report!on!the!sara!exposure!and! vulnerability!workshop!in!medellin...

47
Version 1.0 – May 2014 Report on the SARA Exposure and Vulnerability Workshop in Medellin, Colombia. Report produced in the context of the GEM South America integrated Risk Assessment (SARA) project

Upload: others

Post on 22-Jul-2020

1 views

Category:

Documents


0 download

TRANSCRIPT

Page 1: Report!on!the!SARA!Exposure!and! Vulnerability!Workshop!in!Medellin …03_2014_-_workshop_medelli… · The!GEMKSARA!Exposureand!Seismic!Vulnerability!Modelling!Workshop!was!carried!out!in!thecity!of!Medellin,!

 

 

 

   

 

 

 

 

Version  1.0  –  May  2014      

   Report  on  the  SARA  Exposure  and  Vulnerability  Workshop  in  Medellin,  Colombia.  

 Report  produced  in  the  context  of  the  GEM  South  America  integrated  Risk  Assessment  (SARA)  project    

Page 2: Report!on!the!SARA!Exposure!and! Vulnerability!Workshop!in!Medellin …03_2014_-_workshop_medelli… · The!GEMKSARA!Exposureand!Seismic!Vulnerability!Modelling!Workshop!was!carried!out!in!thecity!of!Medellin,!
Page 3: Report!on!the!SARA!Exposure!and! Vulnerability!Workshop!in!Medellin …03_2014_-_workshop_medelli… · The!GEMKSARA!Exposureand!Seismic!Vulnerability!Modelling!Workshop!was!carried!out!in!thecity!of!Medellin,!

The  GEM-­‐SARA  Exposure  and  Seismic  Vulnerability  Modelling  Workshop  was  carried  out  in  the  city  of  Medellin,  Colombia  during  the  12th  and  the  14th  of  March  2014.  The  following  participants  attended  the  event:    

Adriana  Ayala  University  of  Loja,  Quito  –  Ecuador    Ana  Beatriz  Acevedo  EAFIT  University,  Medellin  -­‐  Colombia      Astrid  Milena  González  Zapata  Suramericana,  Medellin  –  Colombia    Bladimir  García  Mesa  Suramericana,  Medellin  –  Colombia    Carlos  Villacis  Global  Earthquake  Model  Foundation,  Pavia  -­‐  Italy    Catalina  Yepes  Global  Earthquake  Model  Foundation,  Pavia  –  Italy    Fabricio  Yépez  University  of  San  Francisco  of  Quito,  Quito  –  Ecuador    Fernando  Alexis  Osorio  EAFIT  University,  Medellin  -­‐  Colombia      Gloria  Estrada  Suramericana,  Medellin  –  Colombia    Helen  Crowley  Global  Earthquake  Model  Foundation,  Pavia  –  Italy    Hernán  Santamaría  CIGIDEN,  Pontificia  Universidad  Católica  de  Chile,  Santiago  –  Chile  

 Jairo  Valcárcel  GEM  Foundation,  Bogota  –  Colombia    José  Gregorio  Rengel    FUNVISIS,  Caracas  –  Venezuela    Juan  Diego  Jaramillo    EAFIT  University,  Medellin  -­‐  Colombia      Miguel  Estrada  CISMID,  Lima  –  Peru    Ricardo  Peñaherrera  León  Metropolitan  District  of  Quito,  Quito  –  Ecuador    Romme  Rojas  FUNVISIS,  Caracas  –  Venezuela    Sahar  Safaie  GEM  Foundation,  Guatemala  City  –  Guatemala    Santiago  Victoria  Suramericana,  Medellin  –  Colombia    Víctor  Hugo  Ángel  Marulanda  Suramericana,  Medellin  –  Colombia    Vitor  Silva  Global  Earthquake  Model  Foundation,  Pavia  –  Italy  

 

   

Report  on  the  SARA  Exposure  and  Vulnerability  Workshop  in  Medellin,  Colombia  

 Report  produced  in  the  context  of  the  GEM  South  America  integrated  Risk  Assessment  (SARA)  project  

Page 4: Report!on!the!SARA!Exposure!and! Vulnerability!Workshop!in!Medellin …03_2014_-_workshop_medelli… · The!GEMKSARA!Exposureand!Seismic!Vulnerability!Modelling!Workshop!was!carried!out!in!thecity!of!Medellin,!

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Copyright  ©  2014  Authors.   Except  where   otherwise   noted,   this  work   is  made   available   under   the   terms   of   the  Creative  Commons  license  CC  BY  3.0  Unported      

The  views  and  interpretations  in  this  document  are  those  of  the  individual  author(s)  and  should  not  be  attributed  to  the  GEM  Foundation.  With  them  also  lies  the  responsibility  for  the  scientific  and  technical  data  presented.  The  authors  do  not  guarantee  that  the  information  in  this  report  is  completely  accurate.  

   www.globalquakemodel.org  

Page 5: Report!on!the!SARA!Exposure!and! Vulnerability!Workshop!in!Medellin …03_2014_-_workshop_medelli… · The!GEMKSARA!Exposureand!Seismic!Vulnerability!Modelling!Workshop!was!carried!out!in!thecity!of!Medellin,!

iii  

TABLE  OF  CONTENTS  Page  

1   SARA  EXPOSURE  AND  VULNERABILITY  WORKSHOP  ................................................................................  1  

1.1   Background  to  the  SARA  Exposure  and  Vulnerability  Workshop  ....................................................  1  

1.2   Agenda  of  the  SARA  Exposure  and  Vulnerability  Workshop  ...........................................................  3  

2   CURRENT  STATUS  ON  SEISMIC  VULNERABILITY  AND  EXPOSURE  IN  THE  REGION  ...................................  4  

2.1   Regional  initiatives  and  projects  ......................................................................................................  4  

2.2   National  experiences  .......................................................................................................................  5  

2.2.1   Chile  .......................................................................................................................................  5  

2.2.2   Colombia  ................................................................................................................................  5  

2.2.3   Ecuador  ..................................................................................................................................  7  

2.2.4   Peru  ........................................................................................................................................  8  

2.2.5   Venezuela  ..............................................................................................................................  9  

2.3   Summary  of  main  gaps  and  needs  on  exposure  and  vulnerability  modelling  ...............................  10  

2.3.1   Exposure  databases  .............................................................................................................  10  

2.3.2   Vulnerability  modelling  ........................................................................................................  11  

2.3.3   Main  gaps  and  needs  ...........................................................................................................  12  

2.3.4   Potential  contributions  ........................................................................................................  13  

3   FUTURE  SARA  ACTIVITIES  IN  SOUTH  AMERICA  ......................................................................................  14  

3.1   Modelling  exposure  and  seismic  vulnerability  at  the  national  and  subnational  scale  ..................  14  

3.1.1   Department  of  Antioquia,  Colombia  ....................................................................................  14  

3.1.2   Chile  .....................................................................................................................................  16  

3.2   City  scenarios  .................................................................................................................................  19  

3.2.1   Quito  ....................................................................................................................................  19  

4   EXPOSURE  ..............................................................................................................................................  21  

4.1   Exposure  working  session  ..............................................................................................................  22  

4.1.1   Comparison  of  results  ..........................................................................................................  25  

5   ACHIEVEMENTS  AND  MOVING  FORWARD  ............................................................................................  31  

5.1   Achievements  ................................................................................................................................  31  

5.2   Moving  forward  .............................................................................................................................  32  

REFERENCES  ...............................................................................................................................................  34  

APPENDIX  A  ................................................................................................................................................  40  

APPENDIX  B  ................................................................................................................................................  41  

Page 6: Report!on!the!SARA!Exposure!and! Vulnerability!Workshop!in!Medellin …03_2014_-_workshop_medelli… · The!GEMKSARA!Exposureand!Seismic!Vulnerability!Modelling!Workshop!was!carried!out!in!thecity!of!Medellin,!
Page 7: Report!on!the!SARA!Exposure!and! Vulnerability!Workshop!in!Medellin …03_2014_-_workshop_medelli… · The!GEMKSARA!Exposureand!Seismic!Vulnerability!Modelling!Workshop!was!carried!out!in!thecity!of!Medellin,!

1  

1 SARA  EXPOSURE  AND  VULNERABILITY  WORKSHOP  

1.1 Background  to  the  SARA  Exposure  and  Vulnerability  Workshop  

The  “South  America  integrated  Risk  Assessment”  (SARA)  project  started  in  January  2013,  and  it  has  been  promoted  since   then  by  the  GEM  Foundation  with  support   from  the  Swiss  Re  Foundation.  The  aim  of  the  project  is  to  accomplish  an  integrated  and  collaborative  assessment  of  seismic  risk  in  South  America.  To   achieve   this,   unified   regional   seismic   hazard  model   as  well   as   exposure   and   physical   vulnerability  models   for   residential   buildings   at   regional,   national   and   sub-­‐national   levels   will   be   created.   The  construction  of   these  models   is   facilitated  through   the  tools  and  methodologies  developed  within   the  GEM  initiative.  

One   of   the   most   important   principles   of   the   project   is   to   involve   the   scientific   community   in   South  America   for   the   development   of   the   models.   Discussion   regarding   the   current   status   on   assessing  seismic   risk   has   been   needed   in   order   to   identify   gaps   and   potential   ways   to   contribute   to   the  improvement  of  earthquake  loss  estimates.  Therefore,  in  December  2013  a  group  of  experts  from  South  America   worked   together   in   Bogotá   (Colombia)   in   a   workshop   dedicated   to   the   development   of   a  regional  seismic  hazard  model.  Moreover,  a  workshop  on  exposure  and  seismic  vulnerability  modelling  was  carried  out  in  Medellin  (Colombia),  from  the  12th  to  the  14th  of  March  2014,  in  which  a  description  of   experiences,   ongoing   projects,   strategies   to   develop   robust   inventory   databases,   and   physical  vulnerability  models  of  existing  buildings  were  discussed.  

The  present  report  provides  a  unified  documentation  on  the  activities  and  topics  discussed  during  this  latter   workshop,   along   with   the   activities   that   are   ongoing   in   each   country   inside   the   regional  programme.   So   far,   there   are   three   active   regional   working   groups:   Colombia,   Chile   and   Ecuador.   In  addition,  there  have  been  interactions  with  researchers  from  Peru  and  Venezuela,  and  it  is  expected  to  have  their  participation  in  the  near  future.  The  majority  of  the  documents  and  presentations  produced  during  the  workshop  can  be  found  in  the  GEM  NEXUS  webpage1.  

It  is  worth  mentioning  that  the  workshop  was  the  first  meeting  for  the  participants  within  the  regional  project  concerning  the  risk  component  (though  previous  GEM  workshops  on  hazard  and  risk  had  been  held  in  the  region  in  2011  in  order  to  identify  potential  partnerships  and  plan  the  activities  of  the  SARA  project).  The  participants  had  the  opportunity  to  share  their  experiences  and  expectations  on  modelling  exposure  and  physical  vulnerability  in  the  region.  

The  workshop  was  intended  for  the  discussion  of  the  following  topics:  

• Review   and   discussion   of   current   experiences   in   developing   exposure   databases   and   seismic  fragility/vulnerability  functions  for  buildings  in  South  America.  

                                                                                                                         1  http://www.nexus.globalquakemodel.org/gem-­‐south-­‐america/files/  

Page 8: Report!on!the!SARA!Exposure!and! Vulnerability!Workshop!in!Medellin …03_2014_-_workshop_medelli… · The!GEMKSARA!Exposureand!Seismic!Vulnerability!Modelling!Workshop!was!carried!out!in!thecity!of!Medellin,!

 

• Review   and   discussion   of   tools   and   methodologies   developed   within   GEM   for   exposure   and  fragility/vulnerability  modelling.  

• Presentation  of  cases  studies  in  South  America  at  the  national,  subnational  and  local  level.  

Section  1.2  illustrates  the  agenda  of  the  workshop,  which  was  divided  into  five  sessions.  During  the  first  one,  a  brief  description  of  the  GEM  initiatives  and  regional  activities  in  South  America  was  provided,  in  addition  to  the  hazard  component  of  the  SARA  project.  In  the  second  session,  the  local  experts  from  the  five  participating  countries  (Colombia,  Chile,  Ecuador,  Venezuela  and  Peru)  presented  the  current  status  on  exposure,  vulnerability  and  risk  modelling  of  each  country  (a  summary  of  this  information  is  provided  in   Chapter   2.   In   the   following   two   sessions,   GEM   tools   for   modelling   exposure   were   presented  (GED4GEM,   TaxT,   Inventory   Data   Capture   Tools),   as   well   as   methodologies   for   developing  vulnerability/fragility  functions.  Regarding  the  exposure  part,  a  working  session  was  performed  in  order  to   describe   and   identify   residential   building   typologies   in   the   region   and   their   building   fractions   for  urban  and  rural  areas.  A  summary  of  the  results  of  this  working  session  is  presented  in  Chapter  4.  The  final  session  was  about  the  activities  that  each  working  group  will  accomplish  during  the  course  of  the  SARA  project,  as  described  in  Chapter  3.  

Page 9: Report!on!the!SARA!Exposure!and! Vulnerability!Workshop!in!Medellin …03_2014_-_workshop_medelli… · The!GEMKSARA!Exposureand!Seismic!Vulnerability!Modelling!Workshop!was!carried!out!in!thecity!of!Medellin,!

3  

1.2 Agenda  of  the  SARA  Exposure  and  Vulnerability  Workshop  

 

GEM-SARA Exposure and Seismic Vulnerability Modelling Workshop 12th-14th March 2014

Page 2 of 2

Wednesday, 12 March – Status update (Chair: Helen Crowley)

9:00 - 9 :15 Welcome Suramericana - Gloria Estrada

9:15 - 9 :45 GEM initiative and regional activities in South America - Helen Crowley

9:45 - 10:00 GEM SARA project: hazard component – Vitor Silva

10:00 - 10:30 Current status on exposure, vulnerability and risk modeling in Colombia - Ana Acevedo

10:30 - 11:00 Coffee break

11:00 - 11:30 Current status on exposure, vulnerability and risk modeling in Chile - Hernán Santamaría

11:30 - 12:00 Current status on exposure, vulnerability and risk modeling in Venezuela - José Gregorio Rengel

12:00 - 12:30 Current status on exposure, vulnerability and risk modeling in Ecuador - Fabricio Yépez

12:30-14:00 Lunch

14:00-14:30 Presentation of OpenQuake-engine - Vitor Silva

14:30-15:30 Example of earthquake loss estimation and seismic risk assessment (Peru) - Catalina Yepes

15:30 - 16:00 Socio-economic indicators and integrated risk in the SARA project - Jairo Valcárcel

16:00 - 16:30 Coffee break

16:30 - 17:30 Moving forward: How can the current seismic risk assessment in South America be improved?

Thursday, 13 March - Exposure (Chair: Vitor Silva)

9:00 - 9:30 Current status on exposure, vulnerability and risk modeling in Peru - Miguel Estrada

9:30 - 10:30 GEM Building taxonomy - Catalina Yepes

10:30 - 11:00 Coffee break

11:00 - 12:00 Presentation of GEM exposure tools (Android tool, SIDD, Windows tool) - Catalina Yepes

12:00 - 14:00 Lunch

14:00 – 16:00 Exposure working session (Vitor Silva, Catalina Yepes)

14:00 -15:30 Creation of TaxT reports and estimation of building distribution for each country

15:30 16:00 Share and analysis of results

16:00 - 16:30 Coffee break

16:30 - 17:00 Development of exposure models using Census or GED4GEM - Vitor Silva

17:00 - 17:30 Scope and limitations of available exposure databases and potential uses - Jairo Valcárcel

19:30 – 22:00 Dinner together

Friday, 14 March - Seismic Vulnerability and Risk (Chair: Vitor Silva)

9:00 - 9:15 Welcome to EAFIT - Ana Acevedo

9:15 - 10:00 Physical Fragility and Vulnerability on OpenQuake - Vitor Silva

10:00 - 10:30 Global vulnerability database and Fragility Function Manager - Catalina Yepes

10:30 - 11:00 Coffee break

11:00 - 11:30 Development of analytical fragility/vulnerability functions - Catalina Yepes

11:30 - 12:00 Development of empirical fragility/vulnerability functions - Catalina Yepes

12:00 - 14:00 Lunch

14:00 - 14:30 Case study: Exposure and vulnerability modelling in Antioquia (Ana Beatriz Acevedo and Juan Diego Jaramillo)

14:30 - 15:00 Case study: Development of city scenarios: Quito - Fabricio Yépez

15:00 - 15:30 Case study: Exposure and vulnerability modelling in Chile - Hernán Santamaría 15:30 - 16:00 Discussion: Available vulnerability/fragility functions and scope and limitations of current

practices in vulnerability modelling in South America 16:00 - 16:30 Coffee break 16:30 - 17:30 Moving forward: planning of the activities

Page 10: Report!on!the!SARA!Exposure!and! Vulnerability!Workshop!in!Medellin …03_2014_-_workshop_medelli… · The!GEMKSARA!Exposureand!Seismic!Vulnerability!Modelling!Workshop!was!carried!out!in!thecity!of!Medellin,!

