renewable feedstocks

36
Renewable feedstocks Thursday 29th October 2009

Upload: irving

Post on 01-Feb-2016

54 views

Category:

Documents


0 download

DESCRIPTION

Renewable feedstocks. Thursday 29th October 2009. PLATFORM CHEMICALS. Adapted from Introduction to Chemicals from Biomass, ed. Clark, J.; Deswarte, F. Wiley, 2008. Chemicals from Crude oil. Brassica. Animal feed. Food. Biofuels. Artemisia. Oil. Wheat (straw). Artemisinin. Animal feed. - PowerPoint PPT Presentation

TRANSCRIPT

Page 1: Renewable feedstocks

Renewable feedstocks

Thursday 29th October 2009

Page 2: Renewable feedstocks
Page 3: Renewable feedstocks

Structural

cellulosehemicelluloselignin

stems, leaves

Fibresstems, leaves

Waxes and Gumsstems, leaves,

seeds f ruit

Secondary metabolites

phenolicsalkaloidsterpenes

stems, leaves, roots,seeds, f ruit

Dyes, Essential Oilsstems, leaves, roots,

seeds, f ruitStorage metabolites

oilscarbohydratesproteins

tubers, roots,nutsseeds, f ruit

Page 4: Renewable feedstocks

Sugars

O

H

HO

H

HO

H

OHOHH H

OH

C2

Acetic acidEthanol

Oxalic acid

C3

1,2-Propanediol1,3-Propanediol

AcetoneLactic acid

Propionic acid

C4

1,4-butanediol3-hydroxybutryolactone

AcetoinAspartic acid

ButanolFumeric acid

Malic acidSuccinic acid

C5

Itaconic acidLevulinic acidXylonic acid

C6

Citric acidGluconic acid

Sorbitol

PLATFORM CHEMICALS

Page 5: Renewable feedstocks

Polymerisation

Esterification

Dehydration

Hydrogenation

Reduction

Oxidation

Lactic acid

Polylactic

Lactate

Acrylic Acid

1,2-Propanediol

Propionic acid

Oxalic acid

Polymers

Solvents

Fine Chemicals

Adapted from Introduction to Chemicals from Biomass, ed. Clark, J.; Deswarte, F. Wiley, 2008

