order sixrdquo Annali dellrsquoUniversita di Ferrara vol 56no 1 pp 77ndash89 2010

[11] C Adiga B C Berndt S Bhargava andG NWatson ldquoChapter16 of Ramanujanrsquos second notebook theta functions and q-seriesrdquoMemoirs of the American Mathematical Society vol 315pp 1ndash91 1985

[12] CAdiga andN SA Bulkhali ldquoIdentities for certain products oftheta functions with applications to modular relationsrdquo Journalof Analysis amp Number Theory vol 2 no 1 pp 1ndash15 2014

[13] C F Gauss ldquoHundert Theorems uber die neuen Transscen-dentenrdquo in Werke 3 pp 461ndash469 Konigliche Gesellschaft derWissenschaften zu Gottingen Gottingen Germany 1876

[14] Z-G Liu ldquoA three-term theta function identity and its applica-tionsrdquo Advances in Mathematics vol 195 no 1 pp 1ndash23 2005

[15] S McCullough and L-C Shen ldquoOn the Szego kernel of anannulusrdquo Proceedings of the AmericanMathematical Society vol121 no 4 pp 1111ndash1121 1994

[16] Z-G Liu ldquoA theta function identity and its implicationsrdquoTransactions of the American Mathematical Society vol 357 no2 pp 825ndash835 2005

Submit your manuscripts athttpwwwhindawicom

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

MathematicsJournal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Mathematical Problems in Engineering

Hindawi Publishing Corporationhttpwwwhindawicom

Differential EquationsInternational Journal of

Volume 2014

Applied MathematicsJournal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Probability and StatisticsHindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Journal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Mathematical PhysicsAdvances in

Complex AnalysisJournal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

OptimizationJournal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

CombinatoricsHindawi Publishing Corporationhttpwwwhindawicom Volume 2014

International Journal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Operations ResearchAdvances in

Journal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Function Spaces

Abstract and Applied AnalysisHindawi Publishing Corporationhttpwwwhindawicom Volume 2014

International Journal of Mathematics and Mathematical Sciences

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

The Scientific World JournalHindawi Publishing Corporation httpwwwhindawicom Volume 2014

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Algebra

Discrete Dynamics in Nature and Society

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Decision SciencesAdvances in

Discrete MathematicsJournal of

Hindawi Publishing Corporationhttpwwwhindawicom

Volume 2014 Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Stochastic AnalysisInternational Journal of

Page 3: Research Article Continued Fractions of Order Six and New ...downloads.hindawi.com/journals/jn/2014/643241.pdf · Srinivasa Ramanujan made some signi cant contributions to the theory

Journal of Numbers 3

Proof Wemay rewrite (13) and (14) as follows

119891 (minus1198901198941205873

minus119902119890minus1198941205873

)

= (1 minus 1198901198941205873

) 119902minus124

120578 (120591)

infin

prod119899=1

(1 + 120572119902119899+ 1199022119899)

119891 (minus11989011989421205873

minus119902119890minus11989421205873

)

= (1 minus 11989011989421205873

) 119902minus124

120578 (120591)

infin

prod119899=1

(1 + 120573119902119899+ 1199022119899)

(19)

where

120572 = minus2 cos 1205873= minus1 120573 = minus2 cos 2120587

3= 1 (20)

Then

infin

prod119899=1

(1 + 120572119902119899+ 1199022119899) =

119902124

120578 (120591)

119891 (minus1198901198941205873

minus119902119890minus1198941205873

)

(1 minus 1198901198941205873) (21)

infin

prod119899=1

(1 + 120573119902119899+ 1199022119899) =

119902124

120578 (120591)

119891 (minus11989011989421205873

minus119902119890minus11989421205873

)

(1 minus 11989011989421205873) (22)

Multiplying the above two equations together and then using(16) in resulting identity we find thatinfin

prod119899=1

(1 + 120572119902119899+ 1199022119899) (1 + 120573119902

119899+ 1199022119899) = 119902minus16 120578 (6120591)

120578 (2120591) (23)

Subtracting (22) from (21) we obtaininfin

prod119899=1

(1 + 120572119902119899+ 1199022119899) minus

infin

prod119899=1

(1 + 120573119902119899+ 1199022119899)

=119902124

120578 (120591)(119891 (minus119890

1198941205873 minus119902119890minus1198941205873

)

(1 minus 1198901198941205873)minus119891 (minus119890

11989421205873 minus119902119890minus11989421205873

)

(1 minus 11989011989421205873))

(24)

Using (11) in (24) we deduce thatinfin

prod119899=1

(1 + 120572119902119899+ 1199022119899) minus

infin

prod119899=1

(1 + 120573119902119899+ 1199022119899)

=119902minus112

120578 (120591)

infin

sum119899=0

(minus1)119899119875 (119899) 119902

(2119899+1)28

(25)

where

119875 (119899) =2 sin (2119899 + 1) (1205876)119894119890minus1198941205876 (1 minus 1198901198941205873)

minus2 sin (2119899 + 1) (21205876)119894119890minus11989421205876 (1 minus 11989011989421205873)

(26)

Now by direct computations we find that

119875 (6119898 + 0) = 0 119875 (6119898 + 1) = 2

119875 (6119898 + 2) = 2 119875 (6119898 + 3) = minus2

119875 (6119898 + 4) = minus 2 119875 (6119898 + 5) = 0

(27)

Thereforeinfin

sum119899=0

(minus1)119899119875 (119899) 119902

(2119899+1)28

= 2minus

infin

sum119898=0

119902(12119898+3)

28+

infin

sum119898=0

119902(12119898+5)

28

+

infin

sum119898=0

119902(12119898+7)

28minus

infin

sum119898=0

119902(12119898+9)

28

(28)

In the right-hand side of the above equation changing 119898 to119898minus1 in the first two summations and also changing119898 to minus119898in the last two summations we obtaininfin

sum119899=0

(minus1)119899119875 (119899) 119902

(2119899+1)28

= 2

infin

sum119898=minusinfin

119902(12119898minus7)

28minus

infin

sum119898=minusinfin

119902(12119898minus9)

28

(29)

Now using the definition of 119891(119886 119887) in the right-hand side ofthe above equation we find that

infin

sum119899=0

(minus1)119899119875 (119899) 119902

(2119899+1)28

= minus211990298

119891 (1199029 11990227) minus 1199022119891 (1199023 11990233)

(30)

In the quintuple product identity (8) replacing 119902 by 1199026 andthen setting 119861 = 119902 we find that

119891 (1199029 11990227) minus 1199022119891 (1199023 11990233) =

119891 (minus11990212) 119891 (minus119902

2 minus11990210)

119891 (1199025 1199027) (31)

Combining (25) (30) and (31) we find that

infin

prod119899=1

(1 + 120572119902119899+ 1199022119899) minus

infin

prod119899=1

(1 + 120573119902119899+ 1199022119899)

=minus21199022524

120578 (120591)119891 (minus119902

12) 119891 (minus119902

2 minus11990210)

119891 (1199025 1199027)

(32)

Dividing both sides of (32) byprodinfin119899=1

(1+120572119902119899+1199022119899)(1+120573119902

119899+1199022119899)

and then using (23) we obtain

infin

prod119899=1

(1 + 120572119902119899+ 1199022119899)minus1

minus

infin

prod119899=1

(1 + 120573119902119899+ 1199022119899)minus1

= 21199022924 120578 (2120591)

120578 (120591) 120578 (6120591)119891 (minus119902

12) 119891 (minus119902

2 minus11990210)