 

2 CURRENT  STATUS  ON  SEISMIC  VULNERABILITY  AND  EXPOSURE  IN  THE  REGION  

In  South  America  several  projects  have  been  developed   in  order  to  evaluate  earthquake   losses.  These  studies   have   been   conducted   at   different   geographical   scales   (regional   assessments,   country   profiles  and  city  scenarios)  and  they  were  focused  mainly  on  the  assessment  of  seismic  vulnerability  of  buildings  and  infrastructure.  This  section  describes  some  of  those  experiences  in  terms  of  the  methodologies  and  data  used,  and  the  potential  uses  of  such  analyses.  The  studies  include  a  sample  of  the  work  published  in   technical   reports,   conference   proceedings   or   peer-­‐reviewed   journals.   The   update   of   this   summary  should  be  performed  periodically,  and  it  should  include  the  participation  of  the  community  of  experts  in  South  America.  

2.1 Regional  initiatives  and  projects  

At   regional   level,   the   Inter-­‐American   Development   Bank   (IDB),   the   World   Bank   (WB)   and   the  International   Strategy   for   Disaster   Risk   Reduction   (ISDR)   have   promoted   the   evaluation   of   expected  losses  by  programs  such  as  the  Systems  of  Indicators  of  Disaster  Risk  and  Risk  Management  (Cardona  et  al.   2003,   Ordaz   and   Yamín,   2004).   These   studies   provided   rough   estimates   at   the   country   level   for  specific   return   periods,   and   they   were   based   on   approximated   exposure   models,   along   with  vulnerability   functions   derived   from   expert   opinion   and   simplified   models   for   assessing   probable  maximum  losses.  

In   addition,   the   development   of   the   platform   “Comprehensive   Approach   for   Probabilistic   Risk  Assessment-­‐CAPRA”2   (Cardona  et  al.  2010)  has  been  promoted  by  the  World  Bank  and  has  been  used  for   the   recent   reports   of   the   Global   Assessment     (ERN   2011,   CIMNE   2013).   By   using   CAPRA,   several  country  profiles  (i.e.  Bolivia,  Colombia,  El  Salvador,  Guatemala,  Jamaica,  Mexico,  Peru)  and  case  studies  have  been  developed  in  Latin  America  for  risk  mitigation  and  risk  transfer  purposes.  At  regional  scale,  a  retrofitting  benefit  cost  analysis  for  school  buildings  was  carried  out  by  Valcárcel  et  al.  (2013).  

Moreover,   earthquake   losses   for   South   American   Andean   capital   cities   have   been   estimated   and  compared  by  Vaziri  et  al.  (2012).  The  exposure  datasets  were  derived  from  census  data,  surveys,  expert  opinion   of   local   institutes   and   satellite   imagery.   Both   seismic   hazard   and   building   vulnerability   were  evaluated   in   terms   of  Modified  Mercalli   Intensity   (MMI).   On   this   basis,   loss   exceedance   curves  were  obtained  for  Santiago  (Chile),  Quito  (Ecuador)  and  Lima  (Peru).  

Regarding   vulnerability   reduction,   in   the   framework   of   the   project   “Adobe”   leaded   by   the   Regional  Centre  of  Seismology  in  South  America  (Centro  Regional  de  Sismología  para  América  del  Sur  -­‐  CERESIS),  

                                                                                                                         2  http://www.ecapra.org/  

Page 11: Report!on!the!SARA!Exposure!and! Vulnerability!Workshop!in!Medellin …03_2014_-_workshop_medelli… · The!GEMKSARA!Exposureand!Seismic!Vulnerability!Modelling!Workshop!was!carried!out!in!thecity!of!Medellin,!

5  

guidelines   for   retrofitting   adobe  houses  have  been  produced.   These   techniques  have  been  applied   in  pilot  cases  in  Bolivia,  Chile,  Ecuador,  Peru  and  Venezuela3.  

2.2 National  experiences  

The  following  sections  describe  the  experiences  in  seismic  risk  assessment  in  Chile,  Colombia,  Ecuador,  Peru  and  Venezuela,  taking  into  account  the  information  provided  by  the  participants  of  the  workshop  and  a  survey  of  the  state-­‐of-­‐the-­‐art  in  the  region.  

2.2.1 Chile  

In  Chile,  seismic  performance  and  vulnerability  analysis  of  different  building  typologies  and  structures,  as  well  as  damage  scenarios  of  various  cities  (Arica,  Antofagasta  and  Copiapo)  have  been  developed.  For  masonry  buildings,   Román   (2009)   applied   simplified   vulnerability   indices   in   a   sample  of   buildings   and  compared  the  results  of  expected  damage  with  those  found  in  the  earthquake  consequence  databases  of   three  different  events.  Additionally,   Silva   (2011)  used  a  wall  density   index   in  order   to  evaluate   the  physical   fragility   of   buildings   of   social   interest   housing   programs   in   the   metropolitan   region,   and   to  estimate   the  expected   losses   for  specific  events  and   for  earthquakes  with  ground  motions  with  a  475  years  return  period.  

For   reinforced   concrete   frames   and   shear  wall   buildings  with   different   heights   in   the   city   of   Valdivia,  Martinez  (2012)  obtained  capacity  curves  by  using  static  nonlinear  analysis,  and  the  performance  point  of  the  structure  was  estimated  through  the  capacity  spectrum  method  (ATC-­‐40,  1996)  and  vulnerability  functions   were   derived   following   the   guidelines   of   the   RISK   UE   project   (Milutinovic   &   Trendafiloski  2003).  Using  a  similar  procedure,  Aburto  (2013)  developed  a  fragility  function  for  a  specific  bridge.  

Regarding   seismic   risk   assessment,   Fisher   et   al.   (2002)   presented   a   framework   to   estimate   losses   for  individual   buildings   according   to   the   following   steps:   i)   characterization   of   ground   motion,   ii)  construction   of   the   building   model,   iii)   evaluation   of   the   inelastic   building   response,   iv)   structural  damage  assessment,  and  v)  risk  evaluation.   In  addition,  a  damage  assessment  of  buildings   in  northern  Chilean   cities  was   presented   by   Tapia   et   al.   (2002),   using   the   tool   RADIUS   (Risk   Assessment   Tool   for  Diagnosis  of  Urban  Areas  Against  Seismic  Disasters).  In  this  work,  an  exposure  database  was  constructed  with  field  surveys  and  census  data,  and  the  main  building  typologies  were  identified  at  block  level.  For  each  building  type,  a  vulnerability  function  was  considered,  describing  the  expected  damage  in  terms  of  MMI.   These   vulnerability   functions   were   derived   using   the   damage   observed   after   the   Algarrobo  earthquake  of  March  3rd   (1985)  that  occurred  off  the  coast  of  central  Chile.  Moreover,  since  2011  the  Security  and  Insurance  Commission,  in  collaboration  with  the  Association  of  Insurers  of  Chile  have  been  working  in  the  development  of  a  model  for  assessing  seismic  and  tsunami  maximum  probable  losses  in  the  country  for  insurance  purposes  (SVS  2013).  

2.2.2 Colombia  

In  Colombia  there  are  several  efforts  for  assessing  earthquake  losses  at  country  and  city  levels  that  have  been  used  for  the  analysis  of  risk  reduction  programs,  definition  of  emergency  plans  and  risk  transfer.  At  

                                                                                                                         3  See:  http://www.ceresis.org/proyect/padobe.htm  

Page 12: Report!on!the!SARA!Exposure!and! Vulnerability!Workshop!in!Medellin …03_2014_-_workshop_medelli… · The!GEMKSARA!Exposureand!Seismic!Vulnerability!Modelling!Workshop!was!carried!out!in!thecity!of!Medellin,!

 

national   scale,   ERN   (2004a)   presented   a   seismic   risk   assessment   of   public   buildings   and   low   income  households  in  order  to  identify  risk  financing  mechanisms.  In  this  study,  a  proxy  model  of  the  built  area  was  used  taking  into  account  census  data,  indices  of  built  area  per  inhabitants  and  the  average  building  value   per   square   meter.   The   building   typologies   were   described   according   to   expert   opinion,   and  vulnerability   functions   were   derived   following   the   methodologies   suggested   by   Ordaz   (2000)   and  Miranda   (1999),   in   which   the   expected   losses   are   obtained   as   function   of   the   building’s   spectral  acceleration  at  the  fundamental  period.  

At   local   scale,   seismic  microzonation   studies  have  been  developed   for   the  main   cities  of   the   country,  which  are  located  in  areas  of  medium  or  high  seismic  hazard:  Bogotá  (Cardona  and  Yamín  1997;  CEDERI  2006),   Manizales   (CIMOC   2002),   Bucaramanga   (INGEOMINAS-­‐CDMB   2002),   Medellin   (Consortia  Microzonificación  2006),  Cali  and   intermediate  cities   (CEDERI  2005c).  Some  of   these  studies  have  also  been  used  for  the  evaluation  of  earthquake  losses.  

In  the  case  of  Bogota,  Cardona  &  Yamín  (1997)  adopted  vulnerability  functions  from  the  ATC-­‐13  report  (ATC  1985)   in  order   to  evaluate  building  damage.  Also,   seismic   scenarios  were  performed   in  order   to  define   emergency  management   activities   of   the   city,   based   on   the   estimation   of   injuries,   casualties,  homeless   population   and   debris,   among   other   results   of   interest   (CEDERI   2005a).   The   previous   study  created   a   building   inventory   based   on   cadastral   data,   and   the   building   stock   was   classified   into  structural  typologies  taking  into  account  features  such  as  the  occupancy,  the  socioeconomic  conditions  and  the  number  of  floors.  

Additionally,  a  study  on  the  seismic  risk  of  essential  facilities   in  Bogota  (CEDERI  2005  b)  was  useful  for  defining   risk  mitigation   programs   and   for   the   evaluation   of   retrofitting   alternatives.   In   this   case,   the  building  inventory  was  created  using  the  building  information  available  for  essential  facilities  related  to  health,  education  and  police   stations,  among  others.  Moreover,   studies  on   the  evaluation  of   financial  instruments  and  risk  transfer  mechanisms  were  performed  for  public  and  private  buildings  in  Manizales  and   Bogotá   (ERN   2004b,   ERN   2006).   In   the   aforementioned   studies,   the   vulnerability   of   the   building  stock  was   also   defined   following   the  methodologies   suggested   by   Ordaz   (2000)   and  Miranda   (1999).  Lastly,  another   interesting   study  carried  out  by  Salgado  et  al.   (2013),  which  presents   the  variations   in  the  seismic  risk  of  Bogotá  and  Manizales  when  considering  different  tectonic  models.  A  summary  of  the  objectives  and  results  of  the  different  seismic  risk  assessments  in  Bogotá  was  presented  by  Yamín  et  al.  (2013).  

In  the  case  of  the  city  of  Medellin,  three  main  studies  have  been  developed  for  seismic  microzonation  and   loss   assessment.   In   the  work   developed   by   the  municipality   of  Medellin   (Municipio   de  Medellín,  1994),  the  losses  were  estimated  for  specific  earthquakes  defined  by  their  magnitude.  The  peak  ground  acceleration  at   the   location  of   the  buildings  was  estimated  using  ground  motion  prediction  equations  (GMPEs)  taking  into  account  the  properties  of  the  seismic  sources  (location,  depth,  azimuth  and  rupture  laws).   In  addition,  the  Fourier  amplitude  spectra  on  bedrock  were  obtained  and  soil  transfer  functions  were  used  in  order  to  estimate  the  amplified  acceleration  response  spectra.    

The  exposure  model   in   the  previous   study  was  built  based  on   information   regarding   the  construction  density,   socioeconomic   conditions   and   land   or   building   occupancy.   The   height   of   the   buildings   and  material   of   construction   were   obtained   using   aerial   imagery.   Vulnerability   functions   were   defined   in  terms   of   the   spectral   acceleration   at   the   fundamental   period,   taking   into   account   correction   factors  

Page 13: Report!on!the!SARA!Exposure!and! Vulnerability!Workshop!in!Medellin …03_2014_-_workshop_medelli… · The!GEMKSARA!Exposureand!Seismic!Vulnerability!Modelling!Workshop!was!carried!out!in!thecity!of!Medellin,!

7  

associated   to   the   socioeconomic   strata,   age   and  occupancy  of   buildings,   as  well   as   the  weight   of   the  roof.  The  evaluation  of  loss  exceedance  curves,  annual  average  losses  and  probable  maximum  losses  for  given  return  periods  was  conducted  using  the  PERCAL  methodology  (Jaramillo,  1997).  

On  the  other  hand,  Consorcio  Microzonificación  (2006)  presented  a  seismic  microzonation  and  a  seismic  risk  assessment  of  Medellin  and   its   surrounding  municipalities.   In   this   study,   the  exposure  model  was  created  at   the   level  of  blocks,   and   the  geographical  distribution  of  building   typologies  was  developed  using  aerial  imagery,  field  surveys  and  data  collection  for  specific  areas.  Fragility  functions  were  derived  in  terms  of  the  spectral  acceleration  at  the  fundamental  period  and  considering  the  interstorey  drift  as  the   engineering   demand   parameter.   Losses   have   been   calculated   through   the   employment   of   the  software  IE-­‐RISS  (Estrada  and  Jaramillo,  2002).  

In   Salgado-­‐Gálvez   et   al.   (2014),   risk   estimates   for   Medellin   were   calculated   using   the   most   recent  seismic   hazard   model   for   Colombia,   and   spectral   transfer   functions   for   each   region   defined   in   the  seismic  microzonation  were  also  used,   in  order  to  consider  the  dynamic  soil  response  and  site  effects.  The  exposure  model  was  derived  from  the  cadastral  database  that   includes  data  about  the  number  of  stories  and  building  age,  and  a  classification  based  on  the  usage  and  socio-­‐economic   level.  Moreover,  buildings   have   been   classified   in   different   structural   typologies   and   vulnerability   functions   were  developed   following   the   methodologies   suggested   by   Ordaz   (2000)   and   Miranda   (1999).   Using   the  platform   CAPRA,   loss   exceedance   curves   for   the   city   and   probable   maximum   losses   aggregated   by  county  and  structural  typology  were  calculated.    

2.2.3 Ecuador  

In   Ecuador,   the  most   representative   studies   have   been   developed   for   the  main   cities   of   the   country,  focusing   in   the  analysis  of   seismic   scenarios  as  well   as   risk  estimates  of  buildings  and   lifelines.   In   this  regard,   in   1995,   the   Project   “Escenario   Sísmico   de   Quito”   was   developed   with   the   lead   of   the   local  government   and   the   participation   of   various   national   and   international   institutions.   In   this   study,   the  damage  in  buildings,  roads,  components  of  the  water  supply  system,  power  networks  and  sewers  was  estimated  due  to  the  occurrence  of  likely  seismic  events  (Chatelain  et  al,  1999;  Yépez  2001).    

The   building   inventory   was   developed   for   Quito   taking   into   account   the   1990   census   data.   It   was  developed   at   the   level   of   blocks   (around   11,200)   and   the   buildings   were   classified   into   structural  typologies   according   to   the   predominant   material   of   construction   and   the   structural   system   (Yépez  2001).    

Regarding   the   structural   vulnerability,   the   representative   buildings   of   each   typology   were   evaluated  according   to   the   ATC-­‐22   (Applied   Technology   Council,   1989)   recommendations.   Also,   four   adobe  structures   located   in   the   old   part   of   the   city   were   analysed,   mainly   under   shear   conditions.   Special  structures  such  as  hospitals,  schools,  industrial  facilities,  as  well  as  the  sewage  system,  water  reservoir  tanks,  transmission  towers,  gas  and  oil  stations  near  the  city,  and  the  airport  were  inspected  individually  with  higher  scrutiny.  

In  this  project,  the  ground  shaking  was  described  in  terms  of  the  MMI  scale  and  the  expected  building  damage  was  estimated  using  the  damage  probability  matrix  method  provided  by  the  ATC-­‐13  (1985).  The  seismic   hazard   analysis   and   results   of   microzonation   studies,   as   well   as   the   exposure,   damage  

Page 14: Report!on!the!SARA!Exposure!and! Vulnerability!Workshop!in!Medellin …03_2014_-_workshop_medelli… · The!GEMKSARA!Exposureand!Seismic!Vulnerability!Modelling!Workshop!was!carried!out!in!thecity!of!Medellin,!

 

probability  matrices  and  procedures  for  assessing  damage  and   losses  were   incorporated   in  a  software  (RISMIC)  developed  by  the  university  “Escuela  Politécnica  Nacional”.  

Another  study,  “The  Quito  School  Safety  Project”  included  the  evaluation  of  the  seismic  vulnerability  of  schools,   the   design   retrofitting   interventions,   and   the   application   of   those   techniques   to   a   sample   of  buildings.   The   priority   of   the   buildings   was   assigned   according   to   the   number   of   occupants   and  simplified  analysis  of  the  seismic  vulnerability  using  the  methodologies  suggested  by  the  ATC-­‐13  (1985)  guidelines.  Finally,  detailed  models  were  developed  for  a  reduced  sample  of  structures  (see  GeoHazards  International,  1995).    

