references - springer978-3-540-73036-1/1.pdf · 418 references 1.24 blenkinsop p. a.: titanium...

25
References 1.1 Jaffee R. I., Promisel N. E., eds.: The Science, Technology and Application of Titanium, Pergamon Press, Oxford, UK, (1970) 1.2 Jaffee R. I., Burte H. M., eds.: Titanium Science and Technology, Plenum Press, New York, USA, (1973) 1.3 Williams J. C., Belov A. F., eds.: Titanium and Titanium Alloys, Plenum Press, New York, USA, (1982) 1.4 Kimura H., Izumi O., eds.: Titanium ‘80, Science and Technology, AIME, Warrendale, USA, (1980) 1.5 Lütjering G., Zwicker U., Bunk W., eds.: Titanium, Science and Technology, DGM, Oberursel, Germany, (1985) 1.6 Lacombe P., Tricot R., Beranger G., eds.: Sixth World Conference on Titanium, Les Edi- tions de Physique, Les Ulis, France, (1988) 1.7 Froes F. H., Caplan I. L., eds.: Titanium ‘92, Science and Technology, TMS, Warrendale, USA, (1993) 1.8 Blenkinsop P. A., Evans W. J., Flower H. M., eds.: Titanium ‘95, Science and Technology, The University Press, Cambridge, UK, (1996) 1.9 Gorynin I. V., Ushkov S. S., eds.: Titanium ’99, Science and Technology, CRISM “Pro- metey”, St. Petersburg, Russia, (2000) 1.10 Lütjering G., Albrecht J., eds.: Ti-2003, Science and Technology, Wiley-VCH, Weinheim, Germany, (2004) 1.11 Niinomi M., Maruyama K., Ikeda M., Hagiwara M., Akiyama S., eds.: Proceedings of the 11th World Conference on Titanium, The Japan Institute of Metals Sendai, Japan, (2007) 1.12 Bomberger H. B., Froes F. H., Morton P. H.: Titanium Technology: Present Status and Future Trends, TDA, Dayton, USA, (1985) p. 3 1.13 Eylon D., Seagle S.R.: Titanium ’99, Science and Technology, CRISM “Prometey”, St. Petersburg, Russia, (2000) p. 37 1.14 Bania P. J.: Titanium ‘92, Science and Technology, TMS, Warrendale, USA, (1993) p. 2227 1.15 Seagle S. R.: Mater. Sci. Eng. A213, (1996) p.1 1.16 Gorynin I. V.: Titanium ‘92, Science and Technology, TMS, Warrendale, USA, (1993) p. 65 1.17 Yamada M: Mater. Sci. Eng. A213, (1996) p. 8 1.18 Boyer R. R.: J. of Metals 44, no. 5, (1992) p. 23 1.19 Combres Y., Champin B.: Titanium ‘95, Science and Technology, The University Press, Cambridge, UK, (1996) p. 11 1.20 Wilhelm H., Furlan R., Moloney K. C.: Titanium ‘95, Science and Technology, The Uni- versity Press, Cambridge, UK, (1996) p. 620 1.21 Schutz R. W., Watkins H. B.: Mater. Sci. Eng. A243, (1998) p. 305 1.22 Moriyasu T.: Titanium ‘95, Science and Technology, The University Press, Cambridge, UK, (1996) p. 21 1.23 Froes F. H., Allen P. G., Niinomi M.: Non-Aerospace Applications of Titanium, TMS, Warrendale, USA, (1998) p. 3

Upload: lamquynh

Post on 17-Jun-2018

220 views

Category:

Documents


0 download

TRANSCRIPT

References

1.1 Jaffee R. I., Promisel N. E., eds.: The Science, Technology and Application of Titanium, Pergamon Press, Oxford, UK, (1970)

1.2 Jaffee R. I., Burte H. M., eds.: Titanium Science and Technology, Plenum Press, New York, USA, (1973)

1.3 Williams J. C., Belov A. F., eds.: Titanium and Titanium Alloys, Plenum Press, New York, USA, (1982)

1.4 Kimura H., Izumi O., eds.: Titanium ‘80, Science and Technology, AIME, Warrendale, USA, (1980)

1.5 Lütjering G., Zwicker U., Bunk W., eds.: Titanium, Science and Technology, DGM, Oberursel, Germany, (1985)

1.6 Lacombe P., Tricot R., Beranger G., eds.: Sixth World Conference on Titanium, Les Edi-tions de Physique, Les Ulis, France, (1988)

1.7 Froes F. H., Caplan I. L., eds.: Titanium ‘92, Science and Technology, TMS, Warrendale, USA, (1993)

1.8 Blenkinsop P. A., Evans W. J., Flower H. M., eds.: Titanium ‘95, Science and Technology, The University Press, Cambridge, UK, (1996)

1.9 Gorynin I. V., Ushkov S. S., eds.: Titanium ’99, Science and Technology, CRISM “Pro-metey”, St. Petersburg, Russia, (2000)

1.10 Lütjering G., Albrecht J., eds.: Ti-2003, Science and Technology, Wiley-VCH, Weinheim, Germany, (2004)

1.11 Niinomi M., Maruyama K., Ikeda M., Hagiwara M., Akiyama S., eds.: Proceedings of the 11th World Conference on Titanium, The Japan Institute of Metals Sendai, Japan, (2007)

1.12 Bomberger H. B., Froes F. H., Morton P. H.: Titanium Technology: Present Status and Future Trends, TDA, Dayton, USA, (1985) p. 3

1.13 Eylon D., Seagle S.R.: Titanium ’99, Science and Technology, CRISM “Prometey”, St. Petersburg, Russia, (2000) p. 37

1.14 Bania P. J.: Titanium ‘92, Science and Technology, TMS, Warrendale, USA, (1993) p. 2227

1.15 Seagle S. R.: Mater. Sci. Eng. A213, (1996) p.1 1.16 Gorynin I. V.: Titanium ‘92, Science and Technology, TMS, Warrendale, USA, (1993) p.

65 1.17 Yamada M: Mater. Sci. Eng. A213, (1996) p. 8 1.18 Boyer R. R.: J. of Metals 44, no. 5, (1992) p. 23 1.19 Combres Y., Champin B.: Titanium ‘95, Science and Technology, The University Press,

Cambridge, UK, (1996) p. 11 1.20 Wilhelm H., Furlan R., Moloney K. C.: Titanium ‘95, Science and Technology, The Uni-

versity Press, Cambridge, UK, (1996) p. 620 1.21 Schutz R. W., Watkins H. B.: Mater. Sci. Eng. A243, (1998) p. 305 1.22 Moriyasu T.: Titanium ‘95, Science and Technology, The University Press, Cambridge,

UK, (1996) p. 21 1.23 Froes F. H., Allen P. G., Niinomi M.: Non-Aerospace Applications of Titanium, TMS,

Warrendale, USA, (1998) p. 3

418 References

1.24 Blenkinsop P. A.: Titanium ‘95, Science and Technology, The University Press, Cam-bridge, UK, (1996) p. 1

1.25 Boyer R. R.: Titanium ‘95, Science and Technology, The University Press, Cambridge, UK, (1996) p. 41

1.26 Shira C., Froes F. H.: Non-Aerospace Application of Titanium, TMS, Warrendale, USA, (1998) p. 331

1.27 Niinomi M., Kuroda D., Morinaga M., Kato Y., Yashiro T.: Non-Aerospace Application of Titanium, TMS, Warrendale, USA, (1998) p. 217

1.28 Fanning J. C.: Ti-2003, Science and Technology, Wiley-VCH, Weinheim, Germany, (2004) p. 3125

1.29 Crist E., Yu K., Bennett J., Welter F., Martin B., Luckowski S.: Ti-2003, Science and Technology, Wiley-VCH, Weinheim, Germany, (2004) p. 173

1.30 Kosaka Y., Fanning J. C., Fox S. P.: Ti-2003, Science and Technology, Wiley-VCH, Weinheim, Germany, (2004) p. 3027

2.1 Zarkades A., Larson F. R.: The Science, Technology and Application of Titanium, Perga-mon Press, Oxford, UK, (1970) p. 933

2.2 Conrad H., Doner M., de Meester B.: Titanium Science and Technology, Plenum Press, New York, USA, (1973) p. 969

2.3 Fedotov S. G.: Titanium Science and Technology, Plenum Press, New York, USA, (1973) p. 871

2.4 James D. W., Moon D. M.: The Science, Technology and Application of Titanium, Perga-mon Press, Oxford, UK, (1970) p. 767

2.5 Ivasishin O. M., Flower H. M., Lütjering G.: Titanium ’99, Science and Technology, CRISM “Prometey”, St. Petersburg, Russia, (2000) p. 77

2.6 Collings E. W.: Materials Properties Handbook: Titanium Alloys, ASM, Materials Park, USA, (1994) p. 1

2.7 Boyer R., Welsch G., Collings E. W., eds.: Materials Properties Handbook: Titanium Alloys, ASM, Materials Park, USA, (1994)