Page 6: Renewable feedstocks

Chemicals from Crude oil

Page 7: Renewable feedstocks

Oil

Brassica

Artemisia

O

O

HCH3

H

O

O

H3C O

HCH3

Artemisinin

Animal feed

Biofuels

Food

Wheat (straw)Animal feed

Lignocellulose

Food

Page 8: Renewable feedstocks

Lignin

Cellulose

Hemi-cellulose

Cell membrane

Page 9: Renewable feedstocks

PHENOLICS FROM ARTEMESIA

Page 10: Renewable feedstocks

FlavonesOHO

OH O

OHO

OH O

OH

OH

OH

OHO

OH O

OH

OH

O

OOO

OH

OH

OHOHOH

OH

O

O

HO

OH

O

O

RO

OH

derivitizePolyethers, polyesters,poly(methacrylate) with

antioxidant/UV absorbing properties

Functionalizing Flavones

Page 11: Renewable feedstocks

O

OOH

OO

OH

O

O

O

OOH

OO

OH

O

O

O

OOH

OOO

O OH

O

OOH

OEtO

O

O

O

OOH

O

O

MeO

O

O

OOH

OHO

OH

Monomers for polyester formation

Page 12: Renewable feedstocks

Monomers for polyether formation

O

OOH

OBr

O

OOH

OBr

O

OOH

OBr

Monomers for methacrylate formation

O

OOH

O

O

O

OOH

OO

O

Page 13: Renewable feedstocks
Page 14: Renewable feedstocks

PHENOLICS FROM WASTE STRAW

Page 15: Renewable feedstocks

OH OMe

OMe

O

RO

OHO

OH

OMe

OMe

HO

OH

OMe

HO O

OH

R

MeO

OH

OMeO

O

OMe

OHOH

OMe

O

HOOMe

OMe

HO

MeO CO2H

OH

HO2COH

OMe

HO

OH

OH

OMe

OH

OMe

CHO

HO

MeOOH

OMe

R

OH

O

OMe

OHMeO

OH

O

OMe

OMe

HO

MeO CO2H

HO2C

O

CO2HHO

HO OMe

O

O

OMe

OH

HO

lyase

CO2H

HO

MeO CO2H

OH

OMe

CO2H

OH

OH

CO2H

peroxidase

-aryl ether phenylcoumarane biphenyldiarylpropanepinoresinol

1) demethylase2) extradioldioxygenase

aldehyde dehydrogenase

CO2H

OHCO2Hdemethylase

decarboxylase

C-C hydrolase

lignostilbenedioxygenase

HCHO

OHCOH

CO2H

HO2C CO2H

CO2H

OHO CO2H

CO2H

OO

extradioldioxygenase

aldehydedehydrogenase

CO2H

CO2H O

HO

CO2H

O2 x

hydratase

aldolase

decarboxylase

CO2

Lignin is a major component of plant cell walls

Lignin-degradingmicrobes

Bacterialaromaticdegraders

Page 16: Renewable feedstocks

Fluorescent Assay for Lignin Degradation

OH

OMe

HO

LIGNIN

attach fluorophore

O

OMe

HO

LIGNIN

OFl

lignindegrader

Fluorescence change

Could be performed in 96-wellmicrotitre plate reader

Fluoresence Vs Time For P. Putida Supernatant

16000

16500

17000

17500

18000

18500

0 20 40 60 80 100 120

Time (min)

Fluo

rsen

ce

30 ul

Time dependence (0-2 hr)Change in fluoresecence in the first 10 min

-2000

-1500

-1000

-500

0

500

1000

Flu

ore

scen

ce

Streptomyces Viridosporus

B. Subtillis

P.Putida

Rhodococcus RHA1

Rhodococcus sp

Nocardia autotrophica

Leuconostoc Mesentoides

Non-degraders

Assay can distinguish degraders from non-degraders:

Tim Bugg, Paper Submitted to Molecular Biosystems

Page 17: Renewable feedstocks

Large Scale Extraction

• 1.5 kg (wet) of P.chrysosporium-degraded straw was extracted using 20 L reactor

• 12 L of water and 8 L of THF used to extract straw• THF was used due to combination of interesting

peaks from LTQ analysis and mass recovered in previous trials

17

Extract Mass (g) Percentage of total (wet)

Percentage of total (dry)

Aqueous 156.88 10.6% 38.6%

Organic 14.5 0.98% 3.57%

Dry Straw 235.3 15.9% 57.9%

Water content - 72.7% -

Page 18: Renewable feedstocks

HPLC traces with time

Degrader Pseudomonas putida

Non-degrader Bacillus subtilisshows no change

Page 19: Renewable feedstocks

GC-MS data for small scale lignocellulose degradation trialsGC-MS data for small scale lignocellulose degradation trials GC-MS total ion chromatogram with EI ionisation for Rhodococcus RHA1 incubated with wheat straw lignocellulose for 7 days at 30 oC.

Mass spectrum of peak at RT 7.02 min, assigned to monosilylated derivative of ketone (1), m/z 268 (M-SiMe3)+, 253 (M-SiMe3-CH3)+.

O OH

O

OH

1

Page 20: Renewable feedstocks

Aromatic metabolites identified (so far)

Compound LC-MS

Retention time (min)

LC-MS

m/z

GC-MS

Retention time (min)

GC-MS

m/z

(silylated)

Observed with..

1 4.29 235 MK+ 7.02 268 M+

253 -CH3

P. Putida 6hr, 1d, 3d

Rhodococcus RHA1 2hr, 4hr

Miscanthus & wheat straw

2 4.56 209 MNa+

225 MK+

7.71 243 M+

228 -CH3

P. Putida (straw) 7d

Rhodococcus RHA1

Miscanthus 1d, straw 2d

3 5.25 195 MH+ 5.27 251

M-CH3

P. Putida 6hr

Rhodococcus RHA1 2hr, 6hr

Miscanthus only

4 5.76 251 MK+ 6.03 341 M-CH3

P. Putida 6hr

Rhodococcus RHA1 4hr, 6hr

Miscanthus only

5 9.09 169 MH+ Rhodococcus RHA1 6hr

Miscanthus only

O OH

OCH3

OH

COOH

COOHHO O

CO2H

OCH3

OH

COOH

COOH

OH

H3CO

COOH

OH

OCH3

Page 21: Renewable feedstocks

OH

OMe

CO2H

Ferulic acid.379 papers in 2008-9 on biological activity alone£1 per 1gAnti-oxidantActive breast cancer, liver cancerActive ingredient in anti-ageing creams / plumping creams

CO2H

OH

OMeHO2C

Carboxy vanillic acid.0 papers in 2008-9

Potential use as fine chemical building block.Vanillic acid precursor.Diacid for use in polyesters and polyamides

Page 22: Renewable feedstocks

Other potential major degradation products-yet to be fully identified from wheat straw

O

OMe

OH

OHO OH

MeO

OH

OH

O

HO

OMe

OH

HO

OMe

OH

O

Derivative of Gallic acid.Anti-fungal, anti-viral, anti-oxidant. Gallic acid is used in dyes

and inks.