Further   studies   have   been   developed   for   the   seismic   risk   of   lifelines.   Assessments   of   the   expected  damage   of   bridges   were   performed   by   Atiaga   and   Demoraes   (2003),   through   the   application   of   the  methodology  suggested  by  HAZUS  (FEMA  1999).  In  addition,  an  updated  seismic  risk  assessment  of  the  sewer  system  of  Quito  was  performed  using  the  platform  CAPRA4.  

Finally,   damage   scenarios   have   also   been   developed   for   the   city   of   Cuenca   (Universidad   de   Cuenca,  2001).   In   this   study,   a   survey   with   2200   sample   buildings   was   carried   out   in   order   to   identify   the  different   building   typologies.   A   vulnerability   index   (GNDT   1993)   was   adopted   in   order   to   score   the  fragility   of   buildings.   Finally,   vulnerability   functions   were   derived   for   different   building   typologies,   in  which   the   expected  damage   is   represented  by   a   vulnerability   index   as   a   function  of   the  peak   ground  acceleration  (PGA).  

2.2.4 Peru  

Several   studies   have   been   performed   for   the   assessment   of   seismic   hazard,   vulnerability   and   risk   at  different  geographical  scales.  With  the  support  of  the  World  Bank,  a  project  for  an  open  seismic  hazard  model  for  Peru,  as  well  as  catastrophic  profiles  for  the  country  have  been  developed  using  the  CAPRA  platform.    

Particular   interest   has   been   devoted   to   the   analysis   of   the   seismic   risk   of   Lima.   In   this   regard,   likely  earthquake   scenarios   were   defined   in   Pulido   et   al.   (2012).   Alva-­‐Hurtado   (1993)   performed   seismic  damage  scenarios,  and  seismic  microzonation  and  risk  estimates  were  developed  by  CISMID  (2004)  with  an   update   performed  by   Zavala   et   al   (2010).   In   addition,   seismic   risk   calculations  were   conducted  by  Olarte   et   al.   (2012)   for   insurance   purposes.   In   these   studies,   the   exposure  model   was   developed   by  collecting   information  concerning  the  construction  materials,   lateral   load  resisting  systems,  occupancy  and   state   of   conservation.   The   physical   vulnerability   was   estimated   in   terms   of   maximum   drift   and  spectral   acceleration   at   the   fundamental   period.   For   emergency  management   and   recovery   planning,  tsunami  and  earthquake  damage  scenarios  were  evaluated  in  the  project  Predes  (2009).  

Moreover,  studies  on  expected  damages  and  losses  on  lifelines  have  also  been  developed  for  Lima.  For  example,   a   seismic   risk   evaluation  of   the  water   supply   system  was  presented  by   Torres-­‐Cabrejos   and  Huaman-­‐Egoavil   (1993),  while  a   loss  assessment  of   the   sewer   system,  using   the  platform  CAPRA,  was  presented  by  ERN-­‐AL  (2012).  

Regarding   the   evaluation   of   the   vulnerability   of   buildings,   Silva   (2013)   applied   probabilistic  methodologies  for  damage  assessment  of  mid-­‐rise  buildings,  and  Meneses-­‐Loja  and  Aguilar  (2004)  used  

                                                                                                                         4http://www.ecapra.org/es/mapa-­‐de-­‐amenaza-­‐s%C3%ADsmica-­‐del-­‐per%C3%BA  

Page 15: Report!on!the!SARA!Exposure!and! Vulnerability!Workshop!in!Medellin …03_2014_-_workshop_medelli… · The!GEMKSARA!Exposureand!Seismic!Vulnerability!Modelling!Workshop!was!carried!out!in!thecity!of!Medellin,!

9  

vulnerability  indices  in  order  to  evaluate  the  vulnerability  of  schools  in  Lima.  Also,  specific  studies  were  developed   for   the   evaluation   of   retrofitting   alternatives   for   educational   and   health   infrastructure  (Olarte   et   al.   2013;   Santacruz   2012;   CISMID   2014).   Furthermore,   Tarque   et   al.   (2010)   derived  vulnerability   functions   for  adobe  buildings   in  Cusco,  based  on  mechanical  procedures  and  earthquake  damage  data.  

Nowadays,   in   the   framework  of   the   Japanese  Program,   Science  and  Technology  Research  Partnership  for  Sustainable  Development  Programme  (SATREPS),  several  efforts  have  been  developed  for  improving  seismic   risk   analysis   in   Peru   and   for   promoting   risk   management   strategies.   In   this   inititative,  improvements  in  the  exposure  model  of  Lima  using  satellite  imagery  and  census  data  were  presented  in  Matsuoka   et   al.   (2013).   Furthermore,   seismic   performance   and   structural   behaviour   of   reinforced  concrete  walls,  unreinforced  masonry  walls  and  low  ductility  walls  were  analysed  by  Sunley  et  al.  (2013),  Saito   et   al.   (2013)   and   Zavala   et   al.   (2013),   respectively.  Other   studies   on   the   seismic   vulnerability   of  buildings   in   the   historic   centre   of   Lima   were   developed   by   Cuadra   et   al.   (2013),   as   well   as   damage  estimation  models   by  Matsuoka   and   Estrada   (2013).   For  what   concerns   the   evaluation   of   emergency  response   and   recovery   activities,   Murao   et   al.   (2013)   presented   an   analysis   of   the   urban   recovery  process  in  Pisco  after  the  earthquake  of  August  2007.  

2.2.5 Venezuela  

In  Venezuela,  seismic  risk  studies  have  been  conducted  for  specific  urban  areas  and  facilities.  Castillo  et  al.  (2008a;  2008b;  2011)  presents  estimates  of  the  damage  of  buildings,  casualties  and  economic  losses  of   non-­‐engineered   buildings   in   Merida,   through   the   application   of   the   Vulnerability   Index   Method  (Benedetti   and   Petrini,   1984)   and   considering   seismic   events   described   in   terms   of   macroseismic  intensities.  On  the  other  hand,  Schmitz  et  al.  (2002)  presented  the  microzonation  study  of  Caracas,  with  special   detail   in   the   District   of   Chacao,   given   the   importance   of   the   exposed   values   (residential   and  commercial  buildings)  and  the  possible  soil  effects  in  the  area.  In  addition,  Safina  et  al.  (2012)  presented  a   vulnerability   analysis   for   buildings   with  more   than   three   stories   and   essential   buildings,   as   well   as  detailed  fragility  models  for  reinforced  concrete  buildings.  

At   the  country   level,  a  program  was   implemented   in  order   to  evaluate  and  mitigate   the  risk   in  school  buildings.  This  program  included  the  identification  of  construction  type,  location,  number  of  floors  and  occupation  of  about  28,000  schools.  In  addition,  a  detailed  inspection  of  250  buildings  was  carried  out  and   ten   schools  were   selected   as   pilot   projects   for   a   detailed   seismic   evaluation.  Moreover,   optimal  retrofitting   strategies   were   suggested,   as   well   as   guidelines   for   structural   and   non-­‐structural  vulnerability  reduction  (López  et  al.  2007,  2008).  

Furthermore,  risk  indices  for  these  school  buildings  were  obtained  for  different  seismic  scenarios.  At  the  location   of   each   school,   the   PGA   was   estimated   for   specific   seismic   events,   defined   by   a   given  magnitude,   hypocentre,   and   using   appropriate   GMPEs.   Fragility   functions   were   derived   in   order   to  evaluate  the  probability  of  exceedance  of  different  damage  states  (light,  moderate,  severe  and  collapse)  for  a  set  of  PGA  values.  For  each  damage  state  a  damage  factor  was  assumed  following  the  Hwang  and  Lin  (2002)  procedure.  On  this  basis,  a  mean  damage  factor  of  the  schools  was  obtained  as  the  sum  of  the  damage  factors  multiplied  by  their  probability  of  occurrence.  Also,   repair  costs  were  calculated  as  the  multiplication  between  the  mean  damage  factor  and  the  facilities  value  according  to  its  educational  level   and   social   importance.   Moreover,   to   estimate   the   number   of   casualties,   the   mortality   rate  

Page 16: Report!on!the!SARA!Exposure!and! Vulnerability!Workshop!in!Medellin …03_2014_-_workshop_medelli… · The!GEMKSARA!Exposureand!Seismic!Vulnerability!Modelling!Workshop!was!carried!out!in!thecity!of!Medellin,!

 

described   in  ATC-­‐13  was  used,   and   it  was   assumed   that   the   seismic   events  occur  when   schools  were  fully  occupied  (Lopez  et  al.  2008).  

Nowadays,   FUNVISIS   is   promoting   the  project   SismoCaracas,  which   encompasses   a   building   inventory  and  surveys  of  bridges,  hospitals,  fire  stations,  historical  and  residential  buildings  of  Caracas  in  order  to  identify  structural  characteristics  and  to  assign  a  vulnerability  index.  In  addition,  this  project  includes  the  development   of   analytical   fragility   functions   for   specific   buildings,   taking   into   account   the  methodologies   suggested   in   the   projects   HAZUS   (FEMA/NIBS   1999)   and   RISK   UE   (Milutinovic   &  Trendafiloski   2003).   These   results   will   be   useful   for   prioritization   of   structural   interventions   and  retrofitting  of  buildings.  

2.3 Summary  of  main  gaps  and  needs  on  exposure  and  vulnerability  modelling  

Based   on   the   information   provided   by   the   participants   of   the  workshop,   a   summary   of   the   status   in  modelling  exposure  and  vulnerability  modelling  is  described  in  the  following  sections.  Also,  a  qualitative  scale   of   the   progress   is   presented   in   order   to   visualize   the   status   of   each   country,   based   on   the  benchmarks  suggested  by  Cardona  et  al.  (2003)  in  the  Risk  Management  Index.  With  this  analysis,  it  will  be  possible  to  identify  main  gaps  and  needs  for  risk  modelling  in  South  America.    

2.3.1 Exposure  databases  

In   order   to   describe   the   achievements   for   modelling   exposure,   the   following   topics   have   been  considered:  

Sources  of  information  

Several   sources   of   information   have   been  used.   At   the   scale   of   cities,   cadastral   databases   have   been  used   in   order   to   identify   building   locations,   as   well   as   relevant   characteristics   for   estimating  replacement   cost   and   structural   vulnerability.   Additionally,   field   surveys,   aerial   and   satellite   imagery  have  been  used  for  mapping  building  inventory  and  describing  building  typologies.  

At   the   national   scale,   proxy   models   have   been   developed   using   census   data   and   socioeconomic  indicators   in   order   to   estimate   the   built-­‐up   area   and   economic   value   at   the   municipality   level.   The  regional  distribution  of  building  types  has  been  defined  through  expert  opinion.  

Relevant  assumptions  

The  most  relevant  assumptions  are  related  to  the  classification  of  buildings  into  structural  types  as  well  as   their   geographical   distribution.   At   city   level,   homogeneous   areas   have   been   identified   based   on  surveys  and  aerial   images.  At   the  national   level,   the  description  of   the  building   types   relies  on  expert  opinion,  and  the  replacement  cost  estimation  has  been  developed  using  cadastral  statistics,  prices  per  square  meter  and  socioeconomic  indicators.  

Level  of  detail  

At  the  scales  of  cities,  exposure  databases  have  been  developed  at  building-­‐by-­‐building  resolution  (e.g.  Bogota,  Manizales,  Medellin  and  Lima),  while  in  other  cities  (e.g.  Quito)  the  exposure  database  has  been  estimated   at   block   level.   On   the   other   hand,   at   national   level,   proxy   exposure   databases   have   been  developed  at  municipality  level.  

 

Page 17: Report!on!the!SARA!Exposure!and! Vulnerability!Workshop!in!Medellin …03_2014_-_workshop_medelli… · The!GEMKSARA!Exposureand!Seismic!Vulnerability!Modelling!Workshop!was!carried!out!in!thecity!of!Medellin,!

11  

Limitations  of  exposure  models  

Exposure  models   (at  national  and  city   levels)  are   limited  regarding  the  economic  value  of  the  building  stock.  The  use  of  cadastral  values  and  socioeconomic   indicators  allows  obtaining  only  an  approximate  commercial   value.   However,   it   is   necessary   to   have   access   to   more   accurate   data,   especially   if   the  results  of  risk  estimates  will  be  used  for  defining  emergency  funds  or  insurance  mechanisms.  

At   national   level,   exposure   models   are   also   limited   regarding   the   classification   of   buildings   into  structural  types.  Given  the  significant  effort  and  cost  of  field  surveys,  expert  opinion  is  one  of  the  most  preferred   alternatives.   In   this   regard,   it   is   necessary   to   find   strategies   to   gather   information   or  alternative  sources  that  could  be  used  to  review  and  validate  the  assumptions  initially  considered.  

Table  1  presents  a  qualitative  scale  that  could  be  used  in  order  to  evaluate  the  progress  in  developing  exposure  models,  taking  into  account  the  level  of  detail  of  the  models  and  the  sources  of  information.  

Table  1  Progress  levels  for  modelling  exposure    

Level   Description  

Low   Structural  typologies  are  adopted  from  other  regions.  The  value  of  the  exposed  infrastructure  is  unknown.    

Incipient   Both  structural  typologies  and  value  of  the  exposed  infrastructure  are  defined  according  expert  criteria.  

Appreciable   Structural  typologies  are  defined  based  on  secondary  data  (material  of  roofs  and  floors,  etc).  It  is  estimated  the  built  area  and  its  economic  value  by  using  indices  per  square  meter,  prices  of  construction  and  socioeconomic  conditions.  

Notable   Structural   typologies   are   described  based  on   field   surveys.   Buildings   location   is   defined  on   aerial   or   satellite  imagery   or   cadastral   databases.   There   is   information   available   regarding   the   value   of   the   buildings   and  infrastructure,  described  by  typologies  and  geographical  areas.  

High   There   is   information   available  of   the   structural   properties  of   buildings  on   census  or   architectonic   databases.  There  is  accurate  information  regarding  the  value  of  buildings,  contents  and  services  provided.  

 

2.3.2 Vulnerability  modelling  

Types  of  analysis  

In  South  America  different  approaches  have  been  used  to  evaluate  the  seismic  vulnerability  of  buildings,  which  are  summarized  in  Table  2.  

Table  2  Types  of  vulnerability  analysis  and  its  applications  in  South  American  countries  

Method   Countries   Applications  

Vulnerability  indices  (adopted  from  GNDT  1993,  ATC-­‐21)  Venezuela,  Peru  (Lima)  

Prioritize  buildings  using  the  vulnerability  indices.  Assessment  of  expected  losses  for  specific  events.  

Damage  probability  matrices  (Adopted  from  ATC-­‐13)  Capital  cities  Quito,  Santiago,  Lima  

Evaluation  of  expected  damage  and  losses  for  specific  return  periods.    

Evaluation  of  exceedance  probability  curves.  

Fragility  functions  based  on  observed  damage  data.   Chile   Evaluation  of  expected  damage.  

Fragility/vulnerability  functions  based  on  simplified  calculations  of  the  seismic  response  of  buildings  to  ground  motion  intensities  (Ordos  2000;  Miranda  1999)  

Colombia,  Peru  Evaluation  of  expected  damage/loss.  

Evaluation  of  loss  exceedance  curves.  

Page 18: Report!on!the!SARA!Exposure!and! Vulnerability!Workshop!in!Medellin …03_2014_-_workshop_medelli… · The!GEMKSARA!Exposureand!Seismic!Vulnerability!Modelling!Workshop!was!carried!out!in!thecity!of!Medellin,!

 

Method   Countries   Applications  

Analytical  fragility  functions  based  on  structural  analysis  (according  to  the  methodologies  suggested  in  HAZUS  and  RISK  UE).    

Chile,  Peru  Venezuela  

Evaluation  of  damage/loss.  

Evaluation  of  exceedance  probability  curves.  

 

Assessing  economic  losses  

Economic   losses  were   estimated   by   different   approaches.  When   discrete   damage   states   and   fragility  functions  were  adopted,  the  losses  were  calculated  by  applying  consequence  functions  (relating  cost  of  repair  to  cost  of  replacement  for  different  damage  states)  to  the  estimated  damage.  On  the  other  hand,  direct  relations  between  the  expected  ground  motion  intensity  and  the  economic  losses  have  been  used  in  Peru  and  Colombia.  These  vulnerability  curves  have  been  developed  by  using  exponential  functions;  the  parameters  of  such   functions  were  adjusted  by  assuming  different   loss   ratios   for  a  given  range  of  the  ground  motion  intensity,  taking  into  account  the  properties  of  the  building  typologies.  

Calibration  of  vulnerability  functions  

Calibration   of   analytical   vulnerability   functions   has   been   performed   in   Venezuela   for   a   portfolio   of  school  buildings.   In  addition,   the  project  SismoCaracas   includes   the  calibration  of  vulnerability  models  using  damage  data  from  the  earthquake  of  Caracas  in  1967.  

Table  3   suggests  a  qualitative  scale   that  could  be  used   in  order   to  evaluate   the  progress   in  modelling  seismic   vulnerability,   taking   into   account   the   selected   methodology,   the   evaluation   of   the   expected  damage  and  the  quality  of  the  information  used  in  the  analysis).    