2.8 Partridge P. G.: Met. Rev. 12, (1967) p. 169 2.9 Yoo H. M.: Met. Trans. 12A, (1981) p. 409 2.10 Paton N. E., Williams J. C., Rauscher G. P.: Titanium Science and Technology, Plenum

Press, New York, USA, (1973) p. 1049 2.11 Jones I. P., Hutchinson W. B.: Acta Met. 29, (1981) p. 951 2.12 Paton N. E., Baggerly R. G., Williams J. C.: Rockwell Report SC 526.7FR (1976) 2.13 Paton N. E., Williams J. C.: Second International Conference on the Strength of Metals

and Alloys, ASM, Metals Park, USA, (1970) p. 108 2.14 Paton N. E., Backofen W. A.: Met. Trans. 1, (1970) p. 2839 2.15 Rosenberg H. W.: The Science, Technology and Application of Titanium, Pergamon Press,

Oxford, UK, (1970) p. 851 2.16 Baker H., ed.: Alloy Phase Diagrams, ASM Handbook, Vol. 3, ASM, Materials Park,

USA, (1992) 2.17 Hansen M.: Constitution of Binary Alloys, McGraw-Hill, New York, USA, (1958) 2.18 Burgers W. G.: Physica 1, (1934) p. 561 2.19 Newkirk J. B., Geisler A. H.: Acta Met. 1, (1953) p. 370 2.20 Otte H. M.: The Science, Technology and Application of Titanium, Pergamon Press, Ox-

ford, UK, (1970) p. 645 2.21 Williams J. C.: Titanium Science and Technology, Plenum Press, New York, USA, (1973)

p. 1433 2.22 Flower H. M., Davis R., West D. R. F.: Titanium and Titanium Alloys, Plenum Press, New

York, USA, (1982) p. 1703 2.23 Peters M., Lütjering G., Ziegler G.: Z. Metallke. 74, (1983) p. 274

References 419

2.24 Benjamin D., ed.: Properties and Selection: Stainless Steels, Tool Materials and Special-Purpose Materials, Metals Handbook, 9th edn, Vol. 3, ASM, Metals Park, USA, (1980) p. 353

2.25 Béchel J., Hocheid B.: Titanium, Science and Technology, DGM, Oberursel, Germany, (1985) p. 1613

2.26 Blackburn M. J.: Trans. AIME 239, (1967) p. 1200 2.27 Williams J. C., Sommer A. W., Tung P. P.: Met. Trans. 3, (1972) p. 2979 2.28 Pearson W. B.: Handbook of Lattice Spacings and Structures of Metals and Alloys, Vol. 2,

Pergamon Press, London, UK, (1967) 2.29 Williams J. C., Hickman B. S., Leslie D. H.: Met. Trans. 2, (1971) p. 477 2.30 Williams J. C.: Titanium Technology: Present Status and Future Trends, TDA, Dayton,

USA, (1985) p. 75 2.31 Gysler A., Lütjering G., Gerold V.: Acta Met. 22, (1974) p. 901 2.32 Wagner L., Gregory J. K.: Beta Titanium in the 1990’s, TMS, Warrendale, USA, (1993)

p. 199 2.33 Zwicker U.: Titan and Titanlegierungen, Springer-Verlag, Berlin, Germany, (1974) p. 102 2.34 Liu Z., Welsch G.: Met. Trans. 19A, (1988) p. 121 2.35 Mishin Y., Herzig C.: Acta Mater. 48, (2000) p. 589 2.36 Schutz R. W., Thomas D. E.: Corrosion, Metals Handbook, 9th edn, Vol. 13, ASM, Met-

als Park, USA, (1987) p. 669 2.37 Davis J. R., ed.: Stainless Steels, ASM, Materials Park, USA, (1994) p. 139 2.38 Myers J. R., Bomberger H. B., Froes F. H.: Titanium Technology: Present Status and

Future Trends, TDA, Dayton, USA, (1985) p. 165 2.39 Schutz R. W.: Titanium ‘95, Science and Technology, The University Press,, Cambridge,

UK, (1996) p. 1860 2.40 Schutz R. W.: Metallurgy and Technology of Practical Titanium Alloys, TMS, Warren-

dale, USA, (1994) p. 295 2.41 Bania P. J., Parris W. M.: Titanium 1990, Products and Applications, TDA, Dayton, USA,

(1990) p. 784 2.42 Smialek J. L., Nesbitt J. A., Brindley W. J., Brady M. P., Doychak J., Dickerson R. M.,

Hull D. R.: Mat. Res. Soc. Symp. Proc. 364, (1995) p. 1273 2.43 Leyens C., Peters M., Kaysser W. A.: Titanium ’95, Science and Technology, The Univer-

sity Press, Cambridge, UK, (1996) p. 1935 2.44 Leyens C.: Titan und Titanlegierungen, DGM, Oberursel, Germany, (1996) p. 139 2.45 Johnson T. J., Loretto M. H., Kearns M. W.: Titanium ’92, Science and Technology, TMS,

Warrendale, USA, (1993) p. 2035 3.1 Kroll W. J.: Trans. El. Soc. 78, (1940) p. 35 3.2 Hunter M. A.: J. Amer. Chem. Soc. 32, (1910) p. 330 3.3 Cobel G., Fisher J., Snyder L. E.: Titanium ’80, Science and Technology, AIME, Warren-

dale, USA, (1980) p. 1969 3.4 Rosenberg H. W., Green J. E.: Titanium ’92, Science and Technology, TMS, Warrendale,

USA, (1993) p. 2371 3.5 Chen G. Z., Fray D. J., Farthing T. W.: Nature 407, (2000) p. 361 3.6 Sears J. W., Young J. M., Kearns M.: Titanium ’92, Science and Technolgy, TMS, War-

rendale, USA, (1993) p. 2293 3.7 Mitchell A.: Titanium ’98, International Academic Publisher, Beijing, China, (1990) p. 91 3.8 Buttrell W. H., Shamblen C. E.: Titanium ’95, Science and Technology, The University

Press, Cambridge, UK (1999) p. 1446 3.9 Adams R. T., Rosenberg H. W.: Titanium and Titanium Alloys, Plenum Press, New York,

USA, (1982) p. 127 3.10 Chen C. C., Boyer R. R.: J. of Metals 31, no. 7, (1979) p. 33 3.11 Boyer R., Welsch G., Collings E. W., eds.: Materials Properties Handbook: Titanium

Alloys, Technical Note 4: Forging, ASM, Materials Park, USA, (1994) p. 1083

420 References

3.12 Kuhlmann G. W.: Forging Titanium Alloys, Metals Handbook, 9th edn, Vol. 14, ASM, Metals Park, USA, (1988) p. 267

3.13 Machining Data Handbook, 2nd edn, Machinability Data Center, Metcut Research Associ-ates, Inc., Cincinnati, USA, (1972)

3.14 Boyer R., Welsch G., Collings E. W., eds.: Materials Properties Handbook: Titanium Alloys, Technical Note 7: Machining, ASM, Materials Park, USA, (1994) p. 1119

3.15 Boyer R., Welsch G., Collings E. W., eds.: Materials Properties Handbook: Titanium Alloys, Technical Note 3: Casting, ASM, Materials Park, USA, (1994) p. 1079

3.16 Eylon D., Froes F. H., Gardiner R. W.: Titanium Technology: Present Status and Future Trends, TDA, Dayton, USA, (1985) p. 35

3.17 Savage S. J., Froes F. H.: Titanium Technology: Present Status and Future Trends, TDA, Dayton, USA, (1985) p. 60

3.18 Froes F. H., Eylon D.: Titanium Technology: Present Status and Future Trends, TDA, Dayton, USA, (1985) p. 49

3.19 Paton N. E., Hamilton C. H., eds.: Superplastic Forming of Structural Alloys, AIME, Warrendale, USA, (1982)

3.20 Mahoney M. W.: Materials Properties Handbook: Titanium Alloys, Technical Note 5A: Superplastic Forming of Titanium Alloys, ASM, Materials Park, USA, (1994) p. 1101

3.21 Winkler P.-J.: Sixth World Conference on Titanium, Les Editions de Physique, Les Ulis, France, (1988) p. 1135

3.22 Lee D., Backofen W. A.: Trans. AIME 239, (1967) p. 1034 3.23 Tisler R. J., Lederich R. J.: Titanium ’95, Science and Technology, The University Press,

Cambridge, UK, (1996) p. 596 3.24 Ashby M. F., Verrall R. A.: Acta Met. 21, (1973) p. 149 3.25 Kearns W. H., ed.: Welding Handbook, 7th edn, Vol. 4, American Welding Society, Mi-

ami, USA, (1982) p. 43 3.26 Boyer R., Welsch G., Collings E. W., eds.: Materials Properties Handbook: Titanium

Alloys, Technical Note 10: Welding and Brazing, ASM, Materials Park, USA, (1994) p. 1159

3.27 Helm D., Lütjering G.: Titanium ’99, Science and Technology, CRISM “Prometey”, St. Petersburg, Russia, (2000) p. 1726