119891 (1199025 1199027)

(33)

Replacing 119886 by 119902 and 119887 by 1199022 in (7) we find that

119891 (119902 1199022) + 119891 (minus119902 minus119902

2) = 2119891 (119902

5 1199027) (34)

4 Journal of Numbers

Now using the above equation in the right-hand side of(33) and then changing 119902 to 11990212 throughout we obtain (17)Equation (18) follows from the following identity

119866 (119902) =120578 (2120591) 120578 (6120591)

1205782 (3120591)119883 (119902) (35)

This completes the proof of Theorem 4

4 Eisenstein Series Identities Associatedwith 119866(119902) and 119883(119902)

In this section we present four Eisenstein series identitiesassociated with 119866(119902) and119883(119902)

Theorem 5 Let |119902| lt 1 Then

infin

sum119899=1

119899equiv1(mod 3)

119902119899minus 1199023119899+ 1199025119899

1 minus 1199026119899minus

infin

sum119899=1

119899equiv2(mod 3)

119902119899minus 1199023119899+ 1199025119899

1 minus 1199026119899

=1205783(18120591)

120578 (6120591)[

1

119866 (1199023)minus 1 minus 119866 (119902

3)]

(36)

Proof Changing 119899 tominus119899 in the second summation of the left-hand side of Theorem 5 we have

infin

sum119899=1

119899equiv1(mod 3)

119902119899minus 1199023119899+ 1199025119899

1 minus 1199026119899minus

infin

sum119899=1

119899equiv2(mod 3)

119902119899minus 1199023119899+ 1199025119899

1 minus 1199026119899

=

infin

sum119899=1

119899equiv1(mod 3)

119902119899minus 1199023119899+ 1199025119899

1 minus 1199026119899

minus

minus1

sum119899=minusinfin

119899equiv1(mod 3)

119902minus119899minus 119902minus3119899

+ 119902minus5119899

1 minus 119902minus6119899

=

infin

sum119899=minusinfin

1199023119899+1

1 minus 11990218119899+6minus

infin

sum119899=minusinfin

1199029119899+3

1 minus 11990218119899+6+

infin

sum119899=minusinfin

11990215119899+5

1 minus 11990218119899+6

(37)

Using a corollary of Ramanujanrsquos1Ψ1summation formula [11

Entry 17 page 32]

infin

sum119899=minusinfin

119911119899

1 minus 119886119902119899=(119886119911 119902119886119911 119902 119902 119902)

infin

(119886 119902119886 119911 119902119911 119902)infin

10038161003816100381610038161199021003816100381610038161003816 lt |119911| lt 1 (38)

and Lemma 3 in (37) we find that

infin

sum119899=1

119899equiv1(mod 3)

119902119899minus 1199023119899+ 1199025119899

1 minus 1199026119899minus

infin

sum119899=1

119899equiv2(mod 3)

119902119899minus 1199023119899+ 1199025119899

1 minus 1199026119899

= 119902(1199029 1199029 11990218 11990218 11990218)infin

(1199026 11990212 1199023 11990215 11990218)infin

minus 1199023(11990215 1199023 11990218 11990218 11990218)infin

(1199026 11990212 1199029 1199029 11990218)infin

+ 1199025(11990221 119902minus3 11990218 11990218 11990218)infin

(1199026 11990212 11990215 1199023 11990218)infin

=(11990218 11990218)2

infin

(1199026 11990212 11990218)infin

119902119891 (minus119902

9 minus1199029)

119891 (minus1199023 minus11990215)minus 1199023119891 (minus119902

3 minus11990215)

119891 (minus1199029 minus1199029)

minus1199022119891 (minus119902

3 minus11990215)

119891 (minus1199023 minus11990215)

(39)

Using (4) in (39) and after some simplifications we obtain(36)

Theorem 6 Let |119902| lt 1 Then

infin

sum119899=1

119899equiv1(mod 6)

119902119899minus 1199022119899minus 1199024119899+ 1199025119899

1 minus 1199026119899

minus

infin

sum119899=1

119899equiv5(mod 6)

119902119899minus 1199022119899minus 1199024119899+ 1199025119899

1 minus 1199026119899

=120578 (12120591) 120578 (18120591) 120578 (36120591)

120578 (6120591)

times [1

119883 (1199026)minus

1205782(18120591)

120578 (12120591) 120578 (36120591)minus 119883 (119902

6)]

(40)

Proof Using the identity

infin

sum119899=0

119909119899

1 minus 119910119902119899

=

infin

sum119899=0

infin

sum119898=0

119909119899119910119898119902119898119899

=

infin

sum119899=0

119910119899

1 minus 119909119902119899 |119909|

10038161003816100381610038161199101003816100381610038161003816 lt 1

(41)

the left-hand side of Theorem 6 can be written as

infin

sum119899=1

119899equiv1(mod 6)

119902119899minus 1199022119899minus 1199024119899

1 minus 1199026119899minus

minus1

sum119899=minusinfin

119899equiv1(mod 6)

minus119902minus2119899

minus 119902minus4119899

+ 119902minus5119899

1 minus 119902minus6119899

=

infin

sum119899=minusinfin

1199026119899+1

1 minus 11990236119899+6minus

infin

sum119899=minusinfin

11990212119899+2

1 minus 11990236119899+6minus

infin

sum119899=minusinfin

11990224119899+4

1 minus 11990236119899+6

(42)

Journal of Numbers 5

Using (38) in (42) we obtain

infin

sum119899=1

119899equiv1(mod 6)

119902119899minus 1199022119899minus 1199024119899+ 1199025119899

1 minus 1199026119899

minus

infin

sum119899=1

119899equiv5(mod 6)

119902119899minus 1199022119899minus 1199024119899+ 1199025119899

1 minus 1199026119899

=(11990236 11990236)2

infin

(1199026 11990230 11990236)infin

119902(11990212 11990224 11990236)infin

(1199026 11990230 11990236)infin

minus 1199022(11990218 11990218 11990236)infin

(11990212 11990224 11990236)infin

minus1199024(1199026 11990230 11990236)infin

(11990212 11990224 11990236)infin

(43)

Using (5) in (43) and after some simplifications we obtain(40)

Differentiating both sides of (12) and then setting 119911 = 0

yield

1198911015840(minus1 minus119902) = minus2119894(119902 119902)

3

infin (44)

where 1198911015840 denotes the partial derivative of 119891with respect to 119911Now we prove a lemma which is useful to prove Eisen-

stein series identities associated with 119866(119902) and119883(119902)

Lemma 7 Consider the following

infin

sum119899=1

119902119899minus 1199022119899minus 1199024119899+ 1199025119899

1 minus 1199026119899sin 2119899119911

= (minus11989021198941199111198911015840(minus1 minus119902

6) 119891 (minus119902

3 minus1199023) 119891 (minus119902 minus119902

5)

times119891 (minus1198904119894119911 minus1199026119890minus4119894119911

))

times (41199022119891 (minus119902119890

2119894119911 minus1199025119890minus2119894119911

)

times 119891(minus119902minus11198902119894119911 minus1199027119890minus2119894119911

)119891(minus11990221198902119894119911 minus1199024119890minus2119894119911

))minus1

times1

119891 (minus119902minus21198902119894119911 minus1199028119890minus2119894119911)

(45)

Proof For simplicity we use119865(119911 119902) to denote the logarithmicderivative of 11989411990218119890minus119894119911119891(minus1198902119894119911 minus119902119890minus2119894119911) with respect to 119911 Toprove this lemma we need the following identity which canbe found in [14 Theorem 5] [15 Corollary 2]

