refrigeration & air conditioning (1) - sheets solution

25

Upload: mohamed-maher

Post on 19-Jul-2016

173 views

Category:

Documents


24 download

DESCRIPTION

Final

TRANSCRIPT

Page 1: Refrigeration & Air Conditioning (1) - Sheets Solution
Page 2: Refrigeration & Air Conditioning (1) - Sheets Solution
Page 3: Refrigeration & Air Conditioning (1) - Sheets Solution
Page 4: Refrigeration & Air Conditioning (1) - Sheets Solution
Page 5: Refrigeration & Air Conditioning (1) - Sheets Solution
Page 6: Refrigeration & Air Conditioning (1) - Sheets Solution
Page 7: Refrigeration & Air Conditioning (1) - Sheets Solution
Page 8: Refrigeration & Air Conditioning (1) - Sheets Solution
Page 9: Refrigeration & Air Conditioning (1) - Sheets Solution
Page 10: Refrigeration & Air Conditioning (1) - Sheets Solution
Page 11: Refrigeration & Air Conditioning (1) - Sheets Solution
Page 12: Refrigeration & Air Conditioning (1) - Sheets Solution
Page 13: Refrigeration & Air Conditioning (1) - Sheets Solution
Page 14: Refrigeration & Air Conditioning (1) - Sheets Solution

1

Sheet No. Three 1. An ammonia system operating with an evaporating temperature of -30°C and a

condensing temperature of 35°C separates flash gas at a temperature of -2°C and delivers it to the condenser through a separate compressor. If the refrigerating capacity is 200 kW (56.9 tons of refrigeration), what are the power requirements if the system operates (a) single stage, and (b) with flash-gas removal?

2. A refrigeration cycle uses Feron-12 as the working fluid. The temperature of the

refrigerant in the evaporator is -10˚C and the condensing temperature is 40˚C. The cooling load is 150W. The compressor speed is 720rpm and the volumetric efficiency is 80%. Calculate the mass flow rate of the refrigerant and the displacement volume of the compressor. The following are selected extract of the Feron-12 properties.

Temperature,

˚C Pressure,

MPa Enthalpy, kJ/kg Specific volume of

Sat. vapor, m3/kg Liquid Vapor -10 0.22 26.8 183.0 0.08 40 0.96 74.5 203.1 0.02

3. In a simple vapor compression cycles, the following data were obtained for R-12

refrigerant at various points: Compressor inlet h2 = 183.2kJ/kg v2 = 0.0767m3/kg Compressor discharge h3 = 222.6kJ/kg v3 = 0.00164m3/kg Condenser exit hf4 = 84.9kJ/kg v4 = 0.00083m3/kg The piston displacement volume for the compressor is 1.5liters/stroke and its volumetric efficiency is 80%. The speed of the compressor is 1600rpm. Find: a) Power rating of the compressor (kW), and b) Cooling capacity (kW).

4. A refrigerating plant works between -5˚C and 25˚C. The working fluid is ammonia and has a dryness fraction of 0.62 at entry of compressor. If the machine has a relative efficiency of 55%, calculate the amount of ice formed during a period of 24 hours. The ice is to be formed at 0˚C from water at 15˚C and 6.4kg of ammonia is circulated per minute. Specific heat of water is 4.187kJ/kg and latent heat of ice is 355kJ/kg. Selected properties of ammonia (NH3) is given in the following table;

Temperature ˚C

Liquid heat, hf kJ/kg

Latent heat, hfg kJ/kg

Entropy of liquid kJ/kg.K

25 298.9 1137.1 1.124 -5 158.2 1280.8 0.630

Page 15: Refrigeration & Air Conditioning (1) - Sheets Solution

2

5. Determine the theoretical COP for CO2 machine working between the temperature range of 25˚C and -5˚C. The dryness fraction of CO2 gas during the suction stroke is 0.6. The following are selected extract of the properties for CO2