No current market.Potential in poly-ethers, -ester or -urethanes

Vanillic acid precursor?Diacid for use in polyesters and polyamides

Page 23: Renewable feedstocks

OIL FROM BRASSICA

Page 24: Renewable feedstocks

RAPESEED

O

O

epoxidationRAPESEED

H2O2, W, H3PO4Room temperature

HO

HO

OH

OH

ring opening

acid, H2ORAPESEED

Saturated

Oleic

Linoleic

Linolenic

Erucic

’00’ Canola High Erucic High Oleic

Natural profiles of some rapeseed oils now available

Saturated

Oleic

Linoleic

Linolenic Saturated

Oleic

Linoleic

Linolenic

Page 25: Renewable feedstocks

hydroxylatedmonomers

OH

OH

Isocyanatemonomers

NCO

NCO

catalyst

hydroxylatedmonomers

O

OO

HN

Isocyanatemonomers

Polyurethanes (polymers)

Page 26: Renewable feedstocks

Compositetype

Fibre volume

(%)

Tensile strength(MPa)

Young’s Modulus

(GPa)

Composite density(Kg/m3)

Impact strength(kJ/m2)

HEMP/ EUPH 21.05 22.91 (1.06)

2.31 649.55 18.81(2.17)

HEMP / RAPE 19.92 38.84 (2.21)

3.40 697.09 9.25(1.21)

JUTE / EUPH 23.77 55.52(2.60)

4.26 658.59 10.60(2.27)

JUTE / RAPE 23.74 46.38(3.37)

3.89 704.93 13.70(1.95)

Vegetable Oils as Polymer Feedstocks (monomers)

Rapeseed oilEuphorbia oil JuteHemp

Page 27: Renewable feedstocks
Page 28: Renewable feedstocks

WAX FROM WASTE STRAW

Page 29: Renewable feedstocks

Wax Extraction - Results

It would appear that a higher content is made available by degradation, but it is unknown to the origin of the material.

Straw Type Processing Extracted mass / mg

% dry mass extracted

Untreated None 80 1.84

Untreated Water 24 0.55

Untreated Chopped 100 1.77

P. Chrysosporium None 310 7.40

P. Chrysosporium Water 40 0.96

P. Chrysosporium Chopped 230 5.35

Page 30: Renewable feedstocks

Fatty acidsNa2WO4.2H2O

H2O2, aliquat, 100 °C, 5hr

HO2C CO2H

Azelaic acid

Rosacea treatmentAcne treatment

Hair growth stimulantNylon-6,9

+ Estolides

LubricantsRust inhibitor

n=4

n=5

n=3

n=2

O C

O

HOOH

HO

NaOOC

n-1

Tungstan mediated fatty acid functionalisation: J. Appl. Poly. Science, In Prep

Page 31: Renewable feedstocks

Future work

Mixtures

(Flavones)Materials

IncreasingComplexity

DecreasingComplexityDiscrete

Smaller building blocks

OHO

OH O

OH

OH

OH

OHO

OH O

OHO

OH O

OH

OH

O

OOO

OH

OH

OHOHOH

OH

ChemicalDegradation

BiologicalDegradation

HO

OH

OH

OH

OH

Page 32: Renewable feedstocks

Future work

Expand to renewable ’Waste Products’ further down manufacturing line.

e.g. food industry, Confectionary

Biodiesel Wealth out of Waste(EP/E002773/01)

(Akzo Nobel)

Use outputs to make demonstrator pieces for media and industrial dissemination

Page 33: Renewable feedstocks
Page 34: Renewable feedstocks
Page 35: Renewable feedstocks
Page 36: Renewable feedstocks

Electrospinning Lignin

Filler in biocomposite structuresMay promote resin / matrix adhesion between for natural fibres

Future work

Use in electrospun nanofibresSolutions not ideal for electrospinningPotential to be co-spun with other polymers (e.g. PVOH)Degradation products may have beneficial anti-oxidant properties which can be incorporated