renggli c. lunar volcanic gas

13
A new model for volcanic gas compo sitions in lunar fire fountain eruptions C.J. Renggli, P.L. King, R.W. Henley Research School of Earth Science Funded by the Australian Research Council

Upload: christian-renggli

Post on 06-Jan-2016

218 views

Category:

Documents


0 download

DESCRIPTION

Presentation Goldschmidt ConferenceLunar volcanic gasthermochemical modellingmetal transportsublimationZn, Pb, Ga, Ni, Cu

TRANSCRIPT

7/17/2019 Renggli C. lunar volcanic gas

http://slidepdf.com/reader/full/renggli-c-lunar-volcanic-gas 1/13

A new model for volcanicgas compositions in lunarfire fountain eruptions

C.J. Renggli, P.L. King, R.W. Henley

Research School of Earth Science Funded by the

Australian ResearchCouncil

7/17/2019 Renggli C. lunar volcanic gas

http://slidepdf.com/reader/full/renggli-c-lunar-volcanic-gas 2/13

• Pyroclastic deposits on the moon (“dark mantle deposits”)extend up to 350 km from the vents

• Coatings on lunar glass beads are rich in “volatiles” andmetals

•Deposition from a gas phase

• Zn, Pb, Ga, Cu, Ni, Fe (primarily sulfides)

G.J. Taylor, Clanton et al. 1978, McKay et al. 1973 & 1992

1C.J. Renggli, P.L. King, R.W. Henley

How are the metals transported and deposited

5 μm

1 mmThin section SEM images of glass bead surfaces

7/17/2019 Renggli C. lunar volcanic gas

http://slidepdf.com/reader/full/renggli-c-lunar-volcanic-gas 3/13

• Gas + melt drops interact

Gas species sublimate ontobeads and form coatings

• 400-500 bar, ~10km below surface

• Exsolution and bubble nucleation

•   + 1    =  

2

McKay et al. 1973, 1992

Saal et al. 2008

Rutherford & Papale 2009

Fegley 1991C.J. Renggli, P.L. King, R.W. Henley

Gas species 

CO, CS2, CS,

COS, S2, HCl

Zn, PbS, Pb, GaCl,

CuCl, Cu, Ni, NiS…

 

7/17/2019 Renggli C. lunar volcanic gas

http://slidepdf.com/reader/full/renggli-c-lunar-volcanic-gas 4/13

• Degassing during eruption

• 2-5 °C/sec cooling rate

• 1450 °C initial melt temperature

• Species diffusing as H2O, Cl-, F- and S2-

Saal et al. 2008

3

Gas

species

Lost gas

(mol %)

H 9.9

O 78.6Cl 0.05

S 10.8

F 0.6

C ?C.J. Renggli, P.L. King, R.W. Henley

Calculation of volatile contents

following Saal et al. 2008

Composition of out-gased volatiles:

Apollo 17 glass beads

Diffusion profiles

7/17/2019 Renggli C. lunar volcanic gas

http://slidepdf.com/reader/full/renggli-c-lunar-volcanic-gas 5/13

IW-2 at 1450 °C: log(fO2) = -11.24 (O’Neill & Pownceby 1993)

-11.24

    l   o   g    (    k   m   o

    l    )

4C.J. Renggli, P.L. King, R.W. Henley

Calculation of C content in the C-O-H-S-Cl-F gas system

O2(g)

CO(g)

2

-15

-10

-5

0

0 20 40 60 80

C (kmol)

7/17/2019 Renggli C. lunar volcanic gas

http://slidepdf.com/reader/full/renggli-c-lunar-volcanic-gas 6/13

• Gibbs free energy minimisationof a 49 component system, 6

elements• Temperature 1500 – 500 °C

• Pressure 1 – 10-9 bar

• Ideal gas behaviour

Lunar gas

(mol %)

H 5.4

O 42.7

C 45.3

Cl 0.06

S 5.9

F 0.7

5C.J. Renggli, P.L. King, R.W. Henley

Model input conditions

400 bar

1450 °C

10-9 bar

T << 0 °C

0.1 bar

1450 °C

7/17/2019 Renggli C. lunar volcanic gas

http://slidepdf.com/reader/full/renggli-c-lunar-volcanic-gas 7/136C.J. Renggli, P.L. King, R.W. Henley

Results at 10-6 bar

gas speciation2()  → () + 2() 

7/17/2019 Renggli C. lunar volcanic gas

http://slidepdf.com/reader/full/renggli-c-lunar-volcanic-gas 8/13

• Gibbs free energy minimisation of 149 component system, 12chemical elements

• Zn, Pb, Ga, Cu, Ni, Fe

• Metals are unsaturated in the gas phase and have equalconcentrations for comparability (0.001 mol%)

• Sulfides, chlorides, oxides, fluorides and pure metals

Solids and gases7C.J. Renggli, P.L. King, R.W. Henley

Model input conditions

G.J. Taylor, Clanton et al. 1978, McKay et al. 1973 & 1992

5 μm

1 mmThin section SEM images of glass bead surfaces

7/17/2019 Renggli C. lunar volcanic gas

http://slidepdf.com/reader/full/renggli-c-lunar-volcanic-gas 9/138C.J. Renggli, P.L. King, R.W. Henley

Results at 10-6 bar

Zn speciation of gases and sublimates

7/17/2019 Renggli C. lunar volcanic gas

http://slidepdf.com/reader/full/renggli-c-lunar-volcanic-gas 10/139C.J. Renggli, P.L. King, R.W. Henley

Results at 10-6 bar

ratio of transported to sublimated metals

Gas dominant

Solids dominant

7/17/2019 Renggli C. lunar volcanic gas

http://slidepdf.com/reader/full/renggli-c-lunar-volcanic-gas 11/1310C.J. Renggli, P.L. King, R.W. Henley

ResultsP-T conditions of equal amounts of gasesand sublimates

7/17/2019 Renggli C. lunar volcanic gas

http://slidepdf.com/reader/full/renggli-c-lunar-volcanic-gas 12/13

• Efficient metal transport into near-vacuum

conditions

• Zn is enriched in the gas phase compared to Ni

and Cu by >104 and >102 respectively

• Formation of chloride (Ga, Cu, Ni) and sulfide

(Pb) gases can increase the metal transport by

several orders of magnitude

• Sublimates are predominantly sulfides (Zn, Pb,

Ga, Ni) and pure metals (Cu, Ni)

• Experiments and analytical re-investigation of

coatings on Apollo 17 & Apollo 15 samples

may shed light on eruption dynamics and

metal contents

11C.J. Renggli, P.L. King, R.W. Henley

Metal speciation

major findings

7/17/2019 Renggli C. lunar volcanic gas

http://slidepdf.com/reader/full/renggli-c-lunar-volcanic-gas 13/13