Temperature ˚C

Heat Latent heat, hfg kJ/kg

Entropy kJ/kg.K Liquid Vapor Liquid Vapor

25 81.17 202.5 121.34 0.251 .644 -5 -7.53 236.88 245.52 -0.042 0.841

How many tons of ice would a machine working between the same limits and having a relative COP (efficiency) of 45% make in 24 hours? The water for the ice is supplied at 15˚C and the compressor takes 8.2kg of CO2 per hour. Specific heat of water may be taken as 4.18kJ/kg.K and latent heat of ice as 335kJ/kg.

6. A F-12 vapor compression refrigeration system has a condensing temperature of

50˚C and evaporating temperature of 0˚C. The refrigeration capacity is 7TR. The liquid leaving the condenser is saturated liquid and compression is isentropic. The enthalpy at the end of isentropic compression is 210kJ/kg. Determine:

(a) The refrigerant flow rate, (b) The power required to run the compressor, (c) The heat rejected in the plant, and (d) The COP of the system.

You may use the extract of Feron-12 property table given below: Temperature

˚C Pressure,

bar hf kJ/kg hg kJ/kg Fluid entropy

kJ/kg.K Gas entropy

kJ/kg.K 50 12.199 84.868 206.298 0.3034 0.6792 0 3.086 36.022 154.364 0.1418 0.6960

7. A standard vapor-compression refrigeration cycle operates between an evaporator

temperature of -10˚C and a condenser temperature of 40˚C. The flow rate of the refrigerant, Feron-12, is 1.0kg/min and the enthalpy at the end of compression is 220kJ/k. Show the T-S diagram of the cycle, and then calculate:

(a) The COP of the cycle, (b) The refrigeration capacity, and (c) The compressor power.

You may use the extract of Feron-12 property table given below: Temperature, ˚C Pressure, bar hf kJ/kg hg kJ/kg

-10 0.2191 26.85 183.1 40 0.9607 74.53 203.1

8. A food storage locker requires a refrigeration capacity of 50kW. It works between

a condenser temperature of 35˚C and an evaporator temperature of -10˚C. The refrigerant is ammonia. It is sub-cooled by 5˚C before entering the expansion valve by the dry saturated vapor leaving the evaporator. Assuming a single-cylinder single-acting compressor operating at 1000rpm with stroke equal to 1.2 times the bore, determine: (a) The power required and (b) The cylinder dimensions.

You may use the extract of ammonia property table given below:

Page 16: Refrigeration & Air Conditioning (1) - Sheets Solution

3

Tsat, ˚C

Pressure bar

Enthalpy, kJ/kg Entropy, kJ/kg.K

Specific volume, m3/kg

Specific heat, kJ/kg.K

Liquid Vapor Liquid Vapor Liquid Vapor Liquid Vapor-10 2.9157 154.056 1450.22 0.82965 5.7550 -- 0.41747 -- 2.492 35 13.522 366. 1488.57 1.56605 5.2086 1.7023 0.09563 4.556 2.903

9. A food storage locker requires a refrigeration system of 2400kJ/min capacity at an

evaporator temperature of -10˚C and a condenser temperature of 30˚C. The refrigerant is feron-12 and is sub-cooled by 6˚C before entering the expansion valve and vapor is superheated by 7˚C before leaving the evaporator. The compression is isentropic. The refrigerant compressor is a two-cylinder single-acting operating at 1000rpm with stroke equal to 1.25 times the bore. Take the liquid specific heat as 1.235kJ/kg.K and the vapor specific heat as 0.733kJ/kg.K. Determine (a) Refrigeration effect per kg, (b) Mass of refrigerant to be circulated per minute, (c) Theoretical piston displacement per minute, (d) Theoretical power required to run the compressor in kW, (e) Heat removed through condenser per minute, and (f) Theoretical bore and stroke of compressor.

