remedial methods and strategies for perflourinated...

21
1 Remedial methods and strategies for perflourinated compounds Niklas Törneman, Sweco

Upload: phungnhi

Post on 17-May-2018

222 views

Category:

Documents


2 download

TRANSCRIPT

1

Remedial methods and strategies

for perflourinated compounds

Niklas Törneman, Sweco

◄ ►

The project on remedial methods is part of the overall Environmental project which is

initiated, entirely financed and also led by Avinor.

◄ ►

3

Background

Avinor, the Norwegian aviation authority in 2011 instigated investigations of its airports as part

of their efforts to map the environmental status at their facilities.

Aqueous Film Forming Foam has been used to suppress fires at fire fighting training sites at

airports (as well as industries etc.) potentially resulting in contamination of soil and

groundwater by perflourinated compounds (PFCs).

Several PFCs have properties that hinders the usage of commonly used remedial methods

Avinor has initiated the present project to determine possible remedial methods and strategies

for PFCs

Scientific literature review. Technical reports. Contact with consultants, scientists etc.

◄ ►

4

The most important solution has already been implemented!

AVINOR will have replaced PFC containing AFFF with PFC free Moussol at all

airports during 2012

PFC usage/emission of > 3 tonnes yearly have been completely stopped

◄ ►

5

Why a talk on remediation of perflourinated compounds (PFCs)?

1. Unfavorable properties, i.e. no biodegradation, low volatility – many

classic in situ techniques unsuitable

2. Highly variable properties – difficult to address all substances?

3. Environmental fate not well known and highly variable – modeling and

prediction complicated or (at present) not possible

◄ ►

6

PFCs of interest (at fire fighting training sites)

Soil Groundwater Biota

(earthworm)

Sediment Surface

water

6:2 FTS X X X X X

PFOSA X X X

N-Me-FOSA X

N-et-FOSA X X

PFBS X X X X X

PFHxS X X X X X

PFOS X X X X X

PFDcS X X X

PFHxA X X X X X

PFHpA X X X X

PFOA X X X X

PFNA X X X X X

PFDcA X X X X

PFUnA X X X X

PFDoA X X X X

PFTriA x X X

PFTeA x X

Four fire fighting training sites at airports in Norway

Aquatic biota at background localities and

close to airports/fire fighting training sites

in Norway

PFC Number of detects Average concentration

in all biota (ug/kg)

Riskprioritering

PFBA 0

PFPeA 0

PFHxA 0

PFHpA 0

PFOA 8 0.32 5

PFNA 20 1.71 4

PFDA 24 0.87 4

PFBS 0

PFHxS 18 6.10 2

PFOS 105 87.44 1

FTS-6:2 5 2.52 3

FTS-8:2 10 3.09 3

◄ ►

7

Most important – persistence and volatility

PFOA and PFOS are highly persistent. Not biodegradable and has a very long hydrolysis and

photolysis half life

Some PFCs are biodegradable with possibly harmless end-products

Some PFCs biodegrade with PFOS and/or PFOA partly as end-products. 8:2 FTS is one example1

1 starting with hydrolysis of the ester linkage with PFOA as one utlimate degradation product

◄ ►

8

> Many PFCs highly water soluble

> Koc Covers the whole range of other substances

> Koc Highly variable for individual substances due to both interaction with organic

carbon and interaction with charged surfaces / ionic interaction

Partitioning (Koc)

◄ ►

9

.

Fate

Many PFCs including PFOS and PFOA occur mostly in ionized forms complicated

fate/transport/leaching behavior

PFCs occur through the whole unsaturated soil profile with different PFC compositions at different

depths. Has been found at high conc. at 10 – 20 m depth.

Depth of highest PFC concentration variable

Major transport pathway is groundwater for most PFCs related to AFFF

Total site loss through groundwater transport is highly variable and site specific. 0.05% - 10% per

year

Free phase behavior not reported. Assumed non important at present.

No models developed that predict fate (of ionized organic chemicals/PFCs) at the site scale.

Fugacity models developed but of less use for modeling/predicting site remediation

Contaminated matrix

LNAPL/DNAPL

Pore gas

Soil

Groundwater

()

PFCs

◄ ►

11

Excavation

Pump and treat

Pore gas extraction/air injection

In situ soil flushing

Thermal treatment

Biological in situ treatment

In Situ oxidation

In Situ reduction

Phytoremediation

MNA

Yes/(No)

Yes/(No)

No not volatile

Yes/No

Yes/No

No not biodegradable

Yes/No?

?

?