Table  3  Performance  levels  for  vulnerability  modelling  

Level   Description  

Low   Use  of  qualitative  scales  for  assessing  vulnerability  of  buildings.  

Incipient  Classification  of  buildings   into   vulnerability   classes.  Adoption  of  damage  probability  matrices   and  fragility  functions  from  other  regions.  

Appreciable   Application  of  vulnerability  indices.  

Notable  

Use  of  mechanical  based  indices  

Simplified  calculations  of  the  seismic  response  of  buildings  given  a  ground  motion  intensities  

Development  of  fragility  functions  based  on  observed  damage.  

High  Development  of  analytical  fragility/vulnerability  functions  based  on  structural  analysis,  ideally  with  verification  using  past  damage  data  

 

However  it  is  important  to  mention  that  the  majority  of  the  fragility  and  vulnerability  functions  derived  in  each  country  are  not  publically  available,  and  were  mostly  developed  for  a  single  building,  instead  of  classes.  

2.3.3 Main  gaps  and  needs  

According  to  the  information  collected  and  the  summary  presented  in  the  previous  sections,  the  main  gaps  and  needs  on  exposure  and  vulnerability  modelling  in  South  America  are  summarized  below:  

 

Page 19: Report!on!the!SARA!Exposure!and! Vulnerability!Workshop!in!Medellin …03_2014_-_workshop_medelli… · The!GEMKSARA!Exposureand!Seismic!Vulnerability!Modelling!Workshop!was!carried!out!in!thecity!of!Medellin,!

13  

Modelling  exposure  

• Accurate  data  in  order  to  evaluate  the  replacement  cost  of  buildings;  

• Unified  criteria  in  order  to  classify  buildings  into  structural  types;  

• Detailed  descriptions  of  building  types;  

• Field   surveys   and/or   support  materials   in   order   to   identify   building   types   at   the   country   level   as  well  as  their  geographical  distribution;    

• Standards  to  evaluate  the  quality  of  exposure  models  in  terms  of  their  completeness  regarding  the  classification  of  buildings  into  structural  typologies,  the  distribution  of  inhabitants  and  the  detail  of  the  information  available;  

• Access  to  information  available  on  cadastral  databases  and  similar  sources  in  order  to  collect  data  regarding  built  area,  number  of  buildings,  height  of  buildings,  age,  value  of  the  infrastructure  and  use.  

Modelling  physical  vulnerability  

• Review  the  applicability  of  damage  probability  matrices  and  structural  parameters  of  building  types  described  in  initiatives  from  other  regions;  

• Derive  analytical  vulnerability  functions  for  the  most  common  building  typologies.  In  particular,  the  assessment  of  non-­‐engineered  buildings  should  be  encouraged;  

• Calibration  and  validation  of  fragility/vulnerability  functions  with  earthquake  consequence  data.  

 

2.3.4 Potential  contributions  

Taking   into   account   the  main   gaps   and   needs   on   exposure   and   vulnerability  modelling,   the   potential  contributions   from   the   SARA   project   and   the   GEM   Foundation   are   related   to   the   improvement   and  update   of   data   and   methodologies   used   for   risk   assessment.   In   addition   the   tools   that   have   been  developed   by   the   GEM  Global   Components   can   be   provided   to   the   scientific   community   in   order   to  develop   new   case   studies.   In   this   regard,   it   is   possible   to   improve   existing   risk  models   for   countries  and/or  cities  in  South  America  by  exploring  GEM  tools,  which  are  useful  to:  

• Describe  main  characteristics  of  building  and  classify  them  into  structural  typologies.  

• Collect  information  of  buildings  in  field  surveys.  

• Develop  exposure  models  using  field  surveys  and  data  available.  

• Develop   vulnerability   functions   of   common   building   typologies   in   accordance   with   the   GEM  Vulnerability  Guidelines  (D’Ayala  et  al.  2014,  Porter  et  al.  2014  and  Rossetto  et  al.  2014).  

Currently,  the  GEM  Foundation  is  promoting  the  development  of  exposure  databases  and  vulnerability  curves   of   predominant   residential   buildings   at   national   level   in   Chile,   and   at   subnational   level   in   the  department  of  Antioquia   (Colombia).  At   the   local  scale,   these  activities  are  also  promoted   in  Quito,   in  order  to  update  city  scenarios  and  identify  risk  management  strategies  for  the  city.  A  description  of  such  activities  is  presented  in  Chapter  3.    

Page 20: Report!on!the!SARA!Exposure!and! Vulnerability!Workshop!in!Medellin …03_2014_-_workshop_medelli… · The!GEMKSARA!Exposureand!Seismic!Vulnerability!Modelling!Workshop!was!carried!out!in!thecity!of!Medellin,!

 

3 FUTURE  SARA  ACTIVITIES  IN  SOUTH  AMERICA    

The   following   sections   summarize   the   activities   that   will   be   developed   in   the   scope   of   collaboration  between  different  research  centres  from  South  America  and  the  GEM  Foundation,  within  the  scope  of  the   SARA   project.   These   include   the   development   of   exposure  models   and   vulnerability   functions   at  national   and   subnational   scales,   as   well   as   the   evaluation   of   damage   and   losses   for   a   number   of  earthquake  scenarios.    

3.1 Modelling  exposure  and  seismic  vulnerability  at  the  national  and  subnational  scale  

3.1.1 Department  of  Antioquia,  Colombia  

In  Colombia,  significant  earthquakes  have  occurred  since  1950.  The  most  relevant  disaster  occurred  in  1999   (Armenia),   in   which   more   than   a   million   of   inhabitants   were   affected   and   the   losses   were  estimated  as  1,857  millions  USD  (near  to  the  1.41%  of  the  Gross  Domestic  Product)  (CEPAL  1999).  Figure  1  presents  the  total  population  affected  by  earthquakes  in  Colombia  since  1950.  

 

Figure  1.  Total  population  affected  during  earthquakes  in  Colombia  since  1950  (Source:  EM-­‐DAT)5  

 

According  to  the  national  census  of  2005,  the  total  population  of  Colombia  was  estimated  in  47,121,089  inhabitants  in  2013.  Around  59%  of  the  population  is  concentrated  in  the  departments  of  Cundinamarca  (21.8%),   Antioquia   (13.5%),   Valle   del   Cauca   (9.8%),   Santander   (4.7%),   Atlántico   (5.0%)   and   Bolívar  (4.4%)6.  From  these  departments,  two  are  located  in  zones  of  high  seismic  hazard  (Valle  del  Cauca  and  Santander),  two  in  zones  of  medium  seismic  hazard  (Cundinamarca  and  Antioquia)  and  two  in  zones  of  low  seismic  hazard  (Atlántico  and  Bolívar)  (See  Figure  2).  

                                                                                                                           5   EM-­‐DAT.   The   International   Disaster   Database.   Center   for   Research   on   the   Epidemiology   of   Disasters-­‐CRED.   See:  http://www.emdat.be/database  6  DANE,  National  Census  2005  

110

1001,000

10,000100,000

1,000,00010,000,000

1950

1962

1967

1970

1970

1979

1979

1981

1983

1991

1992

1993

1994

1995

1995

1995

1999

2000

2004

2004

2007

2008

2013

Tota

l pop

ulat

ion

affe

cted

year

Page 21: Report!on!the!SARA!Exposure!and! Vulnerability!Workshop!in!Medellin …03_2014_-_workshop_medelli… · The!GEMKSARA!Exposureand!Seismic!Vulnerability!Modelling!Workshop!was!carried!out!in!thecity!of!Medellin,!

15  

   

Population  (2013)  

 PGA  (cm/s2)  

 

Figure  2.  Population  and  seismic  hazard  for  Colombia  (Tr  475  years)  (Source:  Servicio  Geológico  Colombiano7)  

 

In  the  case  of  Antioquia,  40%  of  the  population  lives  in  Medellin.  The  population  and  urban  growth  has  been   concentrated   in   informal   settlements   (zones   formed   by   the   illegal   use   and   occupation   of   land),  which,  in  general,  are  located  in  the  peripheral  areas  of  the  city  (González,  2009).  These  settlements  are  characterized   by   the   use   of   non-­‐engineered   structures   with   inadequate   materials   and   construction  techniques,  which  leads  to  high  seismic  vulnerability.    

As  an  initial  attempt  to  perform  seismic  risk  analysis  and  loss  estimation  in  the  department  of  Antioquia,  an  exposure  model  for  the  region  will  be  developed  at  the  level  of  municipalities,  as  well  as  vulnerability  functions  for  the  most  common  residential  building.  These  activities  will  be  developed  by  the  research  group  of  Applied  Mechanics  of  the  University  EAFIT.  The  main  activities  of  this  project  are:  

• Gathering   information   and   description   of   the   buildings   in   the   metropolitan   area   of   Antioquia  (Caldas,  La  Estrella,  Sabaneta,  Envigado,  Itagui,  Medellin,  Bello,  Copacabana,  Girardota  y  Barbosa);  

• Extrapolate  the  information  of  buildings  of  the  metropolitan  area  to  the  rest  of  municipalities  in  the  department;  

• Describe  and  define  a  set  of  building  typologies  by  using  tools  and  methodologies  provided  by  the  GEM  Foundation;  

• Development  of  an  exposure  model  for  the  department  of  Antioquia;  

• Review  of  fragility/vulnerability  functions  used  in  previous  studies  in  Antioquia;  

• Development   of   fragility/vulnerability   functions   for   common   residential   buildings   using   the   tools  and  guidelines  provided  by  the  GEM  Foundation.  

 

                                                                                                                         7  http://aplicaciones7.sgc.gov.co/M%C3%81PA_NACIONAL_AMENAZA_SISMICA/default.aspx  

Antioquia  

Cundinamarca  

Valle  del  Cauca  

Santander  

Atlántico  

Bolívar  

Page 22: Report!on!the!SARA!Exposure!and! Vulnerability!Workshop!in!Medellin …03_2014_-_workshop_medelli… · The!GEMKSARA!Exposureand!Seismic!Vulnerability!Modelling!Workshop!was!carried!out!in!thecity!of!Medellin,!

 

This   project   will   be   developed   during   12   months,   and   it   is   considered   the   first   step   for   obtaining   a  national   exposure   model.   Currently,   additional   efforts   have   also   been   focused   in   the   definition   of   a  strategy  with  the  National  Unit  of  Disaster  Risk  Management  in  order  to  obtain  information  from  field  surveys   in   a   sample   of   building   types   across   the   country,   which   can   be   used   to   describe   residential  buildings   and   to   establish   building   classes   and   their   representativeness   regarding   the   total   building  portfolio.    

3.1.2 Chile  

The  importance  of  seismic   loss  assessment   in  Chile  relies   in  the  high  seismicity  of  the  country  and  the  consequences  that  earthquakes  have  generated  in  the  society.  The  total  losses  estimated  for  the  Maule  earthquake   in  2010  were  near  24  billions  USD   (around  11%  of   the  GDP)8  and   the  population  affected  was   approximately   2.6   million   of   inhabitants.   Figure   3   presents   the   total   population   affected   by  earthquakes  in  Chile  since  1950.  

 

Figure  3.  Total  population  affected  during  earthquakes  in  Chile  since  1950  (Source:  EM-­‐DAT).  

 

According  to  the  national  census,  the  total  population  of  Chile  was  estimated  in  17,556,815  inhabitants  in   2013.   Around   55%   of   the   population   is   concentrated   in   the   regions   of   Santiago   (35.4%),   Bio-­‐Bio  (10.5%)  and  Valparaíso  (9.1%)9;  all  of  them  located  in  areas  of  high  seismic  hazard  (see  Figure  4).  

 

As  an  initial  attempt  to  perform  seismic  risk  analysis  and  loss  estimation  in  Chile,  a  project  that  focus  on  the  creation  of  an  inventory  database  at  national  level,  the  description  of  the  residential  building  stock  and  the  derivation  of  vulnerability   functions  have  been  established.  These  activities  will  be  developed  with   the   participation   and   collaboration   of   the   National   Research   Centre   for   the   Integrated  Management   of   Natural   Disasters   (Centro   Nacional   de   Investigación   para   la   Gestión   Integrada   de  Desastres  Naturales-­‐CIGIDEN),  and  the  main  activities  are  described  below:  

 

                                                                                                                         8  http://papeldigital.info/ltrep/2011/02/20/01/paginas/024.pdf  9  DANE,  National  Census  2005  

110

1001,000

10,000100,000

1,000,00010,000,000

1953

1953

1958

1960

1960

1963

1965

1966

1971

1983

1985

1987

1995

1997

2005

2007

2007

2010

2012

Tota

l pop

ulat

ion

affe

cted

year

Page 23: Report!on!the!SARA!Exposure!and! Vulnerability!Workshop!in!Medellin …03_2014_-_workshop_medelli… · The!GEMKSARA!Exposureand!Seismic!Vulnerability!Modelling!Workshop!was!carried!out!in!thecity!of!Medellin,!

17  

   

Population  (2010)  

 

   

 

Figure  4.  Population  and  seismic  hazard  for  Chile  (Source:  USGS10)  

 

Exposed  building  inventory  to  seismic  hazard  in  Chile  

A   general   building   inventory   will   be   constructed   for   the   whole   country,   and   a   detailed   one   will   be  developed  for  some  selected  cities.  The  national  exposure  database  will  be  created  at  the  municipality  level,   that   is   the   smallest   administrative   unit   in   Chile   in   which   most   of   the   data   is   available.   This  inventory  will  be  constructed  with  secondary  data  coming  from  governmental  and  private  sources,  such  as   the   Ministry   of   Housing   and   Urbanism,   the   Ministry   of   Public   Works,   the   Ministry   of   National  Resources,  the  National  Institute  of  Statistics  and  the  national  census  of  population  and  housing.  Private  sources  include  the  Chilean  Chamber  of  Construction  (Cámara  Chilena  de  la  Construcción,  CChC).  This  is  an  initial  attempt  to  develop  a  building  inventory  that  will  provide  the  best  estimation  that  is  possible  to  construct  within  the  time  frame.  

 

The  detailed  building  inventory  will  be  constructed  for  selected  cities  in  Chile  with  a  resolution  of  block-­‐by-­‐block.  The  information  will  be  collected  mostly  from  data  available  in  the  municipalities  (Direcciones  de   Obras   –   Municipal   Building   Departments)   and   field   surveys.   Given   the   budget   restrictions,   rapid  visual  inspections  of  three  cities  will  be  carried  out.  Moreover,  a  detailed  inspection  of  one  city  will  be  performed   in   order   to   test   the   GEM   Inventory   Data   Capture   Tools   (IDCT),   as   well   as   to   obtain   a  benchmark  for  the  general  inventory  (i.e.  the  national  exposure  database).  

Three  cities  will  be  chosen  to  be  representative  of  three  zones  of  Chile,  each  characterized  by  specific  climatic  and  particular  social  aspects  (see  Table  4)  

                                                                                                                         10  See:  http://earthquake.usgs.gov/earthquakes/world/chile/gshap.php  

 

Page 24: Report!on!the!SARA!Exposure!and! Vulnerability!Workshop!in!Medellin …03_2014_-_workshop_medelli… · The!GEMKSARA!Exposureand!Seismic!Vulnerability!Modelling!Workshop!was!carried!out!in!thecity!of!Medellin,!

 

 

Zone   Cities  considered   Population   Dwellings  

Northern  Chile   Iquique   180000   60000  

Central  Chile  Rancagua   230000   75000  

Talca   200000   70000  

South  of  Chile  Temuco   2700000   90000  

Osorno   155000   55000  

Table  4  Possible  cities  considered  for  the  development  of  a  detailed  exposure  dataset.  

 

The  databases  will  be  created  in  GIS  format,  and  for  both  the  national  and  the  detailed  inventories,  the  following   fields   will   be   at   least   included:   ID,   municipality,   population,   coordinates   (latitude   and  longitude),  percentage  of  built-­‐up  area  per  building  type  and  economic  value  per  area  by  building  type.  

 

Identification  of  the  main  building  typologies  in  Chile  

The  most  prevalent  residential  building  typologies  will  be  identified  based  on  the  results  of  the  national  and   detailed   inventories.   Initial   estimates   show   that   medium   and   high-­‐rise   buildings   are   mostly  Reinforced  Concrete  (RC)  and  low-­‐rise  buildings  are  RC  and  masonry.  Up  to  three  stories  houses  vary  by  region,   but   they   are   mostly   masonry.   In   the   north   of   Chile,   about   80%   of   the   houses   are   masonry  (mostly   concrete   masonry   units,   CMU),   whilst   in   the   south,   about   80%   of   the   houses   are   wooden  structures.  Building  typologies  will  be  described  using  tools  provided  by  the  GEM  Foundation,  and  the  templates  suggested  by  the  World  Housing  Encyclopedia  Project  will  also  be  considered.  

 

Evaluate  existing  fragility  curves  for  the  most  common  building  typologies  in  Chile  

Based  on  the  most  common  building  typologies  identified  in  Chile,  an  evaluation  of  existing  fragility  and  vulnerability  curves  for  Chilean  buildings  (as  well  as  curves  derived  for  other  South  American  countries)  will   be   conducted.   The   suitability  of   the   resulting  models  will   also  be  assessed  using  post-­‐earthquake  damage  data.  