3.28 Juhas M. C., Viswanathan G. B., Fraser H. L.: Friction Stir Welding, CD-ROM, TWI, Cambridge, UK, (2000)

3.29 Wagner L., Lütjering G.: Second International Conference on Shot Peening, American Shot Peening Society, USA, (1984) p. 194

3.30 Niku-Lari A., ed.: First International Conference on Shot Peening, Pergamon Press, Ox-ford, UK, (1981)

3.31 Clauer A. H., Holbrook J. H., Fairand B. P.: Shock Waves and High-Strain-Rate Phenom-ena in Metals, Plenum Press, New York, USA, (1981) p. 675

3.32 Clauer A. H.: Surface Performance of Titanium, TMS, Warrendale, USA, (1996) p. 217 3.33 Krautkramer J., Krautkramer H.: Ultrasonic Testing of Materials, 4th edn, Springer-

Verlag, Berlin, Germany, (1990) 3.34 Mester M. L., McIntire P., eds.: Ultrasonic Testing, Nondestructive Testing Handbook,

2nd edn, Vol. 7, ASNT, Columbus, USA, (1991) 3.35 Buck O., Thompson D. O., Paton N. E., Williams J. C.: Internal Friction and Ultrasonic

Attenuation in Crystalline Solids, Springer-Verlag, Berlin, Germany, (1975) p. 451 3.36 Moyers J. C., Seagle S. R., Copley D. C., Gilmore R. S.: Titanium ’95, Science and Tech-

nology, The University Press, Cambridge, UK, (1996) p. 1521 3.37 Libby H. L.: Introduction to Electromagnetic Nondestructive Test Methods, Krieger,

Malabar, USA, (1979) 3.38 Birks A. S., Green R. E., eds.: Electromagnetic Testing, Nondestructive Testing Hand-

book, 2nd edn, Vol. 4, ASNT, Columbus, USA, (1986)

References 421

3.39 Thomas G.: Transmission Electron Microscopy of Metals, John Wiley and Sons, New York, USA, (1962)

3.40 Rhodes C. G., Williams J. C.: Met. Trans. 6A, (1975) p. 2103 3.41 Banerjee D., Williams J. C.: Scripta Met. 17, (1983) p. 1125 3.42 Blackburn M. J., Williams J. C.: ASM Quart. Trans. 60, (1967) p. 373 3.43 Blackburn M. J., Williams J. C.: Trans. AIME 239, (1967) p. 287 3.44 Spurling R. A., Rhodes C. G., Williams J. C.: Met. Trans. 5, (1974) p. 2597 3.45 Adams B. L., Wright S. I., Kunze K.: Met. Trans. 24A, (1993) p. 819 3.46 Cullity B. D.: Elements of X-Ray Diffraction, 2nd edn, Addison-Wesley, Reading, USA,

(1978) 3.47 Kocks U. F., Tome C. N., Wenk H.-R.: Texture and Anisotropy, The University Press,

Cambridge, UK, (1998) 3.48 Dieter G. E.: Mechanical Metallurgy, 2nd edn, McGraw-Hill, New York, USA, (1976) 3.49 Hertzberg R. W.: Deformation and Fracture Mechanics of Engineering Materials, 4th edn,

John Wiley and Sons, New York, USA, (1996) 3.50 Lütjering G., Gysler A.: Titanium Science and Technology, DGM, Oberursel, Germany,

(1985) p. 2065 3.51 Hyodo T., Ichihasi H.: Ti-2003, Science and Technology, Wiley-VCH, Weinheim, Ger-

many, (2004) p. 141 3.52 EHK Technologies: Oak Ridge Nat. Lab. Report ORNL/Sub/40 000 236 941, (2003) 3.53 Kraft E. H.: TITANIUM 2005, CD-ROM, ITA, Broomfield, USA, (2005) 3.54 Ginatta M. V.: Ti-2003, Science and Technology, Wiley-VCH, Weinheim, Germany,

(2004) p. 237 3.55 Cardarelli F.: World Patent WO 03/046 258 A2, (2003) 3.56 Sadoway D.: US Patent 4 999 097, (1991) 3.57 Suzuki R. O.: Ti-2003, Science and Technology, Wiley-VCH, Weinheim, Germany,

(2004) p. 245 3.58 Abiko T., Park I., Okabe T. H.: Ti-2003, Science and Technology, Wiley-VCH, Weinheim,

Germany, (2004) p. 253 3.59 Lienert T. J., Jata K. V., Wheeler R., Seetharaman V.: Proceedings of the Joining of Ad-

vanced and Specialty Materials III, ASM International, Materials Park, USA, (2001) p. 160

3.60 Prevey P. S.: US Patent 5 826 453, (1998) 3.61 Prevey P. S.: US Patent 6 415 486, (2002) 3.62 Prevey P. S., Jayaraman N., Cammett J.: 9th International Conference on Shot Peening,

IITT-International, Noisy-le-Grand, France, (2005) p. 267 3.63 Gianuzzi L. A., Stevie F. A., eds.: Introduction to Focused Ion Beams, Springer, New

York, USA, (2005) 3.64 Uchic M. D., Dimiduk D. M., Florando J. N., Nix W. D.: Mat. Res Soc. Symp. Proc. 753,

(2003) p.27 3.65 Uchic M. D., Dimiduk D. M., Florando J. N., Nix W. D.: Science 305, (2004) p. 986 3.66 Williams J. C., Froes F. H., Chesnutt J. C., Rhodes C. G., Berryman R. G.: ASTM STP

651, (1978) p. 64 3.67 Bhadeshia H. K. D. H.: ISIJ International 39, (1999) p. 966 3.68 MacKay D. J. C.: Neural Computation, (1992) p. 415 3.69 MacKay D. J. C.: Neural Computation, (1992) p. 448 3.70 Tiley J. S., Banerjee R., Searles T., Kar S., Fraser H.: Ti-2003, Science and Technology,

Wiley-VCH, Weinheim, Germany, (2004) p. 1413 3.71 Kar S., Searles T., Lee E., Viswanathan G. B, Tiley J., Banerjee R., Fraser H. L.: Met.

Trans. 37 A, (2006) p. 559 3.72 Collins P. C., Kar S., Koduri S., Viswanathan G. B, Tiley J., Banerjee R., Fraser H. L.:

Frontiers in the Design of Metals, Indian Inst. of Metals, Univ. Press, Hyderabad, India, (2007) p. 19

422 References

4.1 Sakurai K., Itabashi Y., Komatsu A.: Titanium ‘80, Science and Technology, AIME, War-rendale, USA, (1980) p. 299

4.2 Boyer R., Welsch G., Collings E. W., eds.: Materials Properties Handbook: Titanium Alloys, ASM, Materials Park, USA, (1994) p. 228

4.3 Curtis R. E., Boyer R. R., Williams J. C.: Trans. ASM 62, (1969) p. 457 4.4 Margolin H., Williams J. C., Chesnutt J. C., Lütjering G.: Titanium ‘80, Science and Tech-

nology, AIME, Warrendale, USA, (1980) p. 169 4.5 Okazaki K., Conrad H.: Trans. JIM 13, (1972) p. 205 4.6 Okazaki K., Conrad H.: Titanium and Titanium Alloys, Plenum Press, New York, USA,

(1982) p. 429 4.7 Finden P. T.: Sixth World Conference on Titanium, Les Editions de Physique, Les Ulis,

France, (1988) p. 1251 4.8 Dieter G. E.: Mechanical Metallurgy, 2nd edn, McGraw-Hill, New York, USA, (1976)

p. 685 4.9 Conrad H., Jones R.: The Science, Technology and Application of Titanium, Pergamon

Press, Oxford, UK, (1970) p. 489 4.10 Fleischer R. L.: The Strengthening of Metals, Chapman and Hall, New York, USA, (1964)

p. 93 4.11 Williams J. C., Baggerly R. G., Paton N. E.: Met. and Mater. Trans. 33A, (2002) p. 837 4.12 Boyer R., Welsch G., Collings E. W., eds.: Materials Properties Handbook: Titanium

Alloys, ASM, Materials Park, USA, (1994) p. 247 4.13 Boyer R., Welsch G., Collings E. W., eds.: Materials Properties Handbook: Titanium

Alloys, ASM, Materials Park, USA, (1994) p. 227 4.14 Jones R. L., Conrad H.: Trans. AIME 245, (1969) p. 779 4.15 Blackburn M. J., Williams J. C.: Proc. Conf. on the Fundamental Aspects of Stress Corro-

sion Cracking, NACE, Houston, USA, (1969) p. 620 4.16 Williams J. C., Thompson A. W., Rhodes C. G., Chesnutt J. C.: Titanium and Titanium

Alloys, Plenum Press, New York, USA, (1982) p. 467 4.17 Boyer R., Welsch G., Collings E. W., eds.: Materials Properties Handbook: Titanium

Alloys, ASM, Materials Park, USA, (1994) p. 238 4.18 Paton N. E., Williams J. C., Chesnutt J. C., Thompson A. W.: AGARD Conf. Proc.,

no. 185, (1976) p. 4-1 4.19 Boyd J. D.: The Science, Technology and Application of Titanium, Pergamon Press, Ox-

ford, UK, (1970) p. 545 4.20 Paton N. E., Hickman B. S., Leslie D. H.: Met. Trans. 2, (1971) p. 2791 4.21 Williams J. C.: Effect of Hydrogen on Behavior of Materials, AIME, New York, USA,

(1976) p. 367 4.22 Hall J. A., Banerjee D., Wardlaw T.: Titanium, Science and Technology, DGM, Oberursel,

Germany, (1985) p. 2603 5.1 Lütjering G., Gysler A., Wagner L.: Sixth World Conference on Titanium, Les Editions de

Physique, Les Ulis, France, (1988) p. 71 5.2 Lütjering G., Helm D., Däubler M.: Fatigue 93, EMAS, Warley, UK, (1993) p. 165 5.3 Frederick S. F.: AFML-TR-73-265, (1973) 5.4 Peters M., Lütjering G.: Titanium '80, Science and Technology, AIME, Warrendale, USA,

(1980) p. 925 5.5 Lütjering G., Albrecht J., Invasishin O. M.: Microstructure/Property Relationships of

Titanium Alloys, TMS, Warrendale, USA, (1994) p. 65 5.6 Lütjering G., Albrecht J., Ivasishin O. M.: Titanium '95, Science and Technology, The

University Press, Cambridge, UK, (1996) p. 1163 5.7 Ivasishin O. M., Lütjering G.: Titanium ’99 , Science and Technology, CRISM “Pro-

metey”, St. Petersburg, Russia, (2000) p. 441 5.8 Hines J. A., Peters J. O., Lütjering G.: Fatigue Behavior of Titanium Alloys, TMS, War-

rendale, USA, (1999) p. 15

References 423

5.9 Lütjering G., Schmidt H.-J.: Fatigue ’87, EMAS, Warley, UK, (1987) p. 1663 5.10 Tacke-Messing U., Wagner L., Lütjering G.: Gefüge und Bruch, Gebrüder Borntraeger,

Berlin, Germany, (1990) p. 199 5.11 Torster F.: PhD Thesis, TU Hamburg-Harburg, Germany, (1995); Berichte aus der Werk-

stofftechnik, Shaker Verlag, Aachen, Germany, (1995) 5.12 Peters M., Gysler A., Lütjering G.: Titanium ’80, Science and Technology, AIME, War-

rendale, USA, (1980) p. 1777 5.13 Gray III G. T., Lütjering G.: Titanium, Science and Technology, DGM, Oberursel, Ger-

many, (1985) p. 2251 5.14 Boyer R., Welsch G., Collings E. W., eds.: Materials Properties Handbook: Titanium

Alloys, ASM, Materials Park, USA, (1994) p. 575 5.15 Boyer R., Welsch G., Collings E. W., eds.: Materials Properties Handbook: Titanium

Alloys, ASM, Materials Park, USA, (1994) p. 584 5.16 Boyer R., Welsch G., Collings E. W., eds.: Materials Properties Handbook: Titanium

Alloys, ASM, Materials Park, USA, (1994) p. 587 5.17 Wegmann G., Lütjering G., Albrecht J., Folkers K.-D., Liesner C.: Titanium ’95, Science

and Technology, The University Press, Cambridge, UK, (1996) p. 895 5.18 Wegmann G., Albrecht J., Lütjering G., Folkers K.-D., Liesner C.: Z. Metallkde. 88,

(1997) p. 764 5.19 Schroeder G., Albrecht J., Lütjering G.: Titanium ’99, Science and Technology, CRISM

“Prometey”, St. Petersburg, Russia, (2000) p. 545 5.20 Blackburn M. J., Smyrl W. H.: Titanium Science and Technology, Plenum Press, New

York, USA, (1973) p. 2577 5.21 Adachi S., Wagner L., Lütjering G.: Titanium, Science and Technology, DGM, Oberursel,

Germany, (1985) p. 2139 5.22 Lindemann J., Wagner L.: Fatigue Behavior of Titanium Alloys, TMS, Warrendale, USA,

(1999) p. 47 5.23 Notkina E., Gysler A., Lütjering G.: Fatigue in the Very High Cycle Regime, Institute of

Meteorology and Physics, Vienna, Austria, (2001) p. 149 5.24 Lütjering G.: Compass 1999: Component Optimization from Materials Properties and

Simulation Software, EMAS, Warley, UK, (1999) p. 263 5.25 Helm D.: Fatigue Behavior of Titanium Alloys, TMS, Warrendale, USA, (1999) p. 291 5.26 Boyer R. R.: Mat. Sci. Eng. A213, (1996) p. 103 5.27 Boyer R. R., Williams J. C., Paton N. E.: Titanium ’99, Science and Technology, CRISM

“Prometey”, St. Petersburg, Russia, (2000) p. 1007 5.28 Jaffee R. I., ed.: Titanium Steam Turbine Blading, Pergamon Press, New York, USA,

(1990) 5.29 Puschnik H., Fladischer H., Lütjering G., Jaffee R. I.: Titanium ’92, Science and Technol-

ogy, TMS, Warrendale, USA, (1993) p. 131 5.30 Wells M. G. H., Roopchaud B., Montgomery J. S., Gooch W. S.: Non-Aerospace Applica-

tions of Titanium, TMS, Warrendale, USA, (1998) p. 289 5.31 Burkins M., Hansen J., Paige J., Turner P.: Non-Aerospace Applications of Titanium,

TMS, Warrendale, USA, (1998) p. 273 6.1 Saal S., Wagner L., Lütjering G., Pillhöfer H., Daeubler M. A.: Z. Metallkde. 81, (1990)

p. 535 6.2 Schauerte O., Gysler A., Lütjering G., Mailly S., Chabanne Y., Sarrazin-Baudoux C.,

Mendez J., Petit J.: Fatigue Behavior of Titanium Alloys, TMS, Warrendale, USA, (1999) p. 191

6.3 Petit J., Sarrazin-Baudoux C., Chabanne Y., Lütjering G., Gysler A., Schauerte O.: Fa-tigue Behavior of Titanium Alloys, TMS, Warrendale, USA, (1999) p. 203

6.4 Lütjering S., Smith P. R., Eylon D.: Intermetallics and Superalloys, Euromat Vol. 10, Wiley-VCH, Weinheim, Germany, (2000) p. 283

424 References

6.5 Daeubler M. A., Helm D., Neal D. F.: Titanium 1990, Products and Applications, TDA, Dayton, USA, (1990) p. 78

6.6 Gysler A., Lütjering G.: DFVLR-FB 79-24, (1979) 6.7 Daeubler M. A., Helm D.: Titanium ’92, Science and Technology, TMS, Warrendale,

USA, (1993) p. 41 6.8 Neal D. F.: Titanium, Science and Technology, DGM, Oberursel, Germany, (1985) p. 2419 6.9 Neal D. F.: Titanium ’95, Science and Technology, The University Press, Cambridge, UK,

(1996) p. 2195 6.10 Sinha V., Mills M. J., Williams J. C.: Lightweight Alloys for Aerospace Application, TMS,

Warrendale, USA, (2001) p. 194 6.11. Evans W. J., Gostelow C. R.: Met. Trans. 10A, (1979) p. 1837 6.12. Evans W. J.: Mat. Sci. Eng. A243, (1998) p. 89 6.13 Thompson A. W., Odegard B. C.: Met. Trans. 4, (1973) p. 899 6.14 Odegard B. C., Thompson A. W.: Met. Trans. 5, (1974) p. 1207 6.15 Hasija V., Ghosh S., Mills M. J., Joseph D. S.: Acta Met. 51, (2003) p. 4549 6.16 Deka D., Joseph D. S., Ghosh S., Mills M. J.: Met. Trans. 37 A, (2006) p. 1371 6.17 Thirumalai N.: PhD Thesis, The Ohio State University, USA, (2000) p. 297 6.18 Sinha V., Spowart J. G., Mills M. J., Williams J. C.: Met. Trans. 37A, (2006) p. 1501 6.19 Ankem S., Seagle S. R.: Titanium, Science and Technology, DGM, Oberursel, Germany,

(1985) p. 2411 6.20 Thiehsen K. E., Kassner M. E., Pollard J., Hiatt D. R., Bristow B. M.: Met. Trans. 24A,

(1993) p. 1819 6.21 Hayes R. W., Viswanathan G. B., Mills M. J.: Acta Met. 50, (2002) p. 4953 6.22 Viswanathan G. B., Karthikeyan S., Hayes R. W., Mills M. J.: Acta Met. 50, (2002) p.

4965 6.23 Köppers M., Herzig C., Freisel M., Mishia Y.: Acta Met. 45, (1997) p. 4181 6.24 Hood G. M.: J. Nucl. Mater. 135, (1985) p. 292 7.1 Boyer R. R., Lütjering G.: Titanium Alloy Processing, TMS, Warrendale, USA, (1996)

p. 349 7.2 Busongo F., Lütjering G.: Ti-2003, Science and Technology, Wiley-VCH, Weinheim,

Germany, (2004) p. 1855 7.3 Prandi B., Wadier J.-F., Schwartz F., Mosser P.-E., Vassel A.: Titanium 1990, Products

and Applications, TDA, Dayton, USA, (1990) p. 150 7.4 Peters J. O., Lütjering G., Koren H., Puschnik H., Boyer R. R.: Mater. Sci. Eng. A213,

(1996) p. 71 7.5 Combres Y., Champin B.: Beta Ttianium Alloys in the 1990’s, TMS, Warrendale, USA,

(1993) p. 477 7.6 Peters M., Lütjering G.: Z. Metallkde. 67, (1976) p. 811 7.7 Lütjering G., Gysler A.: Aluminum, Transformation Technology and Application, ASM,

Metals Park, USA, (1980) p. 171 7.8 Sauer C., Busongo F., Lütjering G.: Fatigue 2002, EMAS, Warley, UK, (2002) p. 2043 7.9 Sauer C., Busongo F., Lütjering G.: Materials Science Forum, Vols. 396-402, Trans Tech

Publications, Zuerich, Switzerland, (2002) p. 1115 7.10 Peters J. O., Lütjering G.: Z. Metallkde. 89, (1998) p. 464 7.11 Lütjering G., Gysler A.: Aluminum Alloys, Physical and Mechanical Properties, EMAS,

Warley, UK, (1986) p. 1547 7.12 Lütjering G.: Mater. Sci. Eng. A263, (1999) p. 117 7.13 Albrecht J., Lütjering G.: Titanium ’99, Science and Technology, CRISM “Prometey”, St.

Petersburg, Russia, (2000) p. 363 7.14 Peters J. O., Lütjering G., Koren M., Puschnik H., Boyer R. R.: Titanium ’95, Science and

Technology, The University Press, Cambridge, UK, (1996) p. 1403 7.15 Benedetti M., Peters J. O., Lütjering G.: Ti-2003, Science and Technology, Wiley-VCH,

Weinheim, Germany, (2004) p. 1659

References 425

7.16 Lindemann J.: PhD Thesis, TU Brandenburg, Cottbus, Germany, (1998); Fortschr.-Ber. VDI, series 5, no. 547, VDI Verlag, Düsseldorf, Germany, (1999)

7.17 Peters J. O., Lütjering G., Ivasishin O. M., Markovsky P. E.: Third ASM Int. Conf. on Synthesis, Processing and Modelling of Advanced Materials, ASM, Materials Park, USA, (1997) p. 269

7.18 Boyer R. R.: Beta Titanium Alloys in the 1990’s, TMS, Warrendale, USA, (1993) p. 335 7.19 Froes F. H., Allen P. G., Niinomi M., eds.: Non-Aerospace Applications of Titanium,

TMS, Warrendale, USA, (1998) 7.20 Bania P. J.: Beta Titanium Alloys, Société Francaise de Métallurgie et de Matériaux, Paris,

France, (1994) p. 7 7.21 Boyer R. R.: Beta Titanium Alloys, Société Francaise de Métallurgie et de Matériaux,

Paris, France, (1994) p. 253 7.22 Wheeler D. A., Vogt R. G., Cianci M. S.: Beta Titanium Alloys in the 1990’s, TMS, War-

rendale, USA, (1993) p. 375 7.23 Davies D. P., Gittos B. C., Terlinde G., Fischer G.: Titanium ’95, Science and Technology,

The University Press, Cambridge, UK, (1996) p. 1371 7.24 Terlinde G., Fischer G.: Titanium ’95, Science and Technology, The University Press,

Cambridge, UK, (1996) p. 2177 7.25 Dunlop D. C., Schutz R. W.: Beta Titanium in the 1990’s, TMS, Warrendale, USA, (1993)

p. 347 7.26 Lütjering G., Albrecht J., Sauer C., Krull T.: Fatigue and Fracture of Traditional and

Advanced Materials: A Symposium in Honor of Art McEvily’s 80th Birthday, 2006 TMS Annual Meeting, San Antonio, USA, Mat. Sci. Eng., (2007)

7.27 Moiseev V. N.: Titanium ’95, Science and Technology, The University Press, Cambridge, UK, (1996) p. 1387

7.28 Fanning J. C., Boyer R. R.: Ti-2003, Science and Technology, Wiley-VCH, Weinheim, Germany, (2004) p. 2643

7.29 Briggs R. D.: European Patent Application EP 1 486 576 A2, (2004) 7.30 Rendigs K.-H.: Ti-2003, Science and Technology, Wiley-VCH, Weinheim, Germany,

(2004) p. 2659 7.31 Harper M., Williams R., Viswanathan G. B., Tiley J., Banerjee R., Evans D. J., Fraser

H. L.: Ti-2003, Science and Technology, Wiley-VCH, Weinheim, Germany, (2004) p. 1559

7.32 Büscher M., Terlinde G., Wegmann G., Thoben C., Millet Y., Lütjering G., Albrecht J.: Proceedings of the 11th World Conference on Titanium, The Japan Institute of Metals, Sendai, Japan, (2007)

7.33 Busongo F.: PhD Thesis, TU Hamburg-Harburg, Germany, (2005); Berichte aus der Werkstofftechnik, Shaker Verlag, Aachen, Germany, (2005)

7.34 Imam M. A., Feng C. R.: Titanium ‘95, Science and Technology, The University Press, Cambridge, UK, (1996) p. 2361

8.1 McAndrew J. B., Kessler H. D.: Trans. AIME 206, (1956) p. 1348 8.2 Yamaguchi M., Umakoshi Y.: Progress in Materials Science 34, (1990) p. 1 8.3 Kim Y.-W., Dimiduk D. M.: J. of Metals 43, no. 8, (1991) p. 40 8.4 Yamaguchi M., Inui H.: Structural Intermetallics, TMS, Warrendale, USA, (1993) p. 127 8.5 Huang S. C. Chesnutt J. C.: Intermetallic Compounds: Principles and Practice, Vol. 2,

John Wiley and Sons, New York, USA, (1995) p. 73 8.6 Dimiduk D. M.: Gamma Titanium Aluminides, TMS, Warrendale, USA, (1995) p. 3 8.7 Dimiduk D. M., Martin P. L., Kim Y.-W.: Mat. Sci. Eng. A243, (1998) p. 66 8.8 Appel F., Wagner R.: Mat. Sci. Eng. R22, (1998) p. 187 8.9 Dimiduk D. M.: Intermetallics 6, (1998) p. 613 8.10 Dimiduk D. M.: Mat. Sci. Eng. A263, (1999) p. 281 8.11 Dimiduk D. M., McQuay P. A., Kim Y.-W.: Titanium ’99: Science and Technology,

CRISM “Prometey”, St. Petersburg, Russia, (2000) p. 259

426 References

8.12 Kim Y.-W., Dimiduk D. M., Loretto M., eds.: Gamma Titanium Aluminides, TMS, Warrendale, USA, (1999)

8.13 Kim Y.-W., Wagner R., Yamaguchi M., eds.: Gamma Titanium Aluminides, TMS, Warrendale, USA, (1995)

8.14 Hemker K. J., Dimiduk D. M., Clemens H., Darolia R., Inui H., Larsen J. M., Sikka V. K., Thomas M., Whittenberger J. D., eds.: Structural Intermetallics 2001, TMS, Warrendale, USA, (2001)

8.15 Lipsitt H. A.: High Temperature Ordered Intermetallic Alloys V, Mat. Res. Soc. Symp. Proc. 288, (1993) p. 119

8.16 Banerjee D., Gogia A. K., Nandy T. K., Muraleedharan K., Mishra R. S.: Structural Inter-metallics, TMS, Warrendale, USA, (1993) p. 19

8.17 Banerjee D.: Intermetallic Compounds: Principles and Practice, Vol. 2, John Wiley and Sons, New York, USA, (1995) p. 91

8.18 Banerjee D.: Progress in Materials Science 42, (1997) p. 135 8.19 Nandy T. K., Banerjee D.: Structural Intermetallics, TMS, Warrendale, USA, (1997)

p. 777 8.20 Gogia A. K., Nandy T. K., Banerjee D., Carisey T., Strudel J. L., Franchet J. M.: Intermet-

allics 6, (1998) p. 741 8.21 Marcinkowski M. J.: Electron Microscopy and Structure of Materials, University of Cali-

fornia Press, Berkeley, USA, (1972) p. 333 8.22 Blackburn M. J.: Trans. AIME 239, (1967) p. 660 8.23 Shechtman D., Blackburn M. J., Lipsitt H.: Met. Trans. 5, (1974) p. 1373 8.24 Banerjee D., Rowe R. G., Hall E. L.: High-Temperature Ordered Intermetallic Alloys IV,

MRS, Pittsburgh, USA, (1991) p. 285 8.25 Ward C. H.: Intern. Mat. Rev. 38, (1993) p. 79 8.26 Ward C. H., Williams J. C., Thompson A. W., Rosenthal D. G., Froes F. H.: Sixth World

Conference on Titanium, Les Editions de Physique, Les Ulis, France, (1988) p. 1103 8.27 Chesnutt J. C., Hall J. A., Lipsitt H. A.: Titanium ’95, Science and Technology, The Uni-

versity Press, Cambridge, UK, (1996) p. 70 8.28 Strychor R., Williams J. C.: Solid to Solid Phase Transformations, AIME, Warrendale,

USA, (1982) p. 249 8.29 Strychor R., Williams J. C., Soffa W. A.: Met. Trans. 19A, (1988) p. 225 8.30 Lütjering G., Proske G., Albrecht J., Helm D., Däubler M.: Intermetallic Compounds

(JIMIS-6),The Japan Institute of Metals, Sendai, Japan, (1991) p. 537 8.31 Kumpfert J., Ward C. H., Peters M., Kaysser W. A.: Synthesis/Processing of Lightweight

Metallic Materials, TMS, Warrendale, USA, (1995) p. 85 8.32 Banerjee D., Gogia A. K., Nandy T. K., Joshi V. A.: Acta Met. 36, (1988) p. 871 8.33 Rowe R. G., Banerjee D., Muraleedharan K., Larsen M., Hall E. L., Konitzer D. G.,

Woodfield A. P.: Titanium ’92, Science and Technology, TMS, Warrendale, USA, (1993) p. 1259

8.34 Kelly T. J., Austin C. M.: Titanium ’95, Science and Technology, The University Press, Cambridge, UK, (1996) p. 192

8.35 Blackburn M. J.: The Science, Technology and Application of Titanium, Pergamon Press, Oxford, UK, (1970) p. 633

8.36 Seeger J., Hartig C., Bartels A., Mecking H.: High-Temperature Ordered Intermetallic Alloys IV, MRS, Pittsburgh, USA, (1991) p. 157

8.37 Bhowal P. R., Merrick H. F., Larsen D. E.: Mater. Sci. Eng. A192/193, (1995) p. 685 8.38 Huang S. C., McKee D. W., Shih D. S., Chesnutt J. C.: Intermetallic Compounds (JIMIS-

6),The Japan Institute of Metals, Sendai, Japan, (1991) p. 363 8.39 Proske G., Lütjering G., Albrecht J., Däubler M. A., Helm D.: Titanium ‘92, Science and

Technology, TMS, Warrendale, USA, (1993) p. 1187 8.40 Rowe R. G.: Titanium ’92, Science and Technology, TMS, Warrendale, USA, (1993)

p. 343

References 427

8.41 Rowe R. G., Konitzer D. G., Woodfield A. P., Chesnutt J. C.: High-Temperature Ordered Intermetallic Alloys IV, MRS, Pittsburgh, USA, (1991) p. 703

8.42 Proske G., Lütjering G., Albrecht J., Helm D., Däubler M.: Mater. Sci. Eng. A152, (1992) p. 310

8.43 Lütjering G., Proske G., Terlinde G., Fischer G., Helm D.: Titanium ’95, Science and Technology, The University Press, Cambridge, UK, (1996) p. 332

8.44 Takashima K., Cope M. T., Bowen P.: Titanium ’95, Science and Technology, The Uni-versity Press, Cambridge, UK, (1996) p. 340

8.45 Kim Y.-W., Boyer R., eds.: Microstructure/Property Relationships in Titanium Aluminides and Alloys, TMS, Warrendale, USA, (1990)

8.46 Pope D. P., Liu C. T., Whang S. H., Yamaguchi M., eds.: High Temperature Intermetal-lics, Elsevier, Amsterdam, The Netherlands, (1997)

8.47 Clemens H., Kestler H.: Advanced Engineering Materials 2, (2000) p. 551 8.48 Liu C. T., Maziasz P. J., Clemens D. R., Schneibel J. H., Sikka V. J., Nieh T. G.,

Wright J., Walku L. R.: Gamma Titanium Aluminides, TMS, Warrendale, USA, (1995) p. 679

8.49 Larsen J. M., Worth B. D., Balsone S. J., Jones J. W.: Gamma Titanium Aluminides, TMS, Warrendale, USA, (1995) p. 821

8.50 Huang S. C.: US Patent 4 879 092, (1989) 8.51 Austin C., Kelly T.: Structural Intermetallics 1993, TMS, Warrendale, USA, (1993) p. 149 8.52 Austin C., Kelly T., McAllister K., Chesnutt J.: Structural Intermetallics 1997, TMS,

Warrendale, USA, (1997) p. 413 9.1 Prewo K. M.: The Science, Technology and Application of Titanium, Pergamon Press,

Oxford, UK, (1970) p. 2333 9.2 Smith P. R., Gambone M. L., Williams D. S., Garner D. I.: Journal of Materials Sci-

ence 33, (1998) p. 5855 9.3 Hanusiak W. M.: Atlantic Research Corporation – Advanced Materials Division, Wil-

mington, USA, (1999) private communication 9.4 Guo Z. X., Derby B.: Titanium ‘92, Science and Technology, TMS, Warrendale, USA,

(1993) p. 2633 9.5 MacKay R. A., Brindley P. K., Froes F. H.: J. of Metals 43, no. 5, (1991) p. 23 9.6 Ward-Close M., Partridge P. G.: Titanium ‘92, Science and Technology, TMS, Warren-

dale, USA, (1993) p. 2479 9.7 Gigerenzer H., Kumnick A. J.: Textron Specialty Materials Report, Lowell, USA, (1990) 9.8 Brindley P. K.: High Temperature Intermetallic Alloys II, MRS, Pittsburgh, USA, (1987)

p. 419 9.9 Vassel A., Indrigo C., Pautonnier F.: Titanium ‘95, Science and Technology, The Univer-

sity Press, Cambridge, UK, (1996) p. 2739 9.10 Metcalfe A. G.: J. Comp. Mat. 1, (1967) p. 356 9.11 Warren R., Anderson C. H.: Composites 15, (1984) p. 101 9.12 Clym T. W., Flower H. M.: Titanium ‘92, Science and Technology, TMS, Warrendale,

USA, (1993) p. 2467 9.13 Das G.: Titanium ‘92, Science and Technology, TMS, Warrendale, USA, (1993) p. 2617 9.14 Larsen J. M., Revelos W. C., Gambone M. L.: Intermetallic Matrix Composites II, MRS,

Pittsburgh, USA, (1992) p. 3 9.15 Jha S. C., Forster J. A., Pandey A. K., Delagi R. G.: ISI Japan 31, (1991) p. 1267 9.16 Bassi C., Peters J. A., Wittenauer J.: J. of Metals 41, no. 9, (1989) p. 18 9.17 Larsen J. M., Russ S. M., Jones J. W.: Met. and Mater. Trans. 26A, (1995) p. 3211 9.18 Larsen J. M., Russ S. M., Jones J. W.: Characterization of Fibre Reinforced Titanium

Metal Matrix Composites, Specialized Printing Services, Loughton, UK, (1994) p. 1.1 9.19 Veeck S. J., Colvin G. N.: Titanium ‘92, Science and Technology, TMS, Warrendale,

USA, (1993) p. 2495

428 References

9.20 Warner G. K.: B. F. Goodrich Landing Systems, Cleveland, USA, (2001) private commu-nication

10.1 Onnes H. K.: Comm. Leiden 120b, (1911) 10.2 Meisner W., Ochsenfeld R.: Naturwissenschaften 21, (1933) p. 787 10.3 Buckel W.: Super-conductivity, VCH, Weinheim, Germany, (1991) p. 143 10.4 Kosing O. E., Scharl R., Schmuhl H. J.: Proceedings of ASME TURBO EXPO 2001:

Land, Sea, and Air, CD-ROM, Paper no. 2001 GT 0283, ASME, Warrendale, USA, (2001)

10.5 Zhao Y., Zhou L., Deng J.: Titanium ’98, International Academic Publishers, Beijing, China, (1999) p. 457

10.6 Advanced Materials and Processes, no. 9, (1993) p. 7 10.7 Outlook, Teledyne Wah Chang Albany, USA, Vol. 14, no. 1, (1993) p. 1 10.8 Shitazaki K., Tamura T., Kuriiwa T., Goto T., Kamegawa A., Takamura H., Okada M.:

Materials Transactions 43, (2002) p. 1115 10.9 Tamura T., Hatakeyama M., Ebinuma T., Kamegawa A., Takamura H., Okada M.: Mate-

rials Transactions 43, (2002) p. 1120 10.10 Shirasaki K., Kuriiwa T., Tamura T., Kamegawa A., Okada M.: Materials Transac-

tions 43, (2002) p. 1173 10.11 Chang L. C., Read T. A.: Trans. AIME 191, (1951) p. 49 10.12 Melton K. N.: Engineering Aspects of Shape Memory Alloys, Butterworth-Heinemann,

London, UK, (1990) p. 21 10.13 Wayman C. M., Duerig T. W.: Engineering Aspects of Shape Memory Alloys, Butter-

worth-Heinemann, London, UK, (1990) p. 3 10.14 Duerig T. W., Zadno G. R.: Engineering Aspects of Shape Memory Alloys, Butterworth-

Heinmann, London, UK, (1990) p. 369 10.15 Otsuka K.: Engineering Aspects of Shape Memory Alloys, Butterworth-Heinmann, Lon-

don, UK, (1990) p. 36 10.16 Breme J.: Sixth World Conference on Titanium, Les Editions de Physique, Les Ulis,

France, (1988) p. 57 10.17 Brunette D. M., Tengvall P., Textor M., Thomsen M., eds.: Titanium in Medicine, Sprin-

ger-Verlag, Berlin, Germany, (2001) 10.18 Perren S. M., Pohler O. E. M.,, Schneider E.: Titanium in Medicine, Springer-Verlag,

Berlin, Germany, (2001) p. 771 10.19 Windler M., Klabunde R.: Titanium in Medicine, Springer-Verlag, Berlin, Germany,

(2001) p. 703 10.20 Hosonuma M., Shimamune T.: Sixth World Conference on Titanium, Les Editions de

Physique, Les Ulis, France, (1988) p. 495 10.21 Breme J., Biehl V., Wack T., Eisenbarth E.: Titanium ’99, Science and Technoloy,

CRISM “Prometey”, St. Petersburg, Russia, (2000) p. 1187 10.22 Albrecht J., Lütjering G., Nicolai H.-P., Liesner C.: Fatigue 2002, EMAS, Warley, UK,

(2002) p. 2085 10.23 Semlitsch M., Weber H., Steger R.: Titanium ’95, Science and Technology, The Univer-

sity Press, Cambridge, UK, (1996) p. 1742 10.24 Wang K., Gustavson L., Dumbleton J.: Titanium ’92, Science and Technology, TMS,

Warrendale, USA, (1993) p. 2697 10.25 Fanning J. C.: Titanium ’95, Science and Technology, The University Press, Cambridge,

UK, (1996) p. 1800 10.26 Steinemann S. G., Mäusli P.-A., Szmukler S., Semlitsch M., Pohler O., Hintermann H.-E.,

Perren S. M.: Titanium ’92, Science and Technology, TMS, Warrendale, USA, (1993) p. 2689

10.27 Niinomi M., Kuroda D., Fukunaga K., Fukui H., Kato Y., Yashiro T., Suzuki A., Hase-gawa J.: Titanium ’99, Science and Technology, CRISM “Prometey”, St. Petersburg, Rus-sia, (2000) p. 1195

References 429

10.28 Froes F. H.: Non-Aerospace Applications of Titanium, TMS, Warrendale, USA, (1998) p. 317

10.29 Friedrich H., Kiese J., Haldenwanger H.-G., Stich A.: Ti-2003, Science and Technology, Wiley-VCH, Weinheim, Germany, (2004), p.3393

10.30 Sommer C., Peacock D.: Titanium ’95, Science and Technology, The University Press, Cambridge, UK, (1996) p. 1836

10.31 Schauerte O., Kramer M., Kiese J., Walz W.: Ti-2003, Science and Technology, Wiley-VCH, Weinheim, Germany, (2004) p. 3403

10.32 Froes F. H.: Non-Aerospace Application of Titanium, TMS, Warrendale, USA, (1998) p. 327

10.33 Moroishi T., Yamada M., Fujii M., Kusano A., Kawabe A.: Titanium ’95, Science and Technology, The University Press, Cambridge, UK, (1996) p. 1662

10.34 Ward-Close C. M.: Titanium ’99, Science and Technology, CRISM “Prometey”, St. Petersburg, Russia, (2000) p. 27

10.35 Koryagin N. I.: Sixth World Conference on Titanium, Les Editions de Physique, Les Ulis, France, (1988) p. 49

10.36 Fukuhara Y.: Sixth World Conference of Titanium, Les Editions de Physique, Les Ulis, France, (1988) p. 381

10.37 Shimizu Y.: Titanium ’99, Science and Technology, CRISM “Prometey”, St. Petersburg, Russia, (2000) p. 19

10.38 Yamaguchi H., Miki K.: Alutopia 11, (1987) p. 41 10.39 Niinomi M., Williams J. C.: Ti-2003, Science and Technology, Wiley-VCH, Weinheim,

Germany, (2004) p. 95 10.40 Niinomi M., Hattori T., Kasuga T., Fukui H.: Titanium and Its Alloys, Dekker Encyclope-

dia of Biomaterials and Biomedical Engineering, Taylor & Francis, New York, USA, (2005)

10.41 Akahori T., Niinomi M., Fukui H., Suzuki A., Hattori Y., Niwa S.: Ti-2003, Science and Technology, Wiley-VCH, Weinheim, Germany, (2004) p. 3181

10.42 Hagiwara M.: Rare Metal Materials and Engineering 35, Suppl. 1, (2006) p. 48 10.43 Qazi J. I., Tsakiris V., Marquard B., Rack H. J.: Ti-2003, Science and Technology, Wiley-

VCH, Weinheim, Germany, (2004) p. 1651 10.44 Qazi J. I., Rack H. J.: Adv. Eng. Mat. 7, (2005) p. 993 10.45 Gloriant T., Texier G., Prima F., Laille D., Gordin D.-M., Thibon I., Ansel D.: Adv. Eng.

Mat. 8, (2006) p. 961 10.46 Yashiki T., Miyamoto Y., Yamamoto Y., Okamoto A., Yoshikawa E., Yanagisawa K. :

Ti-2003, Science and Technology, Wiley-VCH, Weinheim, Germany, (2004) p. 3103 10.47 Takahashi K., Kaneko M., Hayashi T., Tamenari J., Shimizu H.: Ti-2003, Science and

Technology, Wiley VCH, Weinheim, Germany (2004) p. 3117 10.48 Pelago A., Lano P., Vaquero M.: Ti 2003, Science and Technology, Wiley-VCH, Wein-

heim, Germany, (2004) p. 3111

Index

A α alloys 33-35, 176, 201 - applications 200-201 - corrosion resistance 196-197 - modulus of elasticity 16-19 - precipitation hardening 37, 186 - processing 177-183 - properties 176, 189, 191, 239-242 - solid solution hardening 37, 186 - strengthening mechanisms 186 α alloys and grades 34, 175-176, 201 α-case 50, 137 α colony size 32, 204-207, 211 α colony size/property correlations 217-218 α colony structure 32-33, 170-173, 204-205,

208 α grain size - CP titanium 180-182, 188-189, 414 - fully equiaxed structure (α+β alloys) 212-

214, 217, 234, 238, 268 α lamellae 32-33, 204, 211 α lamellae width 205, 208-209 α layer 32, 41-42, 204-206, 211, 219-220,

283-311, 315-316, 323-330 α nucleation and growth 32-33 α phase - anisotropy 16-17 - CRSS 21 - crystal structure 15 - modulus of elasticity 16-19 - precipitation hardening 37 - shear modulus 17-18 - slip modes 19-21 - solid solution hardening 37 - twinning modes 22-23 - unit cell 16 α platelets (β alloys) 40-41, 284-291, 296-

297, 311-312, 332-335 α plates (β alloys) 41, 288-292, 296, 311, 313 α stabilizing elements 23-24 αp (see primary α) α2 alloys - alloying elements 341-342

- β2 phase 342-343 - microstructures 342-344, 349-350 - properties 349-354 - Super α2 alloy 342-344 α2 phase (Ti3Al) - anti-phase boundaries 345, 347 - cleavage fracture 339-340 - crystal structure 338 - deformation modes 338 - ordered lattice 338-339 - planar slip 339-340 - prism shear 338-339 - slip systems 338 α2 plates 342 α2 precipitates 37-38, 186, 201, 206, 217,

238-242, 259, 268-269 α' martensite (hexagonal) 29 α'' martensite (orthorhombic) 29 α'/α'' boundary 29, 31 α+β alloys 34-35 - applications 250-258 - corrosion resistance 47-49 - crystallographic texture 210, 246 - modulus of elasticity 18-19, 247 - processing 203-216 - properties 216-250 - property calculations 170-173 ABAQUS 81 acicular martensite 29 acid leaching 56 aero-engine applications - blisk 271-272 - cast fan frame 87, 255 - cast γ LPT blades 356-357, 360-366 - cast transmission adapter case 255 - compressor casing 123-124, 254 - compressor rotor 112-113, 134-135, 322 - compressor spool 253-254, 270 - exhaust structure 320-321, 332 - fan blades 251-252 - fan casing 83-84 - fan disk 82, 253, 322

432 Index

- GE-90 9 - impeller 122-123, 271 - integrally bladed rotor 113-114, 253 - manifold 103-104, 254-255 - TMC rings for rotating parts 379-381 - TMC shaft 380-381 aging (α+β alloys) 206, 217, 238-242, 259,

268-269 aging (β alloys) 284-286, 289, 292-293, 297-

298, 310-314, 323-330, 332-336, 411-413 aggressive environments 192-193 aircraft applications - Boeing 787 12 - bulkhead forging 80, 83, 250 - cargo handling fittings 319 cast brake torque tube 321 - cast γ exhaust nozzle flap 358-359 - helicopter exhaust nozzle 332 - helicopter rotor head 322-323 - landing gear beam forging 81-82, 250, 317-

318, 330 - nacelle structure 320-321 - nut clips 319 - springs 320 - TMC augmentor actuater links 381-382 - wing attach fitting 251-252 - wingbox 102, 111 airframe application 8, 12 airplane SR-71 3 Al equivalent content 25 allotropic transformation temperature 15-16 alloy classification 33-36 alloy element partitioning 37, 211, 228-229,

266-267 alloy refining 67 alloying elements 23-28, 341, 347, 410-411 ammonium bifluoride etching (ABF) 132-133 anisotropic behavior (β processed condition)

300-310 anisotropy (α phase) 17 anodizing colors 409-410 annealing/aging temperature 206, 235 anti-phase boundaries 338, 345, 347 applications - aero-engine (see aero-engine) - aerospace 200 - aircraft (see aircraft) - architecture 9-10, 408, 413-415 - armor components 14, 256 - automotive 11, 94-95, 359, 403-405 - biomedical materials 11, 397-403, 410-411 - Boeing airframes 8, 12 - coal burning power generation plants 200

- consumer goods 9, 409 - decorative arts 409-410 - downhole service 323 - GE-90 aero-engine 9 - heat exchangers 184-185, 198-199 - high performance vehicles 11 - jewelry 409 - offshore structures 9-10, 256, 258 - pressure vessels 105, 200 - pulp and paper production 200-201 - sports equipment 10, 405-407 - steam turbine blades 256-257 applications of CP titanium 193, 413-415 armor components 14, 256 artifacts (LM) 36, 138 artifacts (TEM) 142-145, 330-331 athermal ω phase 30-31 autogeneous welding 110 B β alloys 34-36 - applications 317-323, 330, 332, 410-411 - corrosion resistance 48 - modulus of elasticity 17-19, 411-412 - precipitation hardening 38-42, 332-336 - processing 283-297, 324 - properties 297-317, 323-330, 332 - solid solution hardening 38 β annealed structure (α+β alloys) - microstructure 170-172, 204-205 - processing route 203-206 - properties 170-173, 217-233, 239-240, 243-

245, 264-270 - property calculations 170-173 β annealed structure (heavy stabilized β al-

loys) - microstructure 285-287, 332-334 - processing route 284-287, 332-336 - properties 298, 313-314, 333, 335, 411-413 - TTT diagram 333, 335 β annealed structure (high strength β alloys)

298 - fatigue crack propagation 305-307, 313,

315-317 - fracture toughness 308-312, 315-316, 326-

329, 332 - HCF strength 302, 304, 315-316, 329-330,

332 - microstructure 288-289, 311-313 - processing route 288-289, 311 - tensile ductility 299-300, 311-312, 315,

325-326, 332

Index 433

- yield stress 299-300, 311-312, 325-330, 332

β eutectoid forming elements 24 β grain size (α+β alloys) 203, 209, 211, 220 β grain size (β alloys) 285, 288, 295, 298,

315-316, 324-330 β isomorphous elements 24 β phase - crystal structure 16 - modulus of elasticity 17-19 - precipitation hardening 38-42 - slip modes 21 - solid solution hardening 38 - unit cell 16 β processed structure (α+β alloys) - microstructure 206-208 - processing route 206-207 β processed structure (high strength β alloys)

298 - fatigue crack propagation 305-307 - fracture toughness 308-310, 326-329 - HCF strength 302-305, 329-330 - microstructure 290-292 - processing route 290-291 - tensile ductility 300-301, 325-326 - yield stress 300, 325, 330 β stabilizing elements 24 β transus temperature 34, 285-288 β2 phase 342-343, 347 β' particles 39-40, 285 bar 73-75 basket weave structure 33, 170-173 Bayesian neural networks 169-173 bcc unit cell 16 bend factor 98 beta flecks 59-61, 69, 71 biaxial deformation 184, 187 bicycle applications 10, 406-407 bi-lamellar structure 217, 243-245, 268-269,

402 billet 73-75 bi-modal structure (α+β alloys) - crystallographic texture 210 - formation mechanism 211 - interconnecting αp grains 235-238 - microstructure 209 - processing route 208-211 - properties 217, 220, 227-233, 235-238,

261-269 bi-modal structure (high strength β alloys)

298 - fatigue crack propagation 306-307 - fracture toughness 308-309

- HCF strength 302, 304 - microstructure 295-296 - processing route 295-297 - tensile ductility 299-300 - yield stress 299-300 biocompatible alloying elements 411-412 biomedical alloys 11, 399-400, 403, 410-413 biomedical applications 11, 397-403, 410-411 blended elemental powder route 93-95 blisk (bladed disk) 9, 271-272 blocker 80 blooming mill 177, 179 blue etch anodizing (BEA) 132-133 bone plate 400 brittle fracture 191-192, 194, 339-340 bulk head forging 80, 83, 250 Burger relationship 29, 32-33, 41, 210, 342 Burgers vector 19-21 burn resistant titanium alloys 390-391 burnishing (LPB) 157-161 “buy to fly” ratio 81 C

ac + slip 20-21, 338 cargo handling fittings 319 cast aero-engine fan frame 87, 255 cast aero-engine transmission adapter case

255 cast brake torque tube 321 cast γ LPT blades 356-357, 360-366 cast γ turbocharger rotor 404-405 cast golf club heads 10-11, 406-407 cast hip joint stem 402 cast porosity 88 cast pump impeller 88-89, 177 cast wing attach fitting 251-252 casting 87-91 casting electrode 73, 75 casting furnace 88, 90 ceramic shell 88-89 charpy impact energy 191 chemical milled compressor casing 123-124 chemical milling 123-124 - HNO3/HF ratio 124, 414 - hydrogen pickup 124 chlorination 53-55 chlorinator 54 classification of alloys 33-36 cleavage fracture 191-192, 339-340 closed die forging 79 coatings 52 coherent α2 precipitates 37-38 coherent β′ particles 39-40

434 Index

coherent ω particles 39-40 coil 78, 178-179, 187 cold hearth furnace 65-66 cold hearth melted slab 67, 177, 179 cold hearth melting (CHM) 64-67 cold isostatic pressing (CIP) 93 cold rolling 78, 178-179 colony structure 32-33, 204-205 color of titanium 409-410, 413-415 color wheel 146-147 commercially pure titanium (see CP titanium) compression twins 22-23 compressive residual stress 116-117, 119-120,

159 compressor casing 123-124, 254 compressor disk microstructure 208-209 compressor rotor 112-113, 135, 322 compressor spool 253-254, 270 condenser 199 conditioning 73 connecting rod 94-95 consumer goods 9, 409 continuous α layer 32, 41-42, 204-206, 211,

219-220, 283-284, 315-316, 323-330 conventional machining 85-86 conventional sheet forming 97-98 coolant fed drills 86 coolants 85 cooling rate effects - α+β alloys 204-209, 212, 214-215, 218-

223, 226, 261-262, 264-266 - β alloys 290-291, 295-297, 332-336 - Super α2 alloy 349-351 corrosion behavior 47-50 corrosion resistance 47-48, 192-193, 323 corrosive environments 192-193 cost elements for sponge 57-58 cost of titanium 5-6 cost reduction 150-153 cost sensitivity 11, 192-193 CP titanium - annealing temperature 180, 182 - applications 193, 198-201, 413-415 - castings 89, 177 - charpy impact energy 191 - corrosion resistance 47-49, 192-193, 413 - crystallographic texture 187 - forgings 177 - grain size 180-182, 188-189, 414 - HCF strength 186, 188 - iron content 176, 180-182 - microstructural features 177-178 - modulus of elasticity 18, 186

- oxygen content 33-34, 37, 176, 186-188 - processing route 177-180 - rolled products 178-179 - slip modes 19-21, 188 - strengthening mechanisms 186 - tensile ductility 186 - tubes 109, 183-184 - twinning modes 22-23 - yield stress 176, 186, 188-189 CP titanium grades 33-34, 175-176 crack closure 218, 225-226, 241 crack front geometry 218, 223-226, 232-233,

237-238, 244, 307-310, 312, 316, 327-329 creep at room temperature 275-276 creep flattening 76 creep resistance (α+β alloys) 217 - α grain size (fully equiaxed structure) 268 - α2 precipitates (aging) 268-269 - β annealed structure 264-267 - bi-lamellar structure 268-270 - bi-modal structure 264-267 - crystallographic texture 269 - effect of Ni impurities 279-282 creep resistance (β alloys) 298, 314 creep resistance (γ alloys) 355, 362, 365 creep resistance (Super α2 alloy) 350 creep resistance (TMCs) 377-378 crevice corrosion 48-49, 193-194, 196-197 crevice corrosion test 196-197 CRSS 21 crystal structure 16, 338-341, 344-345 crystallographic relationship 29, 33, 218, 345-

346 crystallographic texture 77-78, 183-184, 187,

210, 217, 246-250, 269 crystallographic texture investigation 139-

140, 146-147 cutting tool life 85 cutting tool materials 85 D deep drawing 184 definition of α alloys