removal of small-sized space debris by institut für laser ...€¦ · wissen für morgen knowledge...

1
Wissen für Morgen Knowledge for Tomorrow Institut für Technische Physik Laser Thermal Removal Simulation Simulation results for single pulse irradiation: nHelix laser upscaling: = 20 , 2 =2, = 8 , = 0.4, = 70 Target: Al plate 2 x 2 x 0.1 cm, arb. orientation Monte Carlo: 0.42 μrad pointing, 10000 samples Large momentum scatter Single pulse collision avoidance Simulation of multi-pulse irradiation: Parameters as above; supplementarily: 0 = 327.8 239.4 (dusk/dawn), = 0.09, up to 1000 samples each. Pulse limitation due to laser heating Multi-pass engagements mandatory Future Research Issues Accumulation of heat and stress Remote material reconnaissance Remote temperature monitoring Removal of Small-Sized Space Debris by Laser-Ablative Momentum Generation Stefan Scharring, Raoul-Amadeus Lorbeer, Michael Zwilich, Miroslav Zabic, Lukas Eisert, Daniel Hampf, Jascha Wilken, Dennis Schumacher , Markus Roth , and Hans-Albert Eckel © USAF True-Scale Experimental Proof Top: Experimental Setup Bottom: Dropping mechanism. Abbreviations: VAC: vacuum chamber, DM: dropping mechanism, P: periscope, L: Lens, LED: LED-lamp, HAL: halogen lamp, HSM: high-speed camera monochrome, HSC: high-speed camera color, BPC: beam profiling camera, LB: Laser beam, M: mirror, TSC: PTFE screen, HM: holding magnet, T: target, BP: burn pattern foil, PS: pressure spring, DA: dropping arm, HS: holding springs cm-sized targets (∅ <∅ ) Laser pulse energy: = 80 IR laser: = 1064 , = 10 Stereoscopic 3D-tracking, ∆ = 1 Vacuum (< 2 Pa), free fall (μ-G) Experimental Results Object velocity changes after laser irradiation. Simulation results are indicated as point clouds. Large area to mass high 1-pulse ∆ ≫ 10 Momentum direction sensitive to target orientation and position Concept Surface ablation by laser pulses Recoil on debris target Perigee lowering Burn-up in atmosphere Targeted debris size: 1...10 cm Ablative Recoil Measurements Operational Safety Analysis Local exclusion zone at laser site No-fly zone Radar control Reconcilement with air-traffic control and space agencies GSI Helmholtzzentrum für Schwerionenforschung Fluence [J/cm²] (Laser pulse energy aerial density) Momentum coupling coefficient c m [μNs/J] (Momentum per laser pulse energy) 25 20 15 10 5 0 0 2 4 6 8 10 12 Solar cell Aluminum Polyimide Laser parameters Pulse energy: max. 3 mJ Pulse duration: 8 ns Wavelength: 1064 nm Beam diameter: 0.7 mm Laser parameters Pulse energy: 10 kJ Pulse duration: 1 - 10 ns Wavelength: 1064 nm Beam diameter: 5 m Metal damage threshold Skin: Max. permissible exposure (MPE) MPE Human eye MPE Human eye with binoculars Direct irradiation / reflection Diffuse reflection Atmospheric scatter Hazard Fluence [J/cm²] Distance [km] Momentum Predictability and Heat Accumulation Optical Engineering 2018 True-scale Experiment Scientific Reports 2018 0.1 Scan here for video Scientific Reports 2018

Upload: others

Post on 19-Oct-2020

1 views

Category:

Documents


0 download

TRANSCRIPT

Page 1: Removal of Small-Sized Space Debris by Institut für Laser ...€¦ · Wissen für Morgen Knowledge for Tomorrow Institut für Technische Physik Laser Thermal Removal Simulation Simulation

Wissen für Morgen

Knowledge for Tomorrow

Institut für Technische Physik

Laser Thermal Removal Simulation Simulation results for single pulse irradiation: nHelix laser upscaling: 𝐸𝐿 = 20 𝑘𝐽, 𝑀2 = 2, 𝐷𝑇𝑒𝑙𝑒𝑠𝑐𝑜𝑝𝑒 = 8 𝑚, 𝑆𝑡𝑟 = 0.4, 𝑑𝑠𝑝𝑜𝑡 = 70 𝑐𝑚