 

Development  of  fragility  curves  for  Chilean  buildings  

It  is  expected  that  the  existing  fragility  curves  will  cover  a  small  proportion  of  the  building  inventory  and  therefore,  new  fragility  models  will  be  derived,  following  the  GEM  vulnerability  guidelines,  for  the  most  common  typologies.  

 

Replacement  costs  estimation  for  the  most  common  building  typologies  in  Chile  

The   replacement   costs  will   be   estimated,   for   the  most   prevalent   building   typologies   identified   in   the  inventory,  based  on  the  following  data:    

• Reconstruction  costs  for  damaged  buildings  in  the  recent  Maule  2010  earthquake;  

Page 25: Report!on!the!SARA!Exposure!and! Vulnerability!Workshop!in!Medellin …03_2014_-_workshop_medelli… · The!GEMKSARA!Exposureand!Seismic!Vulnerability!Modelling!Workshop!was!carried!out!in!thecity!of!Medellin,!

19  

• Construction   unit   prices,   developed   by   the   CChC   and   widely   used   in   Chile.   These   costs   will   be  adjusted  based  on  the  information  described  in  the  previous  bullet  point.  

• Indirect  costs   (such  as   temporary  housing  and   lost  productivity)  may  be   inferred  using  data   from  the  2010  earthquake,  and  can  be  included  in  the  cost  evaluation.  

 

The  aforementioned  activities  will   be  developed  during  18  months  by   the   research   group  of  CIGIDEN  and  the  results  will  be  open  in  order  to  contribute  to  the  definition  of  a  model  for  assessing  earthquake  losses   in   the  country.  Local   institutions  such  as   the  Chilean  Association  of  Seismology  and  Earthquake  Engineering  (Asociación  Chilena  de  simología  e  ingeniería  Antisísmica-­‐  ACHISINA),  the  National  Office  of  Emergencies  (Oficina  Nacional  de  Emergencias  del  Ministerio  del  Interior-­‐ONEMI)  and  the  Security  and  Insurance  Commission  (Superintendencia  de  valores  y  Seguros-­‐SVS)  will  have  access  to  data  and  models  for  implementing  risk  reduction  and  mitigation  strategies.    

3.2 City  scenarios  

3.2.1 Quito  

The  Metropolitan  District  of  Quito  (MDQ)  is  the  capital  district  of  Ecuador.  It  is  located  in  the  province  of  Pichincha,   at   the   north   of   the   country,   in   the   Andean   cordillera.   According   to   the   2010   census,   the  population  was  estimated  as  2,239,191  inhabitants.  The  estimated  contribution  of  the  city  to  the  GDP  is  around  15%  (La  hora  2011).  Figure  5  presents  a  map  of  the  population  density  by  neighbourhoods.  

 

Figure  5.  Population  density  in  the  Metropolitan  District  of  Quito.  

 

The  importance  of  the  analysis  of  earthquake  losses  in  Quito  relies  not  only  in  the  considerable  high  seismic  hazard   (a  PGA  around  0.4  g   for  a   return  period  of  475  years),  but  also   in   the  physical  vulnerability  of   the  buildings.  In  the  last  30  years  the  population  of  Quito  has  doubled,  together  with  a  rapid  urban  expansion  characterized   by   poor   socio-­‐economic   conditions   that   has   led   to   the   construction   of   non-­‐engineered  structures   located   in   hazardous   areas   such   as   steep   mountain   slopes   (Chatelain   et   al,   1999),   and   the  deterioration  of  buildings  in  the  historical  centre.  

Page 26: Report!on!the!SARA!Exposure!and! Vulnerability!Workshop!in!Medellin …03_2014_-_workshop_medelli… · The!GEMKSARA!Exposureand!Seismic!Vulnerability!Modelling!Workshop!was!carried!out!in!thecity!of!Medellin,!

 

In   this   regard,   the  main  objective   in   the  Metropolitan  District   of  Quito   is   to   estimate,   for   specific   seismic  scenarios,   the   expected   losses   of   the   residential   building   portfolio.   This   project   will   be   conducted   by  researchers   of   the   University   of   San   Francisco   de   Quito   (USFQ)   and   local   experts   of   the   Metropolitan  Municipality  of  Quito.  The  main  activities  of  the  project  are  described  below:    

Seismic  hazard  analysis  

This   task   includes   the   analysis   of   existing   seismic   hazard   and   microzonation   studies   of   Quito,   the  identification   of   Vs30   profiles   and   their   use   in   recent   national   seismic   hazard   studies   in   order   to   define  earthquake  scenarios  and  associated  amplified  ground  motions  for  the  city.    

Exposure  and  seismic  vulnerability  of  residential  buildings  

The  exposure  model  will  be  created  based  on  the  information  available  in  cadastral  databases  and  the  results  of  the  description  of  buildings  included  in  the  metro  line  survey11.  The  study  area  of  this  survey  is  22  km  x  100  m  and  included  3175  buildings.  From  this  building  sample,  400  architecture  drawings  and  100  structural  design  specifications  were  available.  Within  this  context,   it  will  be  possible  to   identify  the   location  of  each  building,  the  representative  structural  typologies,  the  economic  value  and  the  exposed  population.  

Regarding  the  seismic  vulnerability  of  buildings,  the  methodologies  used  in  previous  studies  will  be  reviewed  and  new  analytical  vulnerability  functions  for  the  most  common  residential  buildings  will  be  developed.  The  new  physical  vulnerability  models  will  follow  the  GEM  guidelines,  and  will  be  based  on  the  information  from  the  structural  drawings  of  100  buildings.    

Risk  assessment  and  loss  estimation  

Loss  estimates  for  earthquake  scenarios,  as  well  as  indicators  of  socio-­‐economic  vulnerability  and  resilience  will  be  evaluated  using  the  OpenQuake-­‐engine.  These  results  will  be  utilised  in  order  to  define  risk  mitigation  and  post-­‐disaster  recovery  strategies   for  the  city   in  the  framework  of  the  Metropolitan  System  of   Integral  Risk  Management  (MSIRM).  

There  is  an  excellent  chance  to  contribute  to  the  seismic  safety  of  Quito  through  the  update  and  evaluation  of   seismic   scenarios  of   the  city.  This  project   results   from  the  mutual   interest  of   collaboration  and  aligned  initiatives  of  different  sectors:  the  financial  support  of  Swiss  Re  Foundation,  as  a  contribution  to  improve  the  resilience  of  communities  of  developing  countries  exposed  to  the  seismic  hazard;  the  technical  support  of  the  GEM  Foundation  in  the  development  and  application  of  methodologies  for  seismic  risk  assessment;  the  efforts  and  interest  of  the  government  of  Quito  in  developing  seismic  risk  reduction  plans;  and  the  expertise  of  local  researchers  of  the  USFQ.  This  is  a  positive  environment  for  developing  earthquake  loss  estimations  for  Quito  with  large  possibilities  of  application  and  use.  

                                                                                                                         11  See:  Technical  Information  of  the  Metro  of  Quito.  Survey  of  buildings  and  structures.    http://www.portaltecnico.metrodequito.gob.ec/tecmetro.php?c=1318  [Last  checked  20/05/2014]  

Page 27: Report!on!the!SARA!Exposure!and! Vulnerability!Workshop!in!Medellin …03_2014_-_workshop_medelli… · The!GEMKSARA!Exposureand!Seismic!Vulnerability!Modelling!Workshop!was!carried!out!in!thecity!of!Medellin,!

21  

4 EXPOSURE    

As  part  of  GEM  activities   in   the  regional  programme,  a  detailed  description  of   the  methodologies  and  tools  developed  in  GEM  for  the  creation  of  exposure  and  vulnerability  models  was  presented  during  the  workshop,  as  summarized  below:  

• GEM  Building  Taxonomy  v2.0:   The  purpose  of   the  GEM  Building  Taxonomy   is   to  describe  and  classify  buildings  in  a  uniform  manner  through  13  attributes,  which  are  divided  into  four  groups:  structural  system,  building  information,  exterior  attributes,  and  roof/floor/foundation.    

• TaxT  v4.0:  It  enables  a  user  to  create  a  report,  which  summarizes  the  attribute  values  that  have  been   chosen   as   representative   of   the   specific   building   in   accordance   with   the   GEM   building  taxonomy.  A  photo  of  the  building  and  a  brief  text  summary  can  be  included  as  well.12  

• GED4GEM   Deliverable   v2.2:   The   Global   Exposure   Database   (GED)   is   a   homogenized   open  database  of  global  building  stock  and  population  distribution,  containing  the  spatial,  structural,  and   occupancy-­‐related   information.   Information   can   be   found   at   four   different   geographical  scales:   Country   level,   sub-­‐country   level   (province/city),   local   level   and   single   buildings.   Up   to  now,  only  information  at  country  and  sub-­‐country  levels  can  be  found.  

• IDCT  Android  and  Windows  Tools  v1.1:  The  Android  and  Windows  Inventory  Data  Capture  Tools  (IDCT)  allows  users  to  collect  building  (inventory)  information.  These  tools  have  been  developed  for  devices  using  either  the  Android  or  Windows  operating  systems.  It  utilises  a  map  interface  to  mark   survey   points,   and   define   a   number   of   attributes   about   the   structural   characteristics  (according  to  GEM  Taxonomy),  with  eventual  earthquake  damage.13  

• SIDD  v1.0:  The  Spatial   Inventory  Data  Developer   (SIDD)  allows  users   to  process  exposure  data  largely  through  a  process  of  assigning  “mapping  schemes”.  SIDD  serves  as  a  critical  intermediary  between   raw   sample   data   collected   in   the   field,   building   footprint   data   extracted   through  remote  sensing,  and  the  final  estimate  of  regional  exposure  contained  within  a  GIS  dataset.  14  

• Fragility  Function  Manager  v2.0:  A  tool  that  covers  fragility  functions  for  buildings  and  bridges  in  Europe.  Functions  are  stored  in  terms  of  a  given  taxonomy  classification,  and  using  a  common  format.15  

• Global  Vulnerability  Database:  A  database  under  development  that  aims  to  generate  an  online  global   vulnerability   database   that   includes   fragility/vulnerability   functions,   damage-­‐to-­‐loss  models   and   capacity   curves.   The   database   contains   information   about   approaches   utilized   to  derive   these   functions/curves,   like   modelling   assumptions,   analysis   techniques,   statistical  procedures  and  treatment  of  uncertainties,  with  an  associated  quality  rating  system.  

 

A  working   session   on   exposure  was   carried   out   during   the  workshop.   The   participants  were   grouped  according  to  their  country,  and  were  asked  to  classify  buildings  using  the  GEM  Building  taxonomy  and  estimate  building  fractions  for  the  most  common  typologies  in  their  region.  The  TaxT  tool  was  employed  to   generate   a   taxonomy   report   (in   PDF)   for   each   building   typology,   with   the   respective   photo.   The  

                                                                                                                         12  http://www.nexus.globalquakemodel.org/gem-­‐building-­‐taxonomy/posts/apply-­‐the-­‐gem-­‐building-­‐taxonomy-­‐v2.0-­‐using-­‐taxt  13  https://play.google.com/store/apps/details?id=org.globalquakemodel.org.idctdo  14  http://www.globalquakemodel.org/resources/use-­‐and-­‐share/tools-­‐apps/Fragility  function  manager  v2  15  http://www.vce.at/SYNER-­‐G/files/downloads.html  

Page 28: Report!on!the!SARA!Exposure!and! Vulnerability!Workshop!in!Medellin …03_2014_-_workshop_medelli… · The!GEMKSARA!Exposureand!Seismic!Vulnerability!Modelling!Workshop!was!carried!out!in!thecity!of!Medellin,!

 

taxonomy  reports  generated  during  this  activity  are  presented  in  Appendix  B,  while  Section  4.1  presents  the  results  of  building  typologies  and  building  fraction  for  each  country.  

Another   activity   carried   out   during   the   working   session   on   exposure   was   the   improvement   of   the  Spanish   version   of   the   GEM   Building   Taxonomy.   The   participants   evaluated   the   proposed   translation  and   provided   suggestions   for   definitions   and   terminology   utilised,   since   depending   on   the   country,  different   terminologies   are   employed   for   the   attributes.   As   a   result,   an   improvement   of   the   Spanish  version  of  GEM  Building  Taxonomy  was  generated,  and  it  is  presented  in  the  tables  of  Appendix  A.  

4.1 Exposure  working  session  

A  summary  of  the  results  of  the  working  session  on  exposure  is  presented  in  this  section.  The  countries  included   are   Colombia,   Chile,   Ecuador   and   Venezuela.   The   definition   of   the   building   typologies   and  corresponding  fractions  are  based  on  the  expert  judgment  of  the  participants,  and  not  the  views  of  their  institutions.    

Figure  6  presents  a  summary  of  the  common  building  typologies  found  in  South  America  in  accordance  with  the  building  fractions  provided  by  the  participants.  It  can  be  observed  that  unreinforced  masonry  (mampostería   no   reforzada),   confined   masonry   (mampostería   confinada)   and   reinforced   concrete  frames  (pórticos  de  concreto  reforzado)  are  the  most  common  building  typologies  in  urban  areas,  while  in  rural  areas  earth/adobe  (tapia/bahareque/adobe),  unreinforced  masonry  (mampostería  no  reforzada)  and  reinforced  masonry  (mampostería  reforzada)  are  the  most  predominant  types  of  construction.  

 

 

Figure  6.  Common  building  typologies  in  South  America  for  urban  (top)  and  rural  (bottom)  areas.  

0%#

10%#

20%#

30%#

40%#

50%#

60%#

70%#

Tapia#/

#Bahar

eque#/#Ad

obe#

Mamp

ostería#N

o#refo

rzada##

Mamp

ostería#refo

rzada#

Muros#de##

PórDc

os#de#con

creto#reforzado

#

PorDc

os#de#Ace

ro#

Mader

a#/#Caña#

40%#

30%# 30%#

0%# 0%# 0%# 0%#

70%#

20%#

0%# 0%# 0%#0%#

10%#11%#19.1%#

46.9%#

0%#5.8%#

0%#

17.2%#

30%#

10%#

30%#

5%#

13%# 12%#

0%#

Porce

ntage*d

e*edifi

cios*

Tipología*de*edificios*por*país*3*Zona*Rural*

Chile#

Colombia#

Ecuador#

Venezuela#

Page 29: Report!on!the!SARA!Exposure!and! Vulnerability!Workshop!in!Medellin …03_2014_-_workshop_medelli… · The!GEMKSARA!Exposureand!Seismic!Vulnerability!Modelling!Workshop!was!carried!out!in!thecity!of!Medellin,!

23  

Figure   7   presents   building   fractions   in   Colombia   for   urban   and   rural   areas.   These   values   have   been  provided  by  the  participants  and  are  based  in  the  information  available  in  exposure  databases  (such  as  the  seismic  microzonation  of  Medellin  -­‐  Consorcio  Microzonificación  2006).  

 

Figure  7.  Building  fractions  in  Colombia.  

In  the  urban  context,  the  most  common  building  types  are  unreinforced  masonry  structures  (~80%)  and  reinforced   masonry   buildings   (10%).   In   the   rural   context,   the   most   common   building   types   are  Bahareque  (30%),  tapia  (40%)  and  unreinforced  masonry  (20%).    

 

Figure  8  presents  building  fractions  in  Chile  for  urban  and  rural  areas.  These  values  have  been  defined  based  on  expert  opinion.  

 

Figure  8.  Building  fractions  in  Chile  

 

0%#10%#20%#30%#40%#50%#60%#70%#80%#

Mampostería#confinada#

Mampostería#no#reforzada#

Mampostería#reforzada#

Tapia#

Bahareq

ue#

PórDcos#de#acero

#arriostrados#

PórDcos#de#concreto

#reforzad

o#

Sistem

a#dual#de#concreto#

Muros#estructurales#de#concreto

#reforzad

o#

Sistem

a#reDcular#celular#

Madera#

1%#

79%#

3%# 2%# 0%# 0%#10%#

3%# 1%# 1%# 1%#0%#

20%#

0%#

40%#30%#

0%# 0%# 0%# 0%# 0%#

10%#

Porcen

tage*de*ed

ificio

s* Urbano#

Rural#

0%#

10%#

20%#

30%#

40%#

50%#

60%#

Adobe#

Mampostería#no#reforzada#

Reinforced#concrete#mid#rise

#Pre>code#

AlbBloH#4

#pisos#

Alb>Arcilla#4#pisos#

HA#8>22>muro

s#delgados#

Casa#Alb#arcilla#1#piso#

0%#

34%#

2%# 3%# 5%#1%#

55%#

40%#

30%#

0%# 1%# 0%# 0%#

29%#

Porcen

tage*de*e

dificios* Urbano#

Rural#

Page 30: Report!on!the!SARA!Exposure!and! Vulnerability!Workshop!in!Medellin …03_2014_-_workshop_medelli… · The!GEMKSARA!Exposureand!Seismic!Vulnerability!Modelling!Workshop!was!carried!out!in!thecity!of!Medellin,!