You may use the extract of ammonia properties table given below: Tsat, ˚C Pressure

bar Enthalpy, kJ/kg Entropy, kJ/kg.K Specific volume, m3/kg

Liquid Vapor Liquid Vapor Vapor -10 2.19 26.9 183.2 0.1080 0.7020 0.0767 30 7.45 64.6 199.6 0.2399 0.6854 0.0235

10. A refrigeration cycle uses Feron-12 as the working fluid. The temperature of the

refrigerant in the evaporator is -10˚C and the condensing pressure is 40˚C. The cooling load is 150W. The compressor speed is 720rpm and the volumetric efficiency is 80%. Calculate the mass flow rate of the refrigerant and the displacement volume of the compressor. The following are selected extract of the Feron-12 properties.

Temperature,

˚C Pressure,

MPa Enthalpy, kJ/kg Specific volume of

Sat. vapor, m3/kg Liquid Vapor -10 0.22 26.8 183.0 0.08 40 0.96 74.5 203.1 0.02

Page 17: Refrigeration & Air Conditioning (1) - Sheets Solution
Page 18: Refrigeration & Air Conditioning (1) - Sheets Solution
Page 19: Refrigeration & Air Conditioning (1) - Sheets Solution
Page 20: Refrigeration & Air Conditioning (1) - Sheets Solution
Page 21: Refrigeration & Air Conditioning (1) - Sheets Solution
Page 22: Refrigeration & Air Conditioning (1) - Sheets Solution

Pharos University in Alexandria      ME‐240 Refrigeration & Air Conditioning (1) Faculty of Engineering      Spring 2013 ‐ 2014 Mechanical Engineering Department      8th Semester    

Sheet 3.1 Improved & Multi-Stage Vapor Compression System

 1) A R‐12 vapor compression system, fitted with a heat exchanger, which subcools the liquid 

refrigerant coming from the condenser from 32   to 22   . if the vapor leaving the evaporator is 

dry and saturated at  12 .Draw the flow diagram of the system and represent it on P‐h chart 

and show the effect of the presence of the heat exchanger on : 

a) The C.O.P of the system. 

b) The refrigerating capacity in ton refrigerant if the compressor pumps 25 . 

2) For single compressor R‐717 System consisted of flash chamber, heat exchanger. The condenser 

pressure is 1.6 MPa, subcooler 0.6 MPa and evaporator pressure 0.3 MPa. Vapor temperature 

increased through the heat exchanger10 . Make a suitable arrangement for this cycle and 

determine the following : 

a) The C.O.P of the system. 

3) For a small refrigeration plant of 10 T.R. if inside design air temperature is 2  and the outside 

design air temperature is 30 .make a suitable selection for a simple ammonia system, including a 

heat exchanger, single cylinder compressor with stroke to bore ratio 0.9, volumetric efficiency 0.8 

and 12 rps.  

Determine the following: 

a) The C.O.P of the system.  b) Compressor’s dimension. 

c) The power required for the compressor. 

4) The following data are for a compound compression ammonia (R‐717) Machine (Shown in Figure 

below) with flash inter‐cooler. The Capacity is 100 T.O.R, condenser pressure 13 bar, evaporator 

pressure 1.0 bar, Inter‐cooler pressure 5 bar. The volumetric efficiency for the low & high‐pressure 

cylinder = 85%, compression is isentropic. Ammonia enters the low‐pressure cylinder at ‐12 and 

leaves the condenser at 33 . 

Determine the following: 

a) The total power required. 

b) The C.O.P of the system. 

c) The total pistons displacement in . 

 

 

 Condenser

Evaporator

Flash Inter-Cooler

C1

C2

Ex1

Ex2

Page 23: Refrigeration & Air Conditioning (1) - Sheets Solution
Page 24: Refrigeration & Air Conditioning (1) - Sheets Solution
Page 25: Refrigeration & Air Conditioning (1) - Sheets Solution