Target: Al plate 2 x 2 x 0.1 cm, arb. orientation Monte Carlo: 0.42 µrad pointing, 10000 samples

• Large momentum scatter • Single pulse collision avoidance

Simulation of multi-pulse irradiation: Parameters as above; supplementarily: 𝑇0 = 327.8 239.4 𝐾 (dusk/dawn), 𝜀 = 0.09, up to 1000 samples each.

• Pulse limitation due to laser heating • Multi-pass engagements mandatory Future Research Issues

• Accumulation of heat and stress • Remote material reconnaissance • Remote temperature monitoring

Removal of Small-Sized Space Debris by Laser-Ablative Momentum Generation Stefan Scharring, Raoul-Amadeus Lorbeer, Michael Zwilich, Miroslav Zabic, Lukas Eisert, Daniel Hampf, Jascha Wilken, Dennis Schumacher, Markus Roth, and Hans-Albert Eckel

© USAF

True-Scale Experimental Proof Top: Experimental Setup Bottom: Dropping mechanism. Abbreviations: VAC: vacuum chamber, DM: dropping mechanism, P: periscope, L: Lens, LED: LED-lamp, HAL: halogen lamp, HSM: high-speed camera monochrome, HSC: high-speed camera color, BPC: beam profiling camera, LB: Laser beam, M: mirror, TSC: PTFE screen, HM: holding magnet, T: target, BP: burn pattern foil, PS: pressure spring, DA: dropping arm, HS: holding springs

• cm-sized targets (∅𝑡𝑎𝑟𝑔𝑒𝑡 < ∅𝑠𝑝𝑜𝑡)

• Laser pulse energy: 𝐸𝐿 = 80 𝐽 • IR laser: 𝜆 = 1064 𝑛𝑚, 𝜏 = 10 𝑛𝑠 • Stereoscopic 3D-tracking, ∆𝑡 = 1 𝑚𝑠 • Vacuum (< 2 Pa), free fall (µ-G) Experimental Results Object velocity changes ∆𝑣 after laser irradiation. Simulation results are indicated as point clouds.

• Large area to mass high ∆𝑣 • 1-pulse ∆𝑣 ≫ 10 𝑐𝑚 𝑠 • Momentum direction sensitive to

target orientation and position

Concept

• Surface ablation by laser pulses Recoil on debris target Perigee lowering Burn-up in atmosphere

• Targeted debris size: 1...10 cm

Ablative Recoil Measurements

Operational Safety Analysis

• Local exclusion zone at laser site • No-fly zone • Radar control • Reconcilement with air-traffic control

and space agencies

GSI Helmholtzzentrum für Schwerionenforschung

Fluence [J/cm²]

(Laser pulse energy aerial density)

Mo

me

ntu

m c

ou

plin

g c

oe

ffic

ien

t c

m

[µN

s/J

]

(Mo

me

ntu

m p

er

lase

r p

uls

e e

ne

rgy) 25

20

15

10

5

0 0 2 4 6 8 10 12

Solar cell Aluminum Polyimide

Laser parameters

Pulse energy: max. 3 mJ

Pulse duration: 8 ns

Wavelength: 1064 nm

Beam diameter: 0.7 mm

Laser parameters

Pulse energy: 10 kJ

Pulse duration: 1 - 10 ns

Wavelength: 1064 nm

Beam diameter: 5 m

Metal damage threshold

Skin: Max. permissible exposure (MPE)

MPE Human eye

MPE Human eye with binoculars

Direct irradiation / reflection

Diffuse reflection

Atmospheric scatter

Hazard

Flu

en

ce

𝜱 [

J/c

m²]

Distance 𝒛 [km]

Momentum Predictability and Heat Accumulation

Optical Engineering 2018

True-scale Experiment

Scientific Reports 2018

0.1

Scan here for video

Scientific Reports 2018