119865 (1199111 119902) + 119865 (119911

2 119902) + 119865 (119911

3 119902) minus 119865 (119911

1+ 1199112+ 1199113 119902)

= (minus1198911015840(minus1 minus119902) 119891 (minus119890

2119894(1199111+1199112) minus119902119890minus2119894(1199111+1199112))

times119891 (minus1198902119894(1199112+1199113) minus119902119890minus2119894(1199112+1199113)))

times (119891 (minus11989021198941199111 minus119902119890minus21198941199111)

times 119891(minus11989021198941199112 minus119902119890minus21198941199112)119891(minus119890

21198941199113 minus119902119890minus21198941199113))minus1

times119891 (minus119890

2119894(1199111+1199113) minus119902119890minus2119894(1199111+1199113))

119891 (minus1198902119894(1199111+1199112+1199113) minus119902119890minus2119894(1199111+1199112+1199113))

(46)

As the proof of this lemma is similar to that of Lemma 1 in[4] we omit the details

Using (45) we derive the following Eisenstein seriesidentity

Theorem 8 Let |119902| lt 1 Then

infin

sum119899=1

119899 (119902119899minus 1199022119899minus 1199024119899+ 1199025119899)

1 minus 1199026119899

=1205786(3120591)

1205782 (120591)119866 (119902) =

1205784(3120591) 120578 (6120591) 120578 (2120591)

1205782 (120591)119883 (119902)

(47)

Proof Dividing both sides of (45) by 119911 and then letting 119911 rarr

0 we obtain

infin

sum119899=1

119899 (119902119899minus 1199022119899minus 1199024119899+ 1199025119899)

1 minus 1199026119899

= ((1199026 1199026)6

infin119891 (minus119902

3 minus1199023) 119891 (minus119902

1 minus1199025))

times (1199022119891 (minus119902

1 minus1199025) 119891 (minus119902

minus1 minus1199027)

times 119891(minus1199022 minus1199024)119891(minus119902

minus2 minus1199028))minus1

(48)

Using Lemma 3 in (48) we complete the proof ofTheorem 8

We use (sdot119901) to denote the Legendre symbol modulo119901 Setting 119911 = 1205873 in (45) and noting that sin (21198991205873) =

(radic32)(1198993) we find that

radic3

2

infin

sum119899=1

(119899

3)119902119899minus 1199022119899minus 1199024119899+ 1199025119899

1 minus 1199026119899

= (minus11989021198941205873

1198911015840(minus1 minus119902

6) 119891 (minus119902

3 minus1199023)

times119891 (minus1199021 minus1199025) 119891 (minus119890

41198941205873 minus1199026119890minus41198941205873

))

times (41199022119891 (minus119890

2119894((1205873)+120587120591) minus1199026119890minus2119894((1205873)+120587120591)

)

times 119891(minus1198902119894((1205873)minus120587120591)

minus1199026119890minus2119894((1205873)minus120587120591)

))minus1

times (1) (119891 (minus1198902119894((1205873)+2120587120591)

minus1199026119890minus2119894((1205873)+2120587120591)

)

times 119891(minus1198902119894((1205873)minus2120587120591)

minus1199026119890minus2119894((1205873)minus2120587120591)

))minus1

(49)

6 Journal of Numbers

Recall the identity [16 Eq (3 1)]

119891 (minus1198902119894((1205873)minus119911)

minus119902119890minus2119894((1205873)minus119911)

)

times 119891 (minus1198902119894((1205873)+119911)

minus119902119890minus2119894((1205873)+119911)

)

=119890minus2119894119911

(119902 119902)3

infin

119890(minus1198942120587)3(1199023 1199023)infin

119891 (minus1198906119894119911 minus1199023119890minus6119894119911

)

119891 (minus1198902119894119911 minus119902119890minus2119894119911)

(50)

Using the above identity in (49) we obtain the followingEisenstein series identity

Theorem 9 Let |119902| lt 1 Then

infin

sum119899=1

(119899

3)119902119899minus 1199022119899minus 1199024119899+ 1199025119899

1 minus 1199026119899

=1205782(3120591) 120578 (120591) 120578 (9120591) 120578 (18120591)

1205783 (6120591)119866 (119902)

=120578 (120591) 120578 (2120591) 120578 (9120591) 120578 (18120591)

1205782 (6120591)119883 (119902)

(51)

Conflict of Interests

The authors declare that there is no conflict of interestsregarding the publication of this paper

Acknowledgments

The authors would like to thank the referees for their severalhelpful comments and suggestions The first author is thank-ful to the University Grants Commission Government ofIndia for the financial support under the Grant F5102SAP-DRS2011 The second author is thankful to DST NewDelhi for awarding INSPIRE Fellowship (no DSTINSPIREFellowship2012122) The third author is thankful to UGCNew Delhi for UGC-BSR fellowship under which this workhas been done

References

[1] S RamanujanNotebooks Vols 1 2 Tata Institute of Fundamen-tal Research Bombay India 1957

[2] S Ramanujan Collected Papers Cambridge University PressCambridge UK 1927 repriented by Chelsea New York NYUSA 1962 reprinted by the American Mathematical SocietyProvidence RI USA 2000

[3] S RamanujanTheLostNotebook andOtherUnpublished PapersSpringer Berlin Germany Narosa Publishing House NewDelhi India 1988

[4] Z-G Liu ldquoA theta function identity and the Eisenstein series onΓ0(5)rdquo Journal of the Ramanujan Mathematical Society vol 22

no 3 pp 283ndash298 2007[5] HH Chan S H Chan and Z-G Liu ldquoTheRogers-Ramanujan

continued fraction and a new Eisenstein series identityrdquo Journalof Number Theory vol 129 no 7 pp 1786ndash1797 2009

[6] C Adiga T Kim M S Mahadeva Naika and H S Madhusud-han ldquoOn Ramanujanrsquos cubic continued fraction and explicit

evaluations of theta-functionsrdquo Indian Journal of Pure andApplied Mathematics vol 35 no 9 pp 1047ndash1062 2004

[7] S Bhargava K R Vasuki and T G Sreeramamurthy ldquoSomeevaluations of Ramanujanrsquos cubic continued fractionrdquo IndianJournal of Pure andAppliedMathematics vol 35 no 8 pp 1003ndash1025 2004

[8] H H Chan ldquoOn Ramanujanrsquos cubic continued fractionrdquo ActaArithmetica vol 73 no 4 pp 343ndash355 1995

[9] K R Vasuki A A Abdulrawf Kahatan andG Sharath ldquoOn theseries expansion of the Ramanujan cubic continued fractionrdquoInternational Journal of Mathematical Combinatorics vol 4 pp84ndash95 2011

[10] K R Vasuki N Bhaskar and G Sharath ldquoOn a continuedfraction of order sixrdquo Annali dellrsquoUniversita di Ferrara vol 56no 1 pp 77ndash89 2010

[11] C Adiga B C Berndt S Bhargava andG NWatson ldquoChapter16 of Ramanujanrsquos second notebook theta functions and q-seriesrdquoMemoirs of the American Mathematical Society vol 315pp 1ndash91 1985

[12] CAdiga andN SA Bulkhali ldquoIdentities for certain products oftheta functions with applications to modular relationsrdquo Journalof Analysis amp Number Theory vol 2 no 1 pp 1ndash15 2014

[13] C F Gauss ldquoHundert Theorems uber die neuen Transscen-dentenrdquo in Werke 3 pp 461ndash469 Konigliche Gesellschaft derWissenschaften zu Gottingen Gottingen Germany 1876

[14] Z-G Liu ldquoA three-term theta function identity and its applica-tionsrdquo Advances in Mathematics vol 195 no 1 pp 1ndash23 2005

[15] S McCullough and L-C Shen ldquoOn the Szego kernel of anannulusrdquo Proceedings of the AmericanMathematical Society vol121 no 4 pp 1111ndash1121 1994

[16] Z-G Liu ldquoA theta function identity and its implicationsrdquoTransactions of the American Mathematical Society vol 357 no2 pp 825ndash835 2005

Submit your manuscripts athttpwwwhindawicom

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

MathematicsJournal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Mathematical Problems in Engineering

Hindawi Publishing Corporationhttpwwwhindawicom

Differential EquationsInternational Journal of

Volume 2014

Applied MathematicsJournal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Probability and StatisticsHindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Journal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Mathematical PhysicsAdvances in

Complex AnalysisJournal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

OptimizationJournal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

CombinatoricsHindawi Publishing Corporationhttpwwwhindawicom Volume 2014

International Journal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Operations ResearchAdvances in

Journal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Function Spaces

Abstract and Applied AnalysisHindawi Publishing Corporationhttpwwwhindawicom Volume 2014

International Journal of Mathematics and Mathematical Sciences

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

The Scientific World JournalHindawi Publishing Corporation httpwwwhindawicom Volume 2014

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Algebra

Discrete Dynamics in Nature and Society

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Decision SciencesAdvances in

Discrete MathematicsJournal of

Hindawi Publishing Corporationhttpwwwhindawicom

Volume 2014 Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Stochastic AnalysisInternational Journal of

Page 4: Research Article Continued Fractions of Order Six and New ...downloads.hindawi.com/journals/jn/2014/643241.pdf · Srinivasa Ramanujan made some signi cant contributions to the theory

4 Journal of Numbers

Now using the above equation in the right-hand side of(33) and then changing 119902 to 11990212 throughout we obtain (17)Equation (18) follows from the following identity

119866 (119902) =120578 (2120591) 120578 (6120591)

1205782 (3120591)119883 (119902) (35)

This completes the proof of Theorem 4

4 Eisenstein Series Identities Associatedwith 119866(119902) and 119883(119902)

In this section we present four Eisenstein series identitiesassociated with 119866(119902) and119883(119902)

Theorem 5 Let |119902| lt 1 Then

infin

sum119899=1

119899equiv1(mod 3)

119902119899minus 1199023119899+ 1199025119899

1 minus 1199026119899minus

infin

sum119899=1

119899equiv2(mod 3)

119902119899minus 1199023119899+ 1199025119899

1 minus 1199026119899

=1205783(18120591)

120578 (6120591)[

1

119866 (1199023)minus 1 minus 119866 (119902

3)]

(36)

Proof Changing 119899 tominus119899 in the second summation of the left-hand side of Theorem 5 we have

infin

sum119899=1

119899equiv1(mod 3)

119902119899minus 1199023119899+ 1199025119899

1 minus 1199026119899minus

infin

sum119899=1

119899equiv2(mod 3)

119902119899minus 1199023119899+ 1199025119899

1 minus 1199026119899

=

infin

sum119899=1

119899equiv1(mod 3)

119902119899minus 1199023119899+ 1199025119899

1 minus 1199026119899

minus

minus1

sum119899=minusinfin

119899equiv1(mod 3)

119902minus119899minus 119902minus3119899

+ 119902minus5119899

1 minus 119902minus6119899

=

infin

sum119899=minusinfin

1199023119899+1

1 minus 11990218119899+6minus

infin

sum119899=minusinfin

1199029119899+3

1 minus 11990218119899+6+

infin

sum119899=minusinfin

11990215119899+5

1 minus 11990218119899+6

(37)

Using a corollary of Ramanujanrsquos1Ψ1summation formula [11

Entry 17 page 32]

infin

sum119899=minusinfin

119911119899

1 minus 119886119902119899=(119886119911 119902119886119911 119902 119902 119902)

infin

(119886 119902119886 119911 119902119911 119902)infin

10038161003816100381610038161199021003816100381610038161003816 lt |119911| lt 1 (38)

and Lemma 3 in (37) we find that

infin

sum119899=1

119899equiv1(mod 3)

119902119899minus 1199023119899+ 1199025119899

1 minus 1199026119899minus

infin

sum119899=1

119899equiv2(mod 3)

119902119899minus 1199023119899+ 1199025119899

1 minus 1199026119899

= 119902(1199029 1199029 11990218 11990218 11990218)infin

(1199026 11990212 1199023 11990215 11990218)infin

minus 1199023(11990215 1199023 11990218 11990218 11990218)infin

(1199026 11990212 1199029 1199029 11990218)infin

+ 1199025(11990221 119902minus3 11990218 11990218 11990218)infin

(1199026 11990212 11990215 1199023 11990218)infin

=(11990218 11990218)2

infin

(1199026 11990212 11990218)infin

119902119891 (minus119902

9 minus1199029)

119891 (minus1199023 minus11990215)minus 1199023119891 (minus119902

3 minus11990215)

119891 (minus1199029 minus1199029)

minus1199022119891 (minus119902

3 minus11990215)

119891 (minus1199023 minus11990215)

(39)

Using (4) in (39) and after some simplifications we obtain(36)

Theorem 6 Let |119902| lt 1 Then

infin

sum119899=1

119899equiv1(mod 6)

119902119899minus 1199022119899minus 1199024119899+ 1199025119899

1 minus 1199026119899

minus

infin

sum119899=1

119899equiv5(mod 6)

119902119899minus 1199022119899minus 1199024119899+ 1199025119899

1 minus 1199026119899

=120578 (12120591) 120578 (18120591) 120578 (36120591)

120578 (6120591)

times [1

119883 (1199026)minus

1205782(18120591)

120578 (12120591) 120578 (36120591)minus 119883 (119902

6)]

(40)

Proof Using the identity

infin

sum119899=0

119909119899

1 minus 119910119902119899

=

infin

sum119899=0

infin

sum119898=0

119909119899119910119898119902119898119899

=

infin

sum119899=0

119910119899

1 minus 119909119902119899 |119909|

10038161003816100381610038161199101003816100381610038161003816 lt 1

(41)

the left-hand side of Theorem 6 can be written as

infin

sum119899=1

119899equiv1(mod 6)

119902119899minus 1199022119899minus 1199024119899

1 minus 1199026119899minus

minus1

sum119899=minusinfin

119899equiv1(mod 6)

minus119902minus2119899

minus 119902minus4119899

+ 119902minus5119899

1 minus 119902minus6119899

=

infin

sum119899=minusinfin

1199026119899+1

1 minus 11990236119899+6minus

infin

sum119899=minusinfin

11990212119899+2

1 minus 11990236119899+6minus

infin

sum119899=minusinfin

11990224119899+4

1 minus 11990236119899+6

(42)

Journal of Numbers 5

Using (38) in (42) we obtain

infin

sum119899=1

119899equiv1(mod 6)

119902119899minus 1199022119899minus 1199024119899+ 1199025119899

1 minus 1199026119899

minus

infin

sum119899=1

119899equiv5(mod 6)

119902119899minus 1199022119899minus 1199024119899+ 1199025119899

1 minus 1199026119899

=(11990236 11990236)2

infin

(1199026 11990230 11990236)infin

119902(11990212 11990224 11990236)infin

(1199026 11990230 11990236)infin

minus 1199022(11990218 11990218 11990236)infin

(11990212 11990224 11990236)infin

minus1199024(1199026 11990230 11990236)infin

(11990212 11990224 11990236)infin

(43)

Using (5) in (43) and after some simplifications we obtain(40)

Differentiating both sides of (12) and then setting 119911 = 0

yield

1198911015840(minus1 minus119902) = minus2119894(119902 119902)

3

infin (44)

where 1198911015840 denotes the partial derivative of 119891with respect to 119911Now we prove a lemma which is useful to prove Eisen-

stein series identities associated with 119866(119902) and119883(119902)

Lemma 7 Consider the following

infin

sum119899=1

119902119899minus 1199022119899minus 1199024119899+ 1199025119899

1 minus 1199026119899sin 2119899119911

= (minus11989021198941199111198911015840(minus1 minus119902

6) 119891 (minus119902

3 minus1199023) 119891 (minus119902 minus119902

5)

times119891 (minus1198904119894119911 minus1199026119890minus4119894119911

))

times (41199022119891 (minus119902119890

2119894119911 minus1199025119890minus2119894119911

)

times 119891(minus119902minus11198902119894119911 minus1199027119890minus2119894119911

)119891(minus11990221198902119894119911 minus1199024119890minus2119894119911

))minus1

times1

119891 (minus119902minus21198902119894119911 minus1199028119890minus2119894119911)

(45)

Proof For simplicity we use119865(119911 119902) to denote the logarithmicderivative of 11989411990218119890minus119894119911119891(minus1198902119894119911 minus119902119890minus2119894119911) with respect to 119911 Toprove this lemma we need the following identity which canbe found in [14 Theorem 5] [15 Corollary 2]

119865 (1199111 119902) + 119865 (119911

2 119902) + 119865 (119911

3 119902) minus 119865 (119911

1+ 1199112+ 1199113 119902)

= (minus1198911015840(minus1 minus119902) 119891 (minus119890

2119894(1199111+1199112) minus119902119890minus2119894(1199111+1199112))

times119891 (minus1198902119894(1199112+1199113) minus119902119890minus2119894(1199112+1199113)))

times (119891 (minus11989021198941199111 minus119902119890minus21198941199111)

times 119891(minus11989021198941199112 minus119902119890minus21198941199112)119891(minus119890

21198941199113 minus119902119890minus21198941199113))minus1

times119891 (minus119890

2119894(1199111+1199113) minus119902119890minus2119894(1199111+1199113))

119891 (minus1198902119894(1199111+1199112+1199113) minus119902119890minus2119894(1199111+1199112+1199113))

(46)

As the proof of this lemma is similar to that of Lemma 1 in[4] we omit the details

Using (45) we derive the following Eisenstein seriesidentity

Theorem 8 Let |119902| lt 1 Then

infin

sum119899=1

119899 (119902119899minus 1199022119899minus 1199024119899+ 1199025119899)

1 minus 1199026119899

=1205786(3120591)

1205782 (120591)119866 (119902) =

1205784(3120591) 120578 (6120591) 120578 (2120591)

1205782 (120591)119883 (119902)

(47)

Proof Dividing both sides of (45) by 119911 and then letting 119911 rarr

0 we obtain

infin

sum119899=1

119899 (119902119899minus 1199022119899minus 1199024119899+ 1199025119899)

1 minus 1199026119899

= ((1199026 1199026)6

infin119891 (minus119902

3 minus1199023) 119891 (minus119902

1 minus1199025))

times (1199022119891 (minus119902

1 minus1199025) 119891 (minus119902

minus1 minus1199027)

times 119891(minus1199022 minus1199024)119891(minus119902

minus2 minus1199028))minus1

(48)

Using Lemma 3 in (48) we complete the proof ofTheorem 8

We use (sdot119901) to denote the Legendre symbol modulo119901 Setting 119911 = 1205873 in (45) and noting that sin (21198991205873) =

(radic32)(1198993) we find that

radic3

2

infin

sum119899=1

(119899

3)119902119899minus 1199022119899minus 1199024119899+ 1199025119899

1 minus 1199026119899

= (minus11989021198941205873

1198911015840(minus1 minus119902

6) 119891 (minus119902

3 minus1199023)

times119891 (minus1199021 minus1199025) 119891 (minus119890

41198941205873 minus1199026119890minus41198941205873

))

times (41199022119891 (minus119890

2119894((1205873)+120587120591) minus1199026119890minus2119894((1205873)+120587120591)

)

times 119891(minus1198902119894((1205873)minus120587120591)

minus1199026119890minus2119894((1205873)minus120587120591)

))minus1

times (1) (119891 (minus1198902119894((1205873)+2120587120591)

minus1199026119890minus2119894((1205873)+2120587120591)

)

times 119891(minus1198902119894((1205873)minus2120587120591)

minus1199026119890minus2119894((1205873)minus2120587120591)

))minus1

(49)

6 Journal of Numbers

Recall the identity [16 Eq (3 1)]

119891 (minus1198902119894((1205873)minus119911)

minus119902119890minus2119894((1205873)minus119911)

)

times 119891 (minus1198902119894((1205873)+119911)

minus119902119890minus2119894((1205873)+119911)

)

=119890minus2119894119911

(119902 119902)3

infin

119890(minus1198942120587)3(1199023 1199023)infin

119891 (minus1198906119894119911 minus1199023119890minus6119894119911

)

119891 (minus1198902119894119911 minus119902119890minus2119894119911)

(50)

Using the above identity in (49) we obtain the followingEisenstein series identity

Theorem 9 Let |119902| lt 1 Then

infin

sum119899=1

(119899

3)119902119899minus 1199022119899minus 1199024119899+ 1199025119899

1 minus 1199026119899

=1205782(3120591) 120578 (120591) 120578 (9120591) 120578 (18120591)

1205783 (6120591)119866 (119902)

=120578 (120591) 120578 (2120591) 120578 (9120591) 120578 (18120591)

1205782 (6120591)119883 (119902)

(51)

Conflict of Interests

The authors declare that there is no conflict of interestsregarding the publication of this paper

Acknowledgments

The authors would like to thank the referees for their severalhelpful comments and suggestions The first author is thank-ful to the University Grants Commission Government ofIndia for the financial support under the Grant F5102SAP-DRS2011 The second author is thankful to DST NewDelhi for awarding INSPIRE Fellowship (no DSTINSPIREFellowship2012122) The third author is thankful to UGCNew Delhi for UGC-BSR fellowship under which this workhas been done

References

[1] S RamanujanNotebooks Vols 1 2 Tata Institute of Fundamen-tal Research Bombay India 1957

[2] S Ramanujan Collected Papers Cambridge University PressCambridge UK 1927 repriented by Chelsea New York NYUSA 1962 reprinted by the American Mathematical SocietyProvidence RI USA 2000

[3] S RamanujanTheLostNotebook andOtherUnpublished PapersSpringer Berlin Germany Narosa Publishing House NewDelhi India 1988

[4] Z-G Liu ldquoA theta function identity and the Eisenstein series onΓ0(5)rdquo Journal of the Ramanujan Mathematical Society vol 22

no 3 pp 283ndash298 2007[5] HH Chan S H Chan and Z-G Liu ldquoTheRogers-Ramanujan

continued fraction and a new Eisenstein series identityrdquo Journalof Number Theory vol 129 no 7 pp 1786ndash1797 2009

[6] C Adiga T Kim M S Mahadeva Naika and H S Madhusud-han ldquoOn Ramanujanrsquos cubic continued fraction and explicit

evaluations of theta-functionsrdquo Indian Journal of Pure andApplied Mathematics vol 35 no 9 pp 1047ndash1062 2004

[7] S Bhargava K R Vasuki and T G Sreeramamurthy ldquoSomeevaluations of Ramanujanrsquos cubic continued fractionrdquo IndianJournal of Pure andAppliedMathematics vol 35 no 8 pp 1003ndash1025 2004

[8] H H Chan ldquoOn Ramanujanrsquos cubic continued fractionrdquo ActaArithmetica vol 73 no 4 pp 343ndash355 1995

[9] K R Vasuki A A Abdulrawf Kahatan andG Sharath ldquoOn theseries expansion of the Ramanujan cubic continued fractionrdquoInternational Journal of Mathematical Combinatorics vol 4 pp84ndash95 2011

[10] K R Vasuki N Bhaskar and G Sharath ldquoOn a continuedfraction of order sixrdquo Annali dellrsquoUniversita di Ferrara vol 56no 1 pp 77ndash89 2010

[11] C Adiga B C Berndt S Bhargava andG NWatson ldquoChapter16 of Ramanujanrsquos second notebook theta functions and q-seriesrdquoMemoirs of the American Mathematical Society vol 315pp 1ndash91 1985

[12] CAdiga andN SA Bulkhali ldquoIdentities for certain products oftheta functions with applications to modular relationsrdquo Journalof Analysis amp Number Theory vol 2 no 1 pp 1ndash15 2014

[13] C F Gauss ldquoHundert Theorems uber die neuen Transscen-dentenrdquo in Werke 3 pp 461ndash469 Konigliche Gesellschaft derWissenschaften zu Gottingen Gottingen Germany 1876

[14] Z-G Liu ldquoA three-term theta function identity and its applica-tionsrdquo Advances in Mathematics vol 195 no 1 pp 1ndash23 2005

[15] S McCullough and L-C Shen ldquoOn the Szego kernel of anannulusrdquo Proceedings of the AmericanMathematical Society vol121 no 4 pp 1111ndash1121 1994

[16] Z-G Liu ldquoA theta function identity and its implicationsrdquoTransactions of the American Mathematical Society vol 357 no2 pp 825ndash835 2005

Submit your manuscripts athttpwwwhindawicom

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

MathematicsJournal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Mathematical Problems in Engineering

Hindawi Publishing Corporationhttpwwwhindawicom

Differential EquationsInternational Journal of

Volume 2014

Applied MathematicsJournal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Probability and StatisticsHindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Journal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Mathematical PhysicsAdvances in

Complex AnalysisJournal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

OptimizationJournal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

CombinatoricsHindawi Publishing Corporationhttpwwwhindawicom Volume 2014

International Journal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Operations ResearchAdvances in

Journal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Function Spaces

Abstract and Applied AnalysisHindawi Publishing Corporationhttpwwwhindawicom Volume 2014

International Journal of Mathematics and Mathematical Sciences

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

The Scientific World JournalHindawi Publishing Corporation httpwwwhindawicom Volume 2014

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Algebra

Discrete Dynamics in Nature and Society

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Decision SciencesAdvances in

Discrete MathematicsJournal of

Hindawi Publishing Corporationhttpwwwhindawicom

Volume 2014 Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Stochastic AnalysisInternational Journal of

Page 5: Research Article Continued Fractions of Order Six and New ...downloads.hindawi.com/journals/jn/2014/643241.pdf · Srinivasa Ramanujan made some signi cant contributions to the theory

Journal of Numbers 5

Using (38) in (42) we obtain

infin

sum119899=1

119899equiv1(mod 6)

119902119899minus 1199022119899minus 1199024119899+ 1199025119899

1 minus 1199026119899

minus

infin

sum119899=1

119899equiv5(mod 6)

119902119899minus 1199022119899minus 1199024119899+ 1199025119899

1 minus 1199026119899

=(11990236 11990236)2

infin

(1199026 11990230 11990236)infin

119902(11990212 11990224 11990236)infin

(1199026 11990230 11990236)infin

minus 1199022(11990218 11990218 11990236)infin

(11990212 11990224 11990236)infin

minus1199024(1199026 11990230 11990236)infin

(11990212 11990224 11990236)infin

(43)

Using (5) in (43) and after some simplifications we obtain(40)

Differentiating both sides of (12) and then setting 119911 = 0

yield

1198911015840(minus1 minus119902) = minus2119894(119902 119902)

3

infin (44)

where 1198911015840 denotes the partial derivative of 119891with respect to 119911Now we prove a lemma which is useful to prove Eisen-

stein series identities associated with 119866(119902) and119883(119902)

Lemma 7 Consider the following

infin

sum119899=1

119902119899minus 1199022119899minus 1199024119899+ 1199025119899

1 minus 1199026119899sin 2119899119911

= (minus11989021198941199111198911015840(minus1 minus119902

6) 119891 (minus119902

3 minus1199023) 119891 (minus119902 minus119902

5)

times119891 (minus1198904119894119911 minus1199026119890minus4119894119911

))

times (41199022119891 (minus119902119890

2119894119911 minus1199025119890minus2119894119911

)

times 119891(minus119902minus11198902119894119911 minus1199027119890minus2119894119911

)119891(minus11990221198902119894119911 minus1199024119890minus2119894119911

))minus1

times1

119891 (minus119902minus21198902119894119911 minus1199028119890minus2119894119911)

(45)

Proof For simplicity we use119865(119911 119902) to denote the logarithmicderivative of 11989411990218119890minus119894119911119891(minus1198902119894119911 minus119902119890minus2119894119911) with respect to 119911 Toprove this lemma we need the following identity which canbe found in [14 Theorem 5] [15 Corollary 2]

119865 (1199111 119902) + 119865 (119911

2 119902) + 119865 (119911

3 119902) minus 119865 (119911

1+ 1199112+ 1199113 119902)

= (minus1198911015840(minus1 minus119902) 119891 (minus119890

2119894(1199111+1199112) minus119902119890minus2119894(1199111+1199112))

times119891 (minus1198902119894(1199112+1199113) minus119902119890minus2119894(1199112+1199113)))

times (119891 (minus11989021198941199111 minus119902119890minus21198941199111)

times 119891(minus11989021198941199112 minus119902119890minus21198941199112)119891(minus119890

21198941199113 minus119902119890minus21198941199113))minus1

times119891 (minus119890

2119894(1199111+1199113) minus119902119890minus2119894(1199111+1199113))

119891 (minus1198902119894(1199111+1199112+1199113) minus119902119890minus2119894(1199111+1199112+1199113))

(46)

As the proof of this lemma is similar to that of Lemma 1 in[4] we omit the details

Using (45) we derive the following Eisenstein seriesidentity

Theorem 8 Let |119902| lt 1 Then

infin

sum119899=1

119899 (119902119899minus 1199022119899minus 1199024119899+ 1199025119899)

1 minus 1199026119899

=1205786(3120591)

1205782 (120591)119866 (119902) =

1205784(3120591) 120578 (6120591) 120578 (2120591)

1205782 (120591)119883 (119902)

(47)

Proof Dividing both sides of (45) by 119911 and then letting 119911 rarr

0 we obtain

infin

sum119899=1

119899 (119902119899minus 1199022119899minus 1199024119899+ 1199025119899)

1 minus 1199026119899

= ((1199026 1199026)6

infin119891 (minus119902

3 minus1199023) 119891 (minus119902

1 minus1199025))

times (1199022119891 (minus119902

1 minus1199025) 119891 (minus119902

minus1 minus1199027)

times 119891(minus1199022 minus1199024)119891(minus119902

minus2 minus1199028))minus1

(48)

Using Lemma 3 in (48) we complete the proof ofTheorem 8

We use (sdot119901) to denote the Legendre symbol modulo119901 Setting 119911 = 1205873 in (45) and noting that sin (21198991205873) =

(radic32)(1198993) we find that

radic3

2

infin

sum119899=1

(119899

3)119902119899minus 1199022119899minus 1199024119899+ 1199025119899

1 minus 1199026119899

= (minus11989021198941205873

1198911015840(minus1 minus119902

6) 119891 (minus119902

3 minus1199023)

times119891 (minus1199021 minus1199025) 119891 (minus119890

41198941205873 minus1199026119890minus41198941205873

))

times (41199022119891 (minus119890

2119894((1205873)+120587120591) minus1199026119890minus2119894((1205873)+120587120591)

)

times 119891(minus1198902119894((1205873)minus120587120591)

minus1199026119890minus2119894((1205873)minus120587120591)

))minus1

times (1) (119891 (minus1198902119894((1205873)+2120587120591)

minus1199026119890minus2119894((1205873)+2120587120591)

)

times 119891(minus1198902119894((1205873)minus2120587120591)

minus1199026119890minus2119894((1205873)minus2120587120591)

))minus1

(49)

6 Journal of Numbers

Recall the identity [16 Eq (3 1)]

119891 (minus1198902119894((1205873)minus119911)

minus119902119890minus2119894((1205873)minus119911)

)

times 119891 (minus1198902119894((1205873)+119911)

minus119902119890minus2119894((1205873)+119911)

)

=119890minus2119894119911

(119902 119902)3

infin

119890(minus1198942120587)3(1199023 1199023)infin

119891 (minus1198906119894119911 minus1199023119890minus6119894119911

)

119891 (minus1198902119894119911 minus119902119890minus2119894119911)

(50)

Using the above identity in (49) we obtain the followingEisenstein series identity

Theorem 9 Let |119902| lt 1 Then

infin

sum119899=1

(119899

3)119902119899minus 1199022119899minus 1199024119899+ 1199025119899

1 minus 1199026119899

=1205782(3120591) 120578 (120591) 120578 (9120591) 120578 (18120591)

1205783 (6120591)119866 (119902)

=120578 (120591) 120578 (2120591) 120578 (9120591) 120578 (18120591)

1205782 (6120591)119883 (119902)

(51)

Conflict of Interests

The authors declare that there is no conflict of interestsregarding the publication of this paper

Acknowledgments

The authors would like to thank the referees for their severalhelpful comments and suggestions The first author is thank-ful to the University Grants Commission Government ofIndia for the financial support under the Grant F5102SAP-DRS2011 The second author is thankful to DST NewDelhi for awarding INSPIRE Fellowship (no DSTINSPIREFellowship2012122) The third author is thankful to UGCNew Delhi for UGC-BSR fellowship under which this workhas been done

References

[1] S RamanujanNotebooks Vols 1 2 Tata Institute of Fundamen-tal Research Bombay India 1957

[2] S Ramanujan Collected Papers Cambridge University PressCambridge UK 1927 repriented by Chelsea New York NYUSA 1962 reprinted by the American Mathematical SocietyProvidence RI USA 2000

[3] S RamanujanTheLostNotebook andOtherUnpublished PapersSpringer Berlin Germany Narosa Publishing House NewDelhi India 1988

[4] Z-G Liu ldquoA theta function identity and the Eisenstein series onΓ0(5)rdquo Journal of the Ramanujan Mathematical Society vol 22

no 3 pp 283ndash298 2007[5] HH Chan S H Chan and Z-G Liu ldquoTheRogers-Ramanujan

continued fraction and a new Eisenstein series identityrdquo Journalof Number Theory vol 129 no 7 pp 1786ndash1797 2009

[6] C Adiga T Kim M S Mahadeva Naika and H S Madhusud-han ldquoOn Ramanujanrsquos cubic continued fraction and explicit

evaluations of theta-functionsrdquo Indian Journal of Pure andApplied Mathematics vol 35 no 9 pp 1047ndash1062 2004

[7] S Bhargava K R Vasuki and T G Sreeramamurthy ldquoSomeevaluations of Ramanujanrsquos cubic continued fractionrdquo IndianJournal of Pure andAppliedMathematics vol 35 no 8 pp 1003ndash1025 2004

[8] H H Chan ldquoOn Ramanujanrsquos cubic continued fractionrdquo ActaArithmetica vol 73 no 4 pp 343ndash355 1995

[9] K R Vasuki A A Abdulrawf Kahatan andG Sharath ldquoOn theseries expansion of the Ramanujan cubic continued fractionrdquoInternational Journal of Mathematical Combinatorics vol 4 pp84ndash95 2011

[10] K R Vasuki N Bhaskar and G Sharath ldquoOn a continuedfraction of order sixrdquo Annali dellrsquoUniversita di Ferrara vol 56no 1 pp 77ndash89 2010

[11] C Adiga B C Berndt S Bhargava andG NWatson ldquoChapter16 of Ramanujanrsquos second notebook theta functions and q-seriesrdquoMemoirs of the American Mathematical Society vol 315pp 1ndash91 1985

[12] CAdiga andN SA Bulkhali ldquoIdentities for certain products oftheta functions with applications to modular relationsrdquo Journalof Analysis amp Number Theory vol 2 no 1 pp 1ndash15 2014

[13] C F Gauss ldquoHundert Theorems uber die neuen Transscen-dentenrdquo in Werke 3 pp 461ndash469 Konigliche Gesellschaft derWissenschaften zu Gottingen Gottingen Germany 1876

[14] Z-G Liu ldquoA three-term theta function identity and its applica-tionsrdquo Advances in Mathematics vol 195 no 1 pp 1ndash23 2005

[15] S McCullough and L-C Shen ldquoOn the Szego kernel of anannulusrdquo Proceedings of the AmericanMathematical Society vol121 no 4 pp 1111ndash1121 1994

[16] Z-G Liu ldquoA theta function identity and its implicationsrdquoTransactions of the American Mathematical Society vol 357 no2 pp 825ndash835 2005

Submit your manuscripts athttpwwwhindawicom

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

MathematicsJournal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Mathematical Problems in Engineering

Hindawi Publishing Corporationhttpwwwhindawicom

Differential EquationsInternational Journal of

Volume 2014

Applied MathematicsJournal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Probability and StatisticsHindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Journal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Mathematical PhysicsAdvances in

Complex AnalysisJournal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

OptimizationJournal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

CombinatoricsHindawi Publishing Corporationhttpwwwhindawicom Volume 2014

International Journal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Operations ResearchAdvances in

Journal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Function Spaces

Abstract and Applied AnalysisHindawi Publishing Corporationhttpwwwhindawicom Volume 2014

International Journal of Mathematics and Mathematical Sciences

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

The Scientific World JournalHindawi Publishing Corporation httpwwwhindawicom Volume 2014

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Algebra

Discrete Dynamics in Nature and Society

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Decision SciencesAdvances in

Discrete MathematicsJournal of

Hindawi Publishing Corporationhttpwwwhindawicom

Volume 2014 Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Stochastic AnalysisInternational Journal of

Page 6: Research Article Continued Fractions of Order Six and New ...downloads.hindawi.com/journals/jn/2014/643241.pdf · Srinivasa Ramanujan made some signi cant contributions to the theory

6 Journal of Numbers

Recall the identity [16 Eq (3 1)]

119891 (minus1198902119894((1205873)minus119911)

minus119902119890minus2119894((1205873)minus119911)

)

times 119891 (minus1198902119894((1205873)+119911)

minus119902119890minus2119894((1205873)+119911)

)

=119890minus2119894119911

(119902 119902)3

infin

119890(minus1198942120587)3(1199023 1199023)infin

119891 (minus1198906119894119911 minus1199023119890minus6119894119911

)

119891 (minus1198902119894119911 minus119902119890minus2119894119911)

(50)

Using the above identity in (49) we obtain the followingEisenstein series identity

Theorem 9 Let |119902| lt 1 Then

infin

sum119899=1

(119899

3)119902119899minus 1199022119899minus 1199024119899+ 1199025119899

1 minus 1199026119899

=1205782(3120591) 120578 (120591) 120578 (9120591) 120578 (18120591)

1205783 (6120591)119866 (119902)

=120578 (120591) 120578 (2120591) 120578 (9120591) 120578 (18120591)

1205782 (6120591)119883 (119902)

(51)

Conflict of Interests

The authors declare that there is no conflict of interestsregarding the publication of this paper

Acknowledgments

The authors would like to thank the referees for their severalhelpful comments and suggestions The first author is thank-ful to the University Grants Commission Government ofIndia for the financial support under the Grant F5102SAP-DRS2011 The second author is thankful to DST NewDelhi for awarding INSPIRE Fellowship (no DSTINSPIREFellowship2012122) The third author is thankful to UGCNew Delhi for UGC-BSR fellowship under which this workhas been done

References

[1] S RamanujanNotebooks Vols 1 2 Tata Institute of Fundamen-tal Research Bombay India 1957

[2] S Ramanujan Collected Papers Cambridge University PressCambridge UK 1927 repriented by Chelsea New York NYUSA 1962 reprinted by the American Mathematical SocietyProvidence RI USA 2000

[3] S RamanujanTheLostNotebook andOtherUnpublished PapersSpringer Berlin Germany Narosa Publishing House NewDelhi India 1988

[4] Z-G Liu ldquoA theta function identity and the Eisenstein series onΓ0(5)rdquo Journal of the Ramanujan Mathematical Society vol 22

no 3 pp 283ndash298 2007[5] HH Chan S H Chan and Z-G Liu ldquoTheRogers-Ramanujan

continued fraction and a new Eisenstein series identityrdquo Journalof Number Theory vol 129 no 7 pp 1786ndash1797 2009

[6] C Adiga T Kim M S Mahadeva Naika and H S Madhusud-han ldquoOn Ramanujanrsquos cubic continued fraction and explicit

evaluations of theta-functionsrdquo Indian Journal of Pure andApplied Mathematics vol 35 no 9 pp 1047ndash1062 2004

[7] S Bhargava K R Vasuki and T G Sreeramamurthy ldquoSomeevaluations of Ramanujanrsquos cubic continued fractionrdquo IndianJournal of Pure andAppliedMathematics vol 35 no 8 pp 1003ndash1025 2004

[8] H H Chan ldquoOn Ramanujanrsquos cubic continued fractionrdquo ActaArithmetica vol 73 no 4 pp 343ndash355 1995

[9] K R Vasuki A A Abdulrawf Kahatan andG Sharath ldquoOn theseries expansion of the Ramanujan cubic continued fractionrdquoInternational Journal of Mathematical Combinatorics vol 4 pp84ndash95 2011

[10] K R Vasuki N Bhaskar and G Sharath ldquoOn a continuedfraction of order sixrdquo Annali dellrsquoUniversita di Ferrara vol 56no 1 pp 77ndash89 2010

[11] C Adiga B C Berndt S Bhargava andG NWatson ldquoChapter16 of Ramanujanrsquos second notebook theta functions and q-seriesrdquoMemoirs of the American Mathematical Society vol 315pp 1ndash91 1985

[12] CAdiga andN SA Bulkhali ldquoIdentities for certain products oftheta functions with applications to modular relationsrdquo Journalof Analysis amp Number Theory vol 2 no 1 pp 1ndash15 2014

[13] C F Gauss ldquoHundert Theorems uber die neuen Transscen-dentenrdquo in Werke 3 pp 461ndash469 Konigliche Gesellschaft derWissenschaften zu Gottingen Gottingen Germany 1876

[14] Z-G Liu ldquoA three-term theta function identity and its applica-tionsrdquo Advances in Mathematics vol 195 no 1 pp 1ndash23 2005

[15] S McCullough and L-C Shen ldquoOn the Szego kernel of anannulusrdquo Proceedings of the AmericanMathematical Society vol121 no 4 pp 1111ndash1121 1994

[16] Z-G Liu ldquoA theta function identity and its implicationsrdquoTransactions of the American Mathematical Society vol 357 no2 pp 825ndash835 2005

Submit your manuscripts athttpwwwhindawicom

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

MathematicsJournal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Mathematical Problems in Engineering

Hindawi Publishing Corporationhttpwwwhindawicom

Differential EquationsInternational Journal of

Volume 2014

Applied MathematicsJournal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Probability and StatisticsHindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Journal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Mathematical PhysicsAdvances in

Complex AnalysisJournal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

OptimizationJournal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

CombinatoricsHindawi Publishing Corporationhttpwwwhindawicom Volume 2014

International Journal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Operations ResearchAdvances in

Journal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Function Spaces

Abstract and Applied AnalysisHindawi Publishing Corporationhttpwwwhindawicom Volume 2014

International Journal of Mathematics and Mathematical Sciences

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

The Scientific World JournalHindawi Publishing Corporation httpwwwhindawicom Volume 2014

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Algebra

Discrete Dynamics in Nature and Society

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Decision SciencesAdvances in

Discrete MathematicsJournal of

Hindawi Publishing Corporationhttpwwwhindawicom

Volume 2014 Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Stochastic AnalysisInternational Journal of

Page 7: Research Article Continued Fractions of Order Six and New ...downloads.hindawi.com/journals/jn/2014/643241.pdf · Srinivasa Ramanujan made some signi cant contributions to the theory

Submit your manuscripts athttpwwwhindawicom

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

MathematicsJournal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Mathematical Problems in Engineering

Hindawi Publishing Corporationhttpwwwhindawicom

Differential EquationsInternational Journal of

Volume 2014

Applied MathematicsJournal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Probability and StatisticsHindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Journal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Mathematical PhysicsAdvances in

Complex AnalysisJournal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

OptimizationJournal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

CombinatoricsHindawi Publishing Corporationhttpwwwhindawicom Volume 2014

International Journal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Operations ResearchAdvances in

Journal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Function Spaces

Abstract and Applied AnalysisHindawi Publishing Corporationhttpwwwhindawicom Volume 2014

International Journal of Mathematics and Mathematical Sciences

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

The Scientific World JournalHindawi Publishing Corporation httpwwwhindawicom Volume 2014

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Algebra

Discrete Dynamics in Nature and Society

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Decision SciencesAdvances in

Discrete MathematicsJournal of

Hindawi Publishing Corporationhttpwwwhindawicom

Volume 2014 Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Stochastic AnalysisInternational Journal of