No persistent

Applicability of remedial technologies based on fate and

physicochemical properties

◄ ►

12

Description

Physical removal and off site transport followed by i.e. landfill disposal or treatment

Established technique for many contaminants

Mostly unsaturated source zone, but also saturated

Well known, experienced contractors, fast and thorough mass reduction

Applicability for PFCs (at fire fighting training sites)

Limited vertical reach – PFC may occur at very large depths

Negative impact on day to day operations (i.e. at airports)

Risk of mobilization during excavation

Not fully appropriate for landfill disposal:

• Many PFCs highly water soluble and persistent low retention in landfills and high concentrations In landfill leachate

• PFOS and PFOA may be produced in landfill due to biodegradation of precursor PFCs

Thermal treatment and/or soil flushing may be more appropriate

Very costly

Excavation and off site treatment

◄ ►

Description

Contaminated groundwater is removed and treated on-site

Established technique for many contaminants

Only saturated zone. Both source zone and plume.

Well known, experienced contractors

Requires very good knowledge of geohydrology

Applicability for PFCs (at fire fighting training sites)

Removal of PFCs from extracted groundwater

• Bioreactors and air stripping can not be used

• Traditional sorbents such (G)AC has variable success due to high water solubility and low partitioning of many PFCs,

especially short chain carboxylates. (G)AC may require frequent sorbent replacement. Better sorbent (ion exchange

resin, zeolites etc.) are being developed and put into use.

• Advanced and/or destructive techniques (i.e. ozonation, reverse osmosis etc. ) has been tested for drinking

water/water works and waste water. Most suited for fixed installations.

Long treatment time: 10 – 500 years. Depends on loss through groundwater transport. Possibly non-

linear.

Low on-site disturbance

Cost dependent on treatment time

13

Pump and treat / hydraulic containment

◄ ►

Description

Addition of a (very) strong oxidizer causes oxidation of the contaminants to harmless end-

products

Injection/addition of oxidizer directly into the contaminated matrix

Mostly Source zone treatment

Established methods, experienced contractors available

Applicability for PFCs (at fire fighting training sites)

Has been tested at laboratory scale:

Permanganate +(++)

Fenton's reagents +(++)

Activated Persulfate ++(++)

Mostly used for saturated zone treatment, but PFCs occur also in

unsaturated zone

• Only few projects with injection into the saturated zone

• Soil blending down to several m depth

14

Chemical In Situ Oxidation

Methodology Availability of experienced contractors non PFCs

Status / maturity of technology – non PFCs

Scale at which it has been tested for PFCs

Effectiveness for PFCs based on fate

Effectiveness for PFCs based on physico-chemical properties

Time for remediation

Disturbance ongoing operations

Cost Efficiency

Excavation and ex situ treatment

5 5 Full scale 2-5 2-4 4-5 1-3 1-3

Pump and treat 4-5 4-5 Full scale 4-5 3-4 1-2 4-5 1-5

In Situ Chemical Oxidation

3-4 3-5 Lab scale - soil 3-5 2-5 3-5 4-5 2

In Situ Electro-Chemical Oxidation

? 2-5 Lab scale and pilot field study (?)

2-5 3-5 3-5 4-5 ?

In situ soil flushing

? 2-4 Lab scale 3-4 2-4 1-5 3-5 2-5

Thermal in situ methods (ISTD)

3 3-5 ?

3-5 2-5 4-5 4-5 2-5

Stabilization / solidification

3-5 4-5 Bench scale - soil

2-4 2-5 2-5 1-3 Unknown

Barrier technologies

2-3 3-5 Unknown – DOD / SERDP project

3-5 2-4 1-5 2-4 Unknown

Applicability of remedial technologies for PFCs at Avinors sites - technology evaluation

◄ ►

16

Project review

32 projects worldwide has been reviewed

Airports, Landfills, PFC production sites, municipal fire fighting training sites, soil

dumping sites etc..

Excavation at 8 sites

Pump and treat 17 sites – Mostly GAC although some are changing sorbent type

Several sites are implementing intermittent strategies until better solutions are

available

◄ ►

17

Strategies

Generic decision methods were developed to support the choice of long and short term remediation

strategies for PFCs at Avinors fire fighting training sites. Take into account:

Which PFCs that are present and their physicochemical properties

Geohydrological conditions

The off-site and on-site risks at present and in the future

Acceptable time frames for remediation

Costs for remediation

Acceptable disturbance on day to day operations

The choice of strategy is a process between Avinor and the Norwegian Climate and Pollution Agency,

KLIF):

The decision models can support Avinor and KLIF in this work

This process is important since KLIF or the County Governor has to approve the strategies/solutions for

each individual site

Remediation technologies for PFCs are under development:

the strategies may involve short term solutions (e.g. pump and treat or administrative measures) until

appropriate methodologies for site remediation has been developed.

Is there a high risk with PFCs Yes

Urgent technical and administrative protective measures

No

Is there an ongoing off site transport of PFCs ?

Yes

No remedial measures. Monitoring program

developed in cooperation with authroities

No Is it off site transport expected in the long term

Yes

No

Is it (risk) acceptable?