 

In   the   urban   context,   the   most   common   building   types   are   masonry   walls   (55%)   and   unreinforced  masonry  structures  (34%).  In  the  rural  context,  the  most  common  building  types  are  clay  masonry  walls  (~70%)  and  unreinforced  masonry  buildings  (30%).  

 

Figure   9   presents   building   fractions   in   Ecuador   for   urban   and   rural   areas.   These   values   have   been  defined   based   on   expert   opinion   and   have   been   verified   with   information   available   in   the   national  census  regarding  the  construction  material  at  the  dwelling  level.  

 

Figure  9.  Building  fractions  for  Ecuador.  

 

Similarities  have  been   found   in   the  urban  and   rural   context  of   Ecuador.   In  both   cases,   approximately  50%  of  the  buildings  are  confined  masonry  structures  and  20%  are  unreinforced  masonry  buildings.   In  the   urban   case,   there   are   12%   of   reinforced   concrete   frames,   while   in   rural   areas   there   are   10%   of  wooden  structures.  

Figure  10  presents  building   fractions   in  Venezuela   for  urban  and   rural   areas.   These   values  have  been  defined  based  on  expert  opinion  and  the  results  of  the  surveys  developed  for  the  project  Sismo  Caracas.  

 

In   the  urban   context,   the  most   common  building   types   are   reinforced   concrete  moment   frames  with  infill  walls  (25%),  confined  masonry  walls  (18%)  and  concrete  walls  (13%).  In  the  rural  context,  the  most  common  building  types  are  Bahareque  (30%),  unreinforced  masonry  (30%),  confined  masonry  (10%)  and  steel  moment  frames  (10%).  

 

0%#

10%#

20%#

30%#

40%#

50%#

60%#

Tapial#adobe#

Mamposteria#no#reforzada#

Mamposteria#confinada#no#duc>l#

Mamposteria#reforzada#

Por>co#vigas#descolgadas#

Por>co#de#losa

#plana#

Bahareque#

Madera#

Caña#

3%#

21%#

50%#

2%# 3%#

12%#

3%# 3%# 3%#7%#

19%#

45%#

2%# 1%#5%# 4%#

10%#7%#

Porcen

tage*de*ed

ificio

s* Urbano#

Rural#

Page 31: Report!on!the!SARA!Exposure!and! Vulnerability!Workshop!in!Medellin …03_2014_-_workshop_medelli… · The!GEMKSARA!Exposureand!Seismic!Vulnerability!Modelling!Workshop!was!carried!out!in!thecity!of!Medellin,!

25  

 

Figure  10.  Building  fractions  for  Venezuela  

4.1.1 Comparison  of  results  

In  order  to  compare  the  results  obtained  in  the  exposure  working  session,  the  information  available  in  GED4GEM16  was  used  as  a  benchmark.  GED4GEM  is  an  open  homogenized  database  of  global  building  stock,  in  which  information  at  national  level  is  available  according  to  the  dwelling  fractions  proposed  in  the   UN-­‐Habitat17   and   PAGER   (Jaiswal   et   al.   2010)   projects.   The   dwelling   fractions   presented   in   UN-­‐Habitat   were   based   on   Census   data   and   a   global   mapping   scheme,   while   the   fractions   proposed   in  PAGER  were  based  on  available  reports  from  the  project  World  Housing  Encyclopedia  (WHE),  the  United  Nations  Database,  Census  data  and  expert  opinion.  

                                                                                                                         16  http://www.globalquakemodel.org/what/physical-­‐integrated-­‐risk/exposure-­‐database/  17  http://unhabitat.org/  

0%#

5%#

10%#

15%#

20%#

25%#

30%#

Pór+cos#concreto#

Pór+cos#concreto#m

uros#de#relleno#

Pór+cos#concreto#en#2#direcciones#

Muros#de#concreto#en#una#direccion#

Pór+cos#de#acero#

Pór+cos#de#acero#diagonalizados#

Pór+cos#de#acero#con#perfiles#

Pór+cos#de#acero#con#cerchas#

Pór+cos#prefabricados#

Muros#de#mampostería#

Muros#de#mampostería#no#confinada#

Bahareque#

5%#

25%#

2%#

13%#

4%# 5%#7%#

2%# 2%#

12%#

18%#

5%#5%#8%#

0%#

5%#

0%# 0%#

10%#

2%# 0%#

30%#

10%#

30%#

Porcen

tage*de*ed

ificio

s*

Urbano#

Rural#

Page 32: Report!on!the!SARA!Exposure!and! Vulnerability!Workshop!in!Medellin …03_2014_-_workshop_medelli… · The!GEMKSARA!Exposureand!Seismic!Vulnerability!Modelling!Workshop!was!carried!out!in!thecity!of!Medellin,!

 

 

 

 

 

Figure  11  Building  fractions  for  urban  areas  in  Chile,  Colombia  and  Ecuador  according  to  GED4GEM  

Using   GED4GEM,   it   is   possible   to   obtain   the   residential   building   fractions   in   rural   and   urban   areas  according   to   a   set   of   building   typologies,   using   information   regarding   dwelling   fractions   and   average  number   of   dwellings   per   building   typology.   Figure   11   and   Figure   12   present   the   residential   building  typology   fractions   for   urban  and   rural   areas  proposed   in   the  GED4GEM   for  Chile,   Colombia,   Ecuador,  Peru  and  Venezuela  (this   information  has  been  distributed  amongst  two  figures  simply  for  the  sake  of  clarity,  and  not  according  to  any  particular  order).  

Page 33: Report!on!the!SARA!Exposure!and! Vulnerability!Workshop!in!Medellin …03_2014_-_workshop_medelli… · The!GEMKSARA!Exposureand!Seismic!Vulnerability!Modelling!Workshop!was!carried!out!in!thecity!of!Medellin,!

27  

 

 

   

 

   

 

Figure  12  Building  fractions  for  rural  areas  in  Peru  and  Venezuela  according  to  GED4GEM  

 

A  comparison  of  the  results  compiled  during  the  exposure  working  session  with  the  fractions  comprised  in   the   GED4GEM   is   illustrated   in  

Page 34: Report!on!the!SARA!Exposure!and! Vulnerability!Workshop!in!Medellin …03_2014_-_workshop_medelli… · The!GEMKSARA!Exposureand!Seismic!Vulnerability!Modelling!Workshop!was!carried!out!in!thecity!of!Medellin,!

 

Table   5.   The   objective   of   this   comparison   is   to   verify   and   improve   the   results   contained   in   the  GED4GEM,   thus   contributing   to   the   open   enhancement   of   this   database   taking   into   account   the  knowledge  of  the  participants  of  the  workshop.  

Page 35: Report!on!the!SARA!Exposure!and! Vulnerability!Workshop!in!Medellin …03_2014_-_workshop_medelli… · The!GEMKSARA!Exposureand!Seismic!Vulnerability!Modelling!Workshop!was!carried!out!in!thecity!of!Medellin,!

29  

Table  5  Comparison  of  the  results  

Country   Urban  Building  fractions   Rural  Building  fractions  

Chile  

   

Colombia  

   

Ecua

dor  

   

Vene

zuela  

   Conventions  

   

From  

Page 36: Report!on!the!SARA!Exposure!and! Vulnerability!Workshop!in!Medellin …03_2014_-_workshop_medelli… · The!GEMKSARA!Exposureand!Seismic!Vulnerability!Modelling!Workshop!was!carried!out!in!thecity!of!Medellin,!

 

Table   5   it   is   possible   to   observe   significant   differences   in   both   the   building   types   and   the   building  fractions   in   all   countries.   Therefore,   a   revision   of   the   information   concerning   the   national   building  portfolio   is   needed,   and   its   accuracy   and   reliability   can   only   be   improved   through   consultation   of  national  building  surveys  and  other  documentation  compiled  regionally,  and  most  importantly,  through  the  involvement  of  local  experts.    

Furthermore,   these   results   show   the   importance   of   using   public   data   and   the   discussion   of   the  information  available  in  order  to  built  consensus  and  reliable  exposure  databases.  Therefore,  it  could  be  interesting  to  promote  a  procedure  for  the  review  and  enhancement  of  the  GED4GEM  database,  taking  into   account   the   detail   of   the   sources   of   information   and   the   experience   of   the   reviewers,   following  methodologies  for  decision  making  such  as  the  Delphi  Method  or  the  Analytic  Hierarchy  Process.  

Page 37: Report!on!the!SARA!Exposure!and! Vulnerability!Workshop!in!Medellin …03_2014_-_workshop_medelli… · The!GEMKSARA!Exposureand!Seismic!Vulnerability!Modelling!Workshop!was!carried!out!in!thecity!of!Medellin,!

31  

5 ACHIEVEMENTS  AND  MOVING  FORWARD  

One  of  the  objectives  of  SARA  is  to  collaborate  in  the  understanding  of  the  seismic  risk  in  the  region.  In  this  regard,   it   is  necessary  to  stay  in  contact  with  ongoing  regional  and  local  projects  in  order  to  avoid  parallel  efforts  and  to  encourage  share  of  data  and  knowledge.  Therefore,  it  is  necessary  to  identify  (in  a  collaborative  manner)   gaps,   needs   and   areas   of   interest   for   assessing   seismic   risk.   In   this   regard,   the  channels  of  communication  of  GEM  are  open  and  the  staff  will  be  looking  for  a  constant  dialogue  and  discussion  on  the  data  and  methodologies  used  for  the  calculation  of  potential  losses  in  South  America.  

5.1 Achievements  

In  the  following,  the  main  achievements  during  the  workshop  are  presented:  

• The  participants  (from  GEM  and  the  representative  countries)  have  gotten  a  better  idea  of  the  current  status  of  exposure  and  vulnerability  modelling  activities  in  the  various  regions;  

• Dissemination   of   GEM’s   mission,   its   tools   and   methodologies   for   exposure   and   vulnerability  modelling.  Hence,  all  the  participants  have  now  a  better  understanding  of  the  SARA  project  and  GEM’s  activities;  

• A  description  of  building   typologies   in  urban/rural  areas   in   the  various   regions  using   the  GEM  Building  Taxonomy  has  been  carried  out,  as  well  as  an  initial  estimation  of  building  fractions  per  typology;  

• GEM  has  discussed  with  the  participants  the  activity  plan  for  Chile,  Quito  and  Antioquia,  as  well  as  the  challenges  and  ways  to  move  forward;  

• The   Spanish   version   of   the   GEM   Building   Taxonomy   has   been   reviewed   and   tested,   and  suggestions  were  made  regarding  the  Spanish  definitions  (see  Appendix  A);  

• GEM   heard   from   two   different   stakeholders   –   Quito  Municipality   and   Suramericana   –   about  their  needs,  challenges  and  expectations  for  the  SARA  project;  

• The   workshop   created   an   opportunity   to   define   a   work   plan   with   CISMID   for   the   Lima   City  Scenario  project  and  with  FUNVISIS  for  risk  assessment  in  Venezuela;  discussions  with  these  two  parties  are  ongoing.  

• The  following  suggestions  regarding  GEM  tools/activities  were  made  by  the  participants:  

− On  the  IDCT  tool,  features  like  column  to  floor  area  ratio  and  density  of  walls  could  be  added.  These  two  parameters  are  used  in  countries  like  Colombia,  Chile  and  Venezuela  as  indicators  of  seismic  building  performance;  

− Produce   a   common   damage   form   to   be   used   in   South   America   to   collect   post-­‐earthquake  damage  data;  

− GEM   should   encourage   data   sharing,   as   well   as   create   tools   and   means   to   share  information  (to  avoid  duplication  of  efforts  in  the  future).  

Page 38: Report!on!the!SARA!Exposure!and! Vulnerability!Workshop!in!Medellin …03_2014_-_workshop_medelli… · The!GEMKSARA!Exposureand!Seismic!Vulnerability!Modelling!Workshop!was!carried!out!in!thecity!of!Medellin,!

 

• All   the   information   produced   within   the   context   of   this   project   (presentations,   minutes,  guidelines  and  reports)  will  be  publicly  available  through  the  GEM  Nexus  webpage.  

5.2 Moving  forward  

GEM   Working   Programme   II   gives   special   attention   to   the   application   of   tools   and   methodologies  developed   within   the   context   of   the   GEM   Global   Components18,   in   close   collaboration   with   local  experts.  Then,  within  the  framework  of  the  SARA  project,  it  is  necessary  to  keep  working  in  the  activities  planned   for   Colombia,   Ecuador   and   Chile   regarding   the   development   of   exposure   and   vulnerability  models   for   the   residential  building   stock.   In  addition,   it   is   fundamental   to  promote   similar  projects   in  other   countries   of   the   Andean   Region   such   as   Argentina,   Venezuela,   Peru   and   Bolivia,   taking   into  consideration  the  local  experience  and  ongoing  regional  and  local  projects.  

In  this  regard,   it  has  been  agreed  to  maintain  a  permanent  contact  between  the  GEM  Secretariat  and  the  regional  groups  that  are  already  participating  in  the  regional  initiative  (CIGIDEN,  EAFIT,  USFQ-­‐MDQ).  In   this   sense,   GEM  will   contact   each   working   group   every   three  months   for   a   status   update,   and   in  addition,   the   regional   project   manager   will   visit   each   of   the   groups   in   seven-­‐eight   months   to   share  updates  from  GEM  (tools,  data  and  documents)  and  provide  technical  support.  Moreover,  GEM  will  be  responsible  to  share  the  updates  with  all  partners  through  the  GEM  NEXUS  webpage.  

Following   GEM   values   of   openness,   transparency   and   collaborative  work,   it   is   considered   positive   to  communicate  the  activities  developed   in  SARA  in  channels  of  communication  of   international/regional  partners  (i.e.  EERI,  World  Bank,  UNISDR)  in  order  to  disseminate  the  progress  and  invite  local  experts  to  join  and  participate.  As  the  project  is  oriented  to  create  credible  models  for  earthquake  loss  assessment  in  South  America,  it  is  necessary  to  built  a  community,  a  network  of  experts,  and  promote  the  discussion  of  the  results  obtained  in  SARA  with  a  wider  audience.    

For  example,  leading  experts  already  collaborating  in  SARA  could  select  specific  tasks  (such  as  review  of  inventory   model,   or   fragility   functions)   in   order   to   review   the   results   in   interim   workshops   at   their  country  with  the  participation  of  colleges  and  other  researchers,  ensuring  that  the  actual  process  is  the  result   of   the   effort   of   a  wider   community,   rather   than   simply   from   an   academic   research   done   by   a  single  entity.  

In  addition,  the  project  should  continue  promoting  the  development  of  case  studies  that  will  be  useful  for   local   governments   in   order   to   define   risk   management   strategies.   In   this   sense,   a   close  communication  with   stakeholders   is   necessary   in   order   to   find   their   needs   (i.e.   types   of   assets   to   be  considered,  or  if  there  is  a  specific  district  that  needs  more  refined  assessments,  or  a  specific  structural  system  that  has  been  of  concern  and  a  better  understanding  of  its  vulnerability  is  required).  

Finally,  a  future  workshop  could  take  place  in  April/May  2015  in  Quito,  both  to  present  the  Quito  City  Scenario   to   the   municipality   and   to   share   exposure   and   vulnerability   models   in   each   country.  Furthermore,  GEM  could  offer  an  OpenQuake-­‐engine  and  platform  training  session,  and  together  with  the  participants  produce  risk  assessment  results  and  upload  them  to  the  OpenQuake  platform.    

 

                                                                                                                         18  http://www.globalquakemodel.org/what/  

Page 39: Report!on!the!SARA!Exposure!and! Vulnerability!Workshop!in!Medellin …03_2014_-_workshop_medelli… · The!GEMKSARA!Exposureand!Seismic!Vulnerability!Modelling!Workshop!was!carried!out!in!thecity!of!Medellin,!

33  

 Workshop  participants  

Page 40: Report!on!the!SARA!Exposure!and! Vulnerability!Workshop!in!Medellin …03_2014_-_workshop_medelli… · The!GEMKSARA!Exposureand!Seismic!Vulnerability!Modelling!Workshop!was!carried!out!in!thecity!of!Medellin,!

 

REFERENCES  

Aburto,  P.  (2013)  “Análisis  de  la  vulnerabilidad  sísmica  del  puente  Pedro  de  Valdivia-­‐Chile”.  Undergraduate  Thesis.  Universidad  Austral.  

Alva-­‐Hurtado,   J.E   (1993)   “Seismic   safety   of   the   Lima   metropolitan   area”.   Issues   in   Urban   Earthquake   Risk:  Proceedings   of   the   NATO   Advanced   Research   Workshop   on   an   Evaluation   of   Guidelines   for   Developing  Earthquake  Damage  Scenarios  for  Urban  Areas.   Istanbul,  October  8-­‐11,  1993.  Tucker,  Brian  E,  eds.  Kluwer  Academic  Publishers,  Dordrecht,  1994,  pp  251-­‐264  

Applied   Technology   Council   (ATC-­‐13)   (1985)  Earthquake   damage   evaluation   data   for   California.   Report   ATC-­‐13,  Redwood  City,  California.  

Applied  Technology  Council  (ATC-­‐22)  (1989)  A  handbook  for  seismic  evaluation  of  existing  buildings  (Preliminary).  Report  ATC-­‐22,  Redwood  City,  California.  

Applied   Technology   Council   (ATC-­‐25)   (1991)   Seismic   vulnerability   and   impact   of   disruption   of   lifelines   in   the  conterminous   United   States.   Report   ATC-­‐25,   Federal   Emergency   Management   Agency,   Redwood   City,  California.  

Applied  Technology  Council  (ATC-­‐40)  (1996)  Seismic  evaluation  and  retrofit  of  Concrete  Buildings.  Vol  1.  Redwood  City.  California  

Atiago,   G.   &   Demores,   F   (2003)   Vulnerabilidad   sísmica   de   pasos   elevados   y   puentes   que   forman   parte   de   la  infraestructura   vial   del   distrito   metropolitano   de   Quito   –   adaptación   y   aplicación   de   la   metodología  HAZUS®99.  [On  line].  Available  at:  http://www.savgis.org/SavGIS/Etudes_realisees/DEMORAES_ATIAGA_Vulnerabilidad_sismica_puentes_2003.pdf  [Last  checked  10/04/2014]  

Benedetti,   D.   &   Petrini,   V.   (1984)   “Sulla   vulnerabilitá   sismica   di   edifici   in  muratura   i   proposte   di   un  metodo   di  valutazione”.  L'industria  delle  Construzioni,  149,  66-­‐74.  

Cardona,   O.   D.,   &   Yamín,   L.E   (1997).   “Seismic   Microzonation   and   estimation   of   earthquake   loss   scenarios:  integrated  risk  mitigation  Project  of  Bogotá,  Colombia”.  Earthquake  Spectra  13(4):  795-­‐814  

Cardona,  O.D,  Hurtado,  J.E.,  Duque,  G.,  Moreno,  A.,  Chardon,  A.C.,  Velásquez,  L.,  Prieto,  S.D.  (2003)  “Indicadores  para   la   medición   del   riesgo”-­‐   Fundamentos   metodológicos   IADB/IDEA   Programa   de   Indicadores   para   la  Gestión   de   Riesgos.   Universidad   Nacional   de   Colombia,   Manizales.   [On   line].   Available  at:http://idea.unalmzl.edu.co  [Última  consulta  10/04/2010].  

Cardona,   O.D.,   Ordaz,   M.G.,   Reinoso,   E.,   Yamin,   L.E.,   Barbat,   A.H.   (2010)   “Comprehensive   Approach   for  Probabilistic  Risk  Assessment  (CAPRA):  International  Initiative  for  Disaster  Risk  Management  Effectiveness”.  14th  European  Conference  on  Earthquake  Engineering  (14ECEE).  30  Ago-­‐  3  Sept,  Ohrid,  Macedonia  

Castillo,  A.,  Pujades,   L.G.,    Almansa,   F.   (2008  a)   “Seismic  Risk  Scenarios  For  Mérida,  Venezuela”.  The  14th  World  Conference  on  Earthquake  Engineering.  October  12-­‐17,  Beijing,  China.  

Castillo,   A.,   López-­‐Almansa,   F.,   Pujades,   L.G   (2008   b)   “Seismic   risk   reduction   measures   of   a   vulnerable   urban  informal   settlement   in   Mérida,   Venezuela.   Cost-­‐Benefit   Analysis.”   The   14th   World   Conference   on  Earthquake  Engineering.  October  12-­‐17,  Beijing,  China  

Castillo,   A.,   López-­‐Almansa,   F.,   Pujades,   L.G   (2011)   “Seismic   risk   analysis   of   urban   non-­‐engineered   buildings:  application  to  an  informal  settlement  in  Mérida,  Venezuela”.  Natural  Hazards,  59  (2):  891-­‐916    

Castillo  A  (2006).  “Seismic  risk  scenarios  for  buildings  in  Mérida,  Venezuela.  Detailed  vulnerability  assessment  for  non-­‐engineered  housing”.  PhD  Thesis.  Technical  University  of  Catalonia,  Barcelona.  

Page 41: Report!on!the!SARA!Exposure!and! Vulnerability!Workshop!in!Medellin …03_2014_-_workshop_medelli… · The!GEMKSARA!Exposureand!Seismic!Vulnerability!Modelling!Workshop!was!carried!out!in!thecity!of!Medellin,!

35  

CEDERI   (2005a)   “Estrategia   para   transferencia,   retención,   mitigación   del   riesgo   sísmico   en   edificaciones  indispensables  y  de  atención  a  la  comunidad  del  Distrito  Capital-­‐Bogotá,  Colombia”.    

CEDERI  (2005b)  “Escenarios  de  riesgo  y  pérdidas  por  terremoto  para  Bogotá  D.C.  Fondo  de  Prevención  y  Atención  de  Emergencias  de  Bogotá”.  Dg  47  b  No  47-­‐09  Int  11.  

CEDERI  (2005c)  “Estudio  de  Microzonificación  sísmica  y  evaluación  del  riesgo  de  las  ciudades  intermedias  del  Valle  del  Cuaca,  Palmira,  Tulúa  y  Buga”.  Corporación  Autónoma  Regional  del  Valle  del  Cauca.  

CEDERI  (2006)  “Innovación  e  investigación  tendientes  a  la  actualización  de  la  información  sísmica  de  la  ciudad  de  Bogotá”.  Fondo  de  Prevención  y  Atención  de  Emergencias  de  Bogotá.  Dg  47  bNo  47-­‐09  Int  11.  

CEPAL  (1999)  El  terremoto  de  enero  de  1999  en  Colombia:  Impacto  socioeconómico  del  desastre  en  la  zona  del  Eje  Cafetero.   LC/MEX/L.374   LC/L.1201.   United   Nations   Development   Programme   –   Colombia.   Economic  Comission  for  Latin  America  and  the  Caribbean.  

Chatelain,   J.L.,   Tucker,   B.,   Guillier,   B.,   Kaneko,   F.,   Yepes,   H.,   Fernandez,   J.,   Valverde,   J.,   Hoefer,   G.,   Souris,   M.,  Duperier,  E.,  Yamada,  T.,  Bustamante,  G.,  &  Villacis,  C.  (1999)  “Earthquake  risk  management  pilot  project  in  Quito,  Ecuador”.  GeoJournal  49:  185–196  

CIMNE   (2013)   Modelación   probabilista   de   riesgos   naturales   en   el   nivel   global:   el   modelo   global   de   riesgo.  Background  Paper  prepared   for   the  Global  Assessment  Report  on  Disaster  Risk  Reduction  2013.  UNISDR,  GAR.  [On  line].  Available  at:  

  http://www.preventionweb.net/english/hyogo/gar/2013/en/bgdocs/CIMNE%20et.al.%202013a-­‐SPA.pdf  [Last  checked  10/04/2014]  

CIMOC  (2002)  Microzonificación  sísmica  de  la  ciudad  de  Manizales.  Research  center  of  Materials  and  Civil  Works  (CIMOC).   Research   Center   in   Disasters   and   Risks   (CEDERI).   Report   prepared   for   the   Mayor’s   Office   of  Manizalez.  [On  line].  Available  at:    

  http://idea.manizales.unal.edu.co/gestion_riesgos/descargas/microzon/informe_final.pdf   [Last   checked  06/05/2014]  

CISMID   (2004),   “Estudio   de   Vulnerabilidad   y   Riesgo   Sísmico   de   32   distritos   de   Lima   y   Callao”.   Informe   Técnico,  Lima,  Perú  

CISMID  (2014  )  “CISMID  terminó  los  estudios  de  vulnerabilidad  sísmica  de  14  hospitales”.  [On  line].  Available  at:       http://www.cismid-­‐uni.org/item/61-­‐el-­‐cismid-­‐termino-­‐los-­‐estudios-­‐de-­‐vulnerabilidad-­‐sismica-­‐de-­‐14-­‐

hospitales.html.  [Last  checked  12/04/2014].  Consorcio  Microzonificación   (2006)  “Microzonificación  y  Evaluación  del  Riesgo  Sísmico  del  Valle  de  Aburrá.  Área  

Metropolitana  del  Valle  de  Aburrá”.  Crowley,  H.,  Colombi,  M.,  Silva,  V.  (2014)  “Chapter  4:  Epistemic  uncertainty  in  fragility  functions  for  European  RC  

buildings,”   In:   SYNER-­‐G:   Typology   definition   and   fragility   functions   for   physical   elements   at   seismic   risk:  buildings,  lifelines,  transportation  networks  and  critical  facilities,  Ed:  Pitilakis,  Crowley,  Kaynia,  in  press  

Cuadra,  C.,  Saito,  T.,  Zavala,  C.  (2013)  “Diagnosis  for  Seismic  Vulnerability  Evaluation  of  Historical  Buildings  in  Lima,  Peru”.  Journal  of  Disaster  Research  (8),  2,  320-­‐327  

D’Ayala  D.,  Meslem  A.,  Vamvatsikos  D.,  Porter  K.,  Rossetto  T.,  H.  Crowley,  V.  Silva  (2014)  “Guidelines  for  analytical  vulnerability  assessment  of  low/mid-­‐rise  buildings”,  GEM  Technical  Report  Series  2014,  GEM  Foundation,  in  press.  

ERN   (2004   a)   “Definición   de   la   responsabilidad   del   Estado,   su   exposición   ante   desastres   naturales   y   diseño   de  mecanismos   para   la   cobertura   de   los   riesgos   residuales”.   Report   prepared   for   the  World   Bank,   Agencia  Colombiana  de  Cooperación  Internacional-­‐ACCI;  Departamento  Nacional  de  Planeación-­‐DNP  

ERN   (2004   b)   “Diseño   de   esquemas   de   transferencia   de   riesgo   para   la   protección   financiera   de   edificaciones  públicas  y  privadas  en  Manizales  en  el  caso  de  desastres  por  eventos  naturales”.  Departamento  Nacional  de  Planeación.  Agencia  Colombiana  para  la  Cooperación  Internacional.  Banco  Mundial  

ERN  (2006)  “Estimación  de  Pérdidas  Económicas  para  Diferentes  Escenarios  de  Riesgo  en  Edificaciones  Públicas  y  Privadas  en  Bogotá  y  Análisis  Económico  del  Riesgo  Residual  en  el  Distrito  Capital  de  Bogotá  –  Estudio  E1”.  

Page 42: Report!on!the!SARA!Exposure!and! Vulnerability!Workshop!in!Medellin …03_2014_-_workshop_medelli… · The!GEMKSARA!Exposureand!Seismic!Vulnerability!Modelling!Workshop!was!carried!out!in!thecity!of!Medellin,!

 

Departamento   Nacional   de   Planeación.   Ministerio   del   Medio   Ambiente,   Vivienda   y   Desarrollo   y   para   el  Banco  Mundial.  

ERN  (2011).  “Global  Assessment  Report  on  Disaster  Risk  Reduction,  Probabilistic  Modeling  of  Natural  Risks  at  the  Global  Level”,  Phase  1A,  Development  of  Methodology  and  Case  Studies.  

ERN-­‐AL  (2012)  Perú:  Gestión  de  Riesgo  de  Desastres  en  Empresas  de  Agua  y  Saneamiento.  Tomo  I:  Perfil  de  Riesgo  Catastrófico,  Medidas  de  Mitigación  y  Protección  Financiera.  Caso  Sedapal  y  Emapica.  Centro  Internacional  de   Métodos   Numéricos   en   Ingeniería   (CIMNE),   Evaluación   de   Riesgos   Naturales   (ERN),   Ingenieros  Consultores  S.C.,   ITEC  Ltda.  e   INGENIAR  Ltda.  Report  prepared  for  the  World  Bank  ,  Water  and  Sanitation  Program   (WSP)   and   the   Canadian   International   Development   Agency.   [On   line].   Available   at:  http://www.wsp.org/sites/wsp.org/files/publications/WSP-­‐LAC-­‐Peru-­‐Gestion-­‐De-­‐Riesgo-­‐De-­‐Desastres-­‐En-­‐Empresas-­‐De-­‐Agua-­‐Y-­‐Saneamiento-­‐Tomo-­‐1.pdf  [Last  checked  10/04/2014]  

ERN  (2012)  “Microzonificación  sísmica  del  Distrito  Metropolitano  de  Quito:  estudio  de  la  amenaza  sísmica  a  nivel  local”  Programa  para  la  reducción  de  riesgos  urbanos  en  el  Distrito  Metropolitano  de  Quito.  Programa  de  las  Naciones  Unidas  para  el  Desarrollo-­‐PNUD.  

Estrada,   G.M.,   Jaramillo,   J.D   (2002)   “IE-­‐RISS:   a   modeling   system   to   manage   risks   and   disasters”.   7th   National  Conference  on  Earthquake  Engineering.  July  21-­‐25,  2002.  Boston,  United  States.  

FEMA/NIBS   (1999).   “Earthquake   Loss   Estimation   Methodology   HAZUS®   99”.   Federal   Emergency   Management  Agency  –  FEMA.  Washington,  D.C.  

Fischer,  T.,  Alvarez,  M.,  De  la  Llera,  J.C.,  Riddell,  R.  (2002)  “An  integrated  model  for  earthquake  risk  assessment  of  buildings”  Engineering  Structures,  24(7):  979–998  

FUNVISIS  (2009)  “Proyecto  de  microzonificación  sísmica  en  las  ciudades  Caracas  y  Barquisimeto.  Informe  Técnico  FUN-­‐035-­‐a   2009”.   Requerido   por   el   Fondo   Nacional   de   Ciencia,   Tecnología   e   Innovación   FONACIT  200400738.  

GeoHazards   International   (1995)   “Invirtiendo   en   el   futuro   de   Quito.   Proyecto   de   Seguridad   Sísmica   de   las  edificaciones     escolares   de   Quito,   Ecuador”.   Escuela   Politécnica   Nacional   [On   line]     Available   at:  http://www.geohaz.org/news/images/publications/QuitoSchoolProjectSpanish.pdf  [Last  checked  10/04/2014].  

GNDT   (1993)   “Rischio   Sismico   Di   Edifici   Pubblici,   Parte   I:   Aspetti   Metodologici”.   Proceedings   of   CNR-­‐Gruppo  Nazionale  per  la  Difesa  dai  Terremoti,  Roma,  Italy.  

González,  G.   (2009)  “Gestión  de   los  Asentamientos   Informales:  Un  Asunto  de  Política  Pública”.  VIII  Seminario  de  Investigación  Urbana  y  Regional,    Gobierno  de  Municipios  y  Aglomeraciones  Urbanas,  Bogotá,  55p  

Hwang  H.  And  Y.  W.  Lin  (2002).  “Seismic  Loss  Assessment  of  Memphis  City  School  Buildings”.  Proceedings  of  The  Seventh  U.  S.  National  Conference  on  Earthquake  Engineering,  Boston  

Hu,  Z.,  C.  Huyck,  M.  Eguchi,   J.  Bevington  (2014)  “User  guide:  Tool   for  spatial   inventory  data  development”,  GEM  Technical  Report  Series  2014,  GEM  Foundation,  in  press.  

INGEOMINAS-­‐CDMB  (2002)  “Microzonificación  Simogeotécnica  Indicativa  de  Bucaramanga”    Jaiswal,   K.,   Wald,   D.,   Porter,   K.   (2010)   “A   Global   Building   Inventory   for   Earthquake   Loss   Estimation   and   Risk  

Management”.  Earthquake  Spectra,  26(3):  731–748  Jaramillo,  J.D.  (1997).  Programa  para  el  Cálculo  de  Perdidas  por  Sismo  (PERCAL  ver.6).  Departamento  de  Ingeniería  

Civil,  Universidad  EAFIT.  Medellín  La  hora  (2011)  Quito.  Crece  el  PIB  en  Quito.  Martes  5  de  julio  de  2011.[On  line].  Available  at:    

http://www.lahora.com.ec/index.php/noticias/show/1101168308/-­‐%C2%AD%E2%80%901/Crece_el_PIB_en_Quito_.html#.UiR0nxuLKSo  [Last  checked  22/04/2014]  

López   OA,   Hernandez   JJ,   Del   Re   G,   Puig   J,   Espinosa   L   (2007)   “Reducing   seismic   risk   of   schools   in   Venezuela”.  Earthquake  Spectra  23(4):771–790  

Page 43: Report!on!the!SARA!Exposure!and! Vulnerability!Workshop!in!Medellin …03_2014_-_workshop_medelli… · The!GEMKSARA!Exposureand!Seismic!Vulnerability!Modelling!Workshop!was!carried!out!in!thecity!of!Medellin,!

37  

Lopez   O.A.;   Hernandez,   J.J.;   Marinilli   A.;   Bonilla   R.;   Fernandez   N.;   Dominguez   J.;   Baloa   T.;   Coronel   G.;   Safina  S.(2008)  “Seismic  Evaluation  and  Retrofit  of  School  Buildings  in  Venezuela”.  The  14th  World  Conference  on  Earthquake  Engineering.  October  12-­‐17,  2008,  Beijing,  China.  Paper  ID  09-­‐01-­‐0041  

López,   O.A.,   Coronel,   G.,   Ascanio,   W.,   Rojas,   R.,   Páez,   V.,   Olbrich,   F.,   Rengel,   J.   González,   J.   (2014)   “Índice   de  priorización  de  edificios  para   la  gestión  del  riesgo  sísmico”.  FUNVISIS.   Informe  técnico  No  FUN-­‐002,  2014.  Prolongación  Calle  Mara.  Urbanización  El  Llanito,  Caracas  1070,  Venezuela.  

Martínez,   J   (2012)   “Caracterización   de   la   vulnerabilidad   sísmica   utilizando   curvas   de   fragilidad   y   matrices   de  probabilidad  de  daño  para  algunas  tipologías  estructurales  de  hormigón  armado.  Aplicación  a  la  ciudad  de  Valdivia,  Región  de  Los  Lagos”.  Master  Thesis.  Universidad  Austral.  

Matsuoka,   M.,   &   Estrada,   M.   (2013)“Development   of   Earthquake-­‐Induced   Building   Damage   Estimation   Model  Based  on  ALOS/PALSAR  Observing  the  2007  Peru  Earthquake”.  Journal  of  Disaster  Research  8  (2):pp.  346-­‐355  

Matsuoka,  M.,  Miura,  H.,  Midorikawa,  S.,  Estrada,  M.  (2013)  “Extraction  of  Urban  Information  for  Seismic  Hazard  and  Risk  Assessment  in  Lima,  Peru  Using  Satellite  Imagery”  Journal  of  Disaster  Research  .  8(2):  328-­‐345  

Meneses-­‐Loja,  J.,  Aguilar,  Z.  (2004)  “Seismic  vulnerability  of  school  buildings  in  lima,  Peru.”  13th  World  Conference  on  Earthquake  Engineering.  Vancouver,  B.C.,  Canada  August  1-­‐6,  2004  Paper  No.  1683.  

Milutinovic  Z.V,  Trendafiloski  G.S  (2003),  “WP4:  Vulnerability  of  current  buildings”.  RISK-­‐UE  Project  Handbook.  Sep.  2003.  RISK-­‐UE  project  report.111  pp  

Miranda,   E.   (1999)   “Approximate   seismic   lateral   deformation   demands   on   multistory   buildings”.   Journal   of  Structural  Engineering  125(4):  417-­‐425  

Municipio  de  Medellín  (1994)  “Programa  de  prevención  sísmica  para  Medellín”.  Programa  de  las  Naciones  Unidas  para  el  desarrollo  –  PNUD  y  Universidad  EAFIT.  

Olarte,  J.,  Aguilar,  Z.,  Zavala,  C.,  Martinez,  A.,  Gallardo,  J.  (2012)  “Estimate  of  the  Probable  MaximumLoss  PML  in  Lima  and  Callao:  application  to  the  peruvian  insurance  industry”.  The  14th  World  Conference  on  Earthquake  Engineering.  October  12-­‐17,  2008,  Beijing,  China  

Olarte,   J.   Proaño,   R.,   Torres,   R.,   Rojas,   V.   (2013)   “Dynamic   analysis   and   retrofit   techniques   for   educational  infrastructure”.  Centro  Peruano  Japonés  de  Investigaciones  Sísmicas  y  Mitigación  de  Desastres.  Facultad  de  Ingeniería  Civil,  Universidad  Nacional  de  Ingeniería,  Lima-­‐Perú.  

Ordaz,  M.,  Miranda,  E.,  Reinoso,  E.  and  Pérez-­‐Rocha,  L.E.  (2000).  “Seismic  Loss  Estimation  Model  for  Mexico  City”,  Proceedings  of  the  12th  World  Conference  on  Earthquake  Engineering,  Auckland,  New  Zealand,  Paper  No.  1902.  

Ordaz,  M.  G.  and  L.  E.  Yamín  (2004).  “Eventos  máximos  considerados  (EMC)  y  estimación  de  pérdidas  probables  para   el   cálculo   del   índice   de   déficit   por   desastre   (IDD)   en   doce   países   de   las   Américas”.   Programa   de  Información   e   Indicadores   de  Gestión   de   Riesgos.   Inter-­‐-­‐-­‐American  Development   Bank   –   IADB,   Economic  Commission  for  Latin  America  and  the  Caribbean  ,  ECLAC  –  Instituto  de  Estudios  Ambientales  –  IDEA.  

Porter  K.A,  Farokhnia  K,  Cho   I.H,  Rossetto  T,   Ioannou   I,  Grant  D,   Jaiswal  K,  Wald  D,  D’Ayala  D,  Meslem  A,  So  E.,  Kiremidjian  A.S,  Noh  H  (2012)  “Global  Vulnerability  Estimation  Methods  for  the  Global  Earthquake  Model”,  Proceedings   of   the   fifteenth   World   Conference   on   Earthquake   Engineering,   Lisbon,   Portugal,   23-­‐24  September.  

Porter  K.A,  Farokhnia  K,  Vamvatsioks  V,  Cho  I.H,  (2014)  “Guidelines  for  analytical  vulnerability  assessment  of  high-­‐rise  buildings”  GEM  Technical  Report  Series  2014,  GEM  Foundation,  in  press  

Predes   (2009)   “Diseño   de   escenario   sobre   el   impacto   de   un   sismo   de   gran  magnitud   en   Lima  Metropolitana   y  Callao”.   Reporte   preparado   para   Instituto   Nacional   de   Defensa   Civil   –   INDECI.   Agencia   Suiza   para   el  Desarrollo  y  la  Cooperación  COSUDE.[On  line].  Available  at:    

  http://www.predes.org.pe/predes/images/dis_esc_lima.pdf  [Last  checked  10/04/2014]  Pulido,   N.,   Tavera,   H.,   Aguilar,   Z.,   Calderón,   D.,Chlieh,   M,   Sekiguchi,   T.,   Nakai,   S.,   Yamazaki,   F.   (2012)   “Mega-­‐

earthquakes  rupture  scenarios  and  strong  motion  simulations  for  Lima,  Peru”.  The  international  Symposium  

Page 44: Report!on!the!SARA!Exposure!and! Vulnerability!Workshop!in!Medellin …03_2014_-_workshop_medelli… · The!GEMKSARA!Exposureand!Seismic!Vulnerability!Modelling!Workshop!was!carried!out!in!thecity!of!Medellin,!

 

for  CISMID  25th  Aniversary.  Technological  advances  and   learned   lessons   from   last  great  earthquakes  and  tsunamis  in  the  world  

Román,   S.   (2009)   “Vulnerabilidad   sísmica   de   las   viviendas   de   albañilería   de   bloques   de   hormigón   del   norte   de  Chile”.  Master  thesis.  Universidad  de  Chile.  

Rossetto   T.,   Ioannou   I.,  Grant  D.N.,   T.Maqsood   (2014)   “Guidelines   for   empirical   vulnerability   assessment,”  GEM  Technical  Report  Series  2014,  GEM  Foundation,  in  press.  

Safina,   S.,   Andrade,   M.,   Schmitz,   M.,   Jraige,   C.,   Espinosa,   L.   (2008)   “Seismic   Response   of   Reinforced   Concrete  Buildings  in  Caracas,  Venezuela”.  14th  World  Conference  on  Earthquake  Engineering.  October  12-­‐17,  2008,  14WCEE,  Beijing,  China  

Safina,   S.,   López,   A.,   Luis,   A.,   Lirio,   B.,   Castillo,   L.,   Marval,   M.   (2012)   “Seismic   Vulnerability   of   Buildings   in   the  Municipality   of   Chacao  Metropolitan  Area  of   Caracas,  Venezuela”.  15th  World  Conference  On  Earthquake  Engineering.  24-­‐28  September.  Lisbon,  Portugal.    

Saito,   T.,   Moya,   L.,   Fajardo,   C.,   Morita,   K.   (2013)   “Experimental   Study   on   Dynamic   Behavior   of   Unreinforced  Masonry  Walls”  Journal  of  Disaster  Research  8  (2):305-­‐311  

Salgado,   M.   A.,   Zuloaga,   D.,   Cardona,   O.   D.   (2013)   “Evaluación   probabilista   del   riesgo   sísmico   de   Bogotá   y  Manizales  con  y  sin  la  influencia  de  la  Calda  Tear”.  Revista  de  Ingeniería.  Enero-­‐Junio:  6-­‐13.  Universidad  de  los  Andes,  Bogotá  D.  C.  

Salgado-­‐Gálvez,   M.A.,   Zuloaga-­‐Romero,   D.,   Bernal,   G.A.,   Mora,   M.G.,   Cardona,   O.D.   (2014)   “Fully   probabilistic  seismic   risk  assessment  considering   local   site  effects   for   the  portfolio  of  buildings   in  Medellín,  Colombia”  Bulletin  of  Earthquake  Engineering.12(2):  671-­‐695.  

Schmitz,  M.,  Enomoto,  T.,    Ampuero,  J.P.,  Rocabado,  V.,  Kantak,  P.,  Sánchez,  J.,  Rendón1,  H.,  González,  J.,  Abeki,  N.,    J.-­‐P.  Villotte,   J.P.,  Navarro,  M.,  Delgado,   J.   (2002)   “Seismic  microzoning   study   in  Chacao  District,   Caracas,  Venezuela”.  12th  European  Conference  on  Earthquake  Engineering,  London,  2002  Paper  Reference  808.  

Santacruz,  S  (2012)  Proyecto  CAPRA  PUCP  Evaluación  de  Riesgo  sísmico  en  colegios  y  hospitales  de  Lima.  [On  line].  Available  at:    http://blog.pucp.edu.pe/item/157980/proyecto-­‐capra-­‐pucp-­‐evaluacion-­‐de-­‐riesgo-­‐sismico-­‐en-­‐colegios-­‐y-­‐hospitales-­‐de-­‐lima  

Schmitz,  M.,  Hernández,  J.,  Audemard,  F.,  Malavé,  G.,González,  M.,  Granado,C.  Sánchez,  J.,    Andrade,L.,  Klarica,  S.  (2006)   “Avance  de   los   proyectos   de  microzonificación   sísmica   en   las   principales   ciudades  de  Venezuela”.  Proceeding  of:  VIII  Congreso  Venezolano  de  Sismología  e  Ingeniería  Sísmica  –VIII  CONVESIS-­‐,  Volume:  1.  

Silva,  N.  (2011)  “Vulnerabilidad  sísmica  estructural  en  viviendas  sociales,  y  evaluación  preliminar  de  riesgo  sísmico  en  la  Región  Metropolitana”.  Master  Thesis.  Universidad  de  Chile.  

Silva   V,   Crowley   H,   Pagani   M,  Modelli   D,   Pinho   R   (2013)   “Development   of   the   OpenQuake   engine,   the   Global  Earthquake  Model’s  open-­‐source  software  for  seismic  risk  assessment”  Natural  Hazards.  

Silva,  H.  (2013)  “Aplicación  de  Metodología  Probabilística  para  la  Estimación  del  Daño  de  un  edificio  de  mediana  altura  diseñado  bajo  la  Norma  Peruana”.  Centro  Peruano  Japonés  de  Investigaciones  Sísmicas  y  Mitigación  de  Desastres  -­‐  CISMID  

Sunley,   S.,   Kusunoki   ,   K.,   Saito,   T.,   Zavala,   C   (2013).   “Experimental   Study   on   Flexural   Behavior   of   Reinforced”.  Journal  of  Disaster  Research  8  (2):  296-­‐304.  

SVS  (2013)  Análisis  e  Impacto  del  27-­‐F  en  el  Mercado  Asegurador.  Superintendencia  de  Valores  y  Seguros  de  Chile.  [On   line].   Available   at:   https://www.svs.cl/sitio/destacados/doc/TERREMOTO-­‐9-­‐1-­‐13.pdf.   [Last   checked  06/05/2014]  

Tapia,   P.,   Roldán,   W.,   Villacis,   C.   (2002)   “Vulnerabilidad   sísmica   de   las   ciudades   del   norte   de   Chile:   Arica,  Antofagasta   y   Copiapo”.   VIII   Jornadas   Chilenas   de   Sismología   e   Ingeniería   Antisísmica.   Valparaíso,   Abril,  2002.  

Tarque  N,  Crowley  H,  Pinho  R,  Varum  (2010)  “Seismic  risk  assessment  of  adobe  dwellings  in  Cusco,  Peru,  based  on  mechanical   procedures”.   14th   European   Conference   on   Earthquake   Engineering   (14ECEE).   Ohrid.  Macedonia.  30-­‐08;  03-­‐09  201  

Page 45: Report!on!the!SARA!Exposure!and! Vulnerability!Workshop!in!Medellin …03_2014_-_workshop_medelli… · The!GEMKSARA!Exposureand!Seismic!Vulnerability!Modelling!Workshop!was!carried!out!in!thecity!of!Medellin,!

39  

Torres-­‐Cabrejos,   R.E.,   Huaman-­‐Egoavil,   C.E   (1992)   “Evaluation   on   seismic   risk   on   water   supply   pipelines”   10th  World  Conference  on  Earthquake  Engineering.  Madrid,  Spain,  1992.  Balkema.  Rotterdam.  ISBN  9054100605  

Universidad   de   Cuenca   (2001)   Amenaza   Sísmica   en   el   Austro,   Vulnerabilidad   y   Riesgo   Sísmico   en   la   ciudad   de  Cuenca.  Proyecto  Fundacyt  P-­‐BID  400.  Cámara  de  la  Construcción  de  Cuenca  (CCC).  Red  Sísmica  del  Austro  (RSA).  

Valcárcel   J.A.,   Mora   M.G.,Cardona   O.D.,   Pujades   L.G.,   Barbat   A.   H.,   Bernal   G.A.   (2013).“Methodology   and  applications  for  the  benefit  cost  analysis  of  the  seismic  risk  reduction  in  building  portfolios  at  broadscale”.  Natural  Hazards  69,  (1):  pp  845-­‐868.  

Vaziri,   P.,   Zoback,   M.L.,   Tabucchi,   T.H.P.,   Cabrera,   C.M   (2012)   “Comparative   Analysis   of   Economic   and   Human  Casualty   Seismic   Risk   for   South   American   Andean   Capital   Cities”.   15th  World   Conference   On   Earthquake  Engineering.  24-­‐28  September.  Lisbon,  Portugal  

Villacís,  C.,  Tucker,  B.,  Yepes,  H.,  Kaneko,  F.,  Chatelain,  J.L  (1997)  “Use  of  seismic  microzoning  for  risk  management  in  Quito,  Ecuador”.  Engineering  Geology,  46(1):  63–70.  

Yamazaki,   F.,   and   Zavala,   C.(2013)   “SATREPS   Project   on   Enhancement   of   Earthquake   and   Tsunami   Disaster  Mitigation  Technology  in  Peru”.  Journal  of  Disaster  Research.  8(2):  224-­‐234  

Yamín,  L.E.,  Ghesquiere,  F.,  Cardona,  O.D.,  Ordaz,  M.G  (2013)  Modelación  probabilista  para  la  gestión  del  riesgo  de  desastre  El  caso  de  Bogotá,  Colombia.  Banco  Mundial,  Universidad  de  los  Andes.  ISBN:  978-­‐958-­‐695-­‐840  

Yépez,  F  (2001)  “Últimos  avances  en  la  evaluación  del  riesgo  sísmico  de  Quito  y  futuros  proyectos  de  mitigación”.  Facultad  Latinoamericana  de  Ciencias  Sociales   (FLACSO);  Cooperazione   Internazionale   (COOPI).  Memorias  del  Seminario:  Gestión  de  riesgos  y  prevención  de  desastres.  Quito,  2002.  p.16-­‐28,    

Zavala,   C.,   Estrada,   M.,   Aguilar,   Z.,   Lazares,   F.,   Rios   F.,   Gibu,   P.   (2010)   “Estudio   de   microzonificación   sísmica   y  vulnerabilidad  en  la  ciudad  de  Lima”.  Centro  Peruano  Japonés  de  Investigaciones  Sísmicas  y  Mitigación  de  Desastres   –   CISMID   Facultad   de   Ingeniería   Civil   –   Universidad   Nacional   de   Ingeniería.   CISMID-­‐FIC-­‐UNI  Proyecto  MVCS-­‐BID  

Zavala,  C.,  Gibu,  P.,   Lavado,   L.,   Taira,   J.,   Cárdenas,   L.,   Ceferino,   L.   (2013)   “Cyclic  Behavior  of   Low  Ductility  Walls  Considering  Perpendicular  Action”.  Journal  of  Disaster  Research  8  (2):312-­‐319  

 

   

Page 46: Report!on!the!SARA!Exposure!and! Vulnerability!Workshop!in!Medellin …03_2014_-_workshop_medelli… · The!GEMKSARA!Exposureand!Seismic!Vulnerability!Modelling!Workshop!was!carried!out!in!thecity!of!Medellin,!

 

APPENDIX  A  

The  following  tables  present  the  Spanish  version  of  the  GEM  Building  Taxonomy  V  2.0  

 

 

Page 47: Report!on!the!SARA!Exposure!and! Vulnerability!Workshop!in!Medellin …03_2014_-_workshop_medelli… · The!GEMKSARA!Exposureand!Seismic!Vulnerability!Modelling!Workshop!was!carried!out!in!thecity!of!Medellin,!

41  

APPENDIX  B