Yes

No

Risk assessment

Is these also a (different)

long term risk Both short and

long term strategies

No

Does PFCs in the unsaturated zone pose an on-site risk?

Is monitoring necessary?

No further activities

No

Yes No

Yes

Evaluate remedial measures in soil

(scheme 1) and groundwater

(scheme 2) based on risk reduction

and costs

Yes

Är grävsanering möjligt utan att störa verksamheten?

Ja / delvis

Är kostnader för grävsanering acceptabla ?

Detta kan exempelvis gälla om:

• föroreningar i ytjord finns på en sådan plats att exempelvis hangarer, uppställningsplatser eller start- och landningsbanor måste rivas/förflyttas.

• Det förekommer ledningar (el , tele, vatten etc.) i saneringsområdet som inte får störas

Detta kan då innebära ett så allvarligt ingrepp i verksamheten att en grävsanering inte är möjligt ur ett kostnads-nytto perspektiv. Detta bör motiveras väl i åtföljande rapport.

Ja / delvis

För att kunna beräkna kostnad bör följande kunna bedömas grovt:

1) Vertikal och horisontell utbredning av förorening i ytjord

2) Nyckeltal för utgrävning, deponering etc.

3) Metod för omhändertagande (deponering eller förbränning är aktuella för PFCs)

OBS! viktigt att samma nyckeltal används för flygplatser med liknande förhållanden t.ex. avstånd till deponi etc. Om kostnader är acceptabel kan beskrivas med en kostnads-nytto analys, men bör i vilket fall motiveras väl i rapport.

Utvärdera t.ex. nedanstående metoder. Om det finns stora osäkerheter i deras funktion fundera på tillfälliga åtgärder eller om åtgärder kan vänta tills bättre metoder finns tillgängliga

1. Inneslutning

2. Stabilisering/solidifiering

3. Kemisk oxidation

4. Termiska metoder

Grävsanering av ytjord utvärderas.

2. Åtgärder i jord och/eller kombinerade metoder för både jord och grundvatten Flygplats: XXXXXXX

Brandövningsplats: XXXX

Är alternativa metoder möjliga för åtgärder i jord/grundvatten ?

Nej/ tveksamt

Börja med båda

Alternativa åtgärder för jord/grundvatten utvärderas

Är alternativa åtgärder färdigutvecklade

Ja

Ja

Nej

Är det möjlig att vänta med åtgärder

Utvärderas ej vidare

Nej

Eventuellt tillfälliga åtgärder (administrativa, inneslutning etc.) tills

metoder är färdig för åtminstone pilotförsök

Nej/ tveksamt

Utvärderas ej vidare

Nej/ tveksamt

Utvärderas ej vidare

Möjliggör geologi/hydrologi uppsamling av grundvatten

Information som kan behövas är exempelvis:

• Vertikal och horisontell spridning av PFCs i grundvatten

• Årlig mäng grundvatten som behöver samlas upp

• Bedömd influensradie om grundvattenextraktion sker med brunnar

• grad av kontakt mellan ytlig och djupare akvifär

3. Åtgärder endast i grundvatten Flygplats: XXXXXXX

Brandövningsplats: XXXX

Rapport: XXXXXXXXX

Möjliggör geologi/hydrologi barriärlösning och eller inneslutning

Ja Ja

Behandling av PFCs i uppsamlat grundvatten Kostnader och teknisk genomförbarhet jämförs för möjliga metoder. Den mest fördelaktiga metoden väljs: - Kolfilter - Andra filtermaterial - Destruktiva metoder (ultraljud, oxidation termiska

etc.)

Är behandlingstid och eller behandlingseffektivitet acceptabel?

Kan kräva behandlingsförsök. Viktigt att långsiktig effektivitet och kostnad bedöms.

Barriärmetoder eller inneslutning är en möjlig åtgärd för att förhindra transport av PFCs i

grundvatten

Är återinfiltration en möjlig metod tills det finns bättre metoder för behandling av PFCs i uppsamlat grundvatten

?

Kan i vissa fall endast bedömas efter lab- eller fullskaletest

Uppsamling och behandling av grundvatten är en möjlig åtgärd för att förhindra transport av PFCs i grundvatten

Erfarenhetsmässigt är det känt att behandling av grundvatten måste hålla på under mycket lång tid, 100 tals år. Kan ses som en tillfällig metod.

Ja

Återinfiltration är en möjlig metod

Ja

Kostnader och riskreduktion jämförs. Utvärderas eventuellt mot lösningar i jord

och jord/grundvatten

Utvärderas ej vidare

Nej Nej

Utvärderas ej vidare

Nej

Utvärderas ej vidare

Nej

21

Take home message

Identify critical PFCs

Excavation is not always fully appropriate

Pump and treat: 1) GAC alternatives 2) evaluate time frame

Some promising methods for in situ remediation are being developed –

have patience

The correct strategies will be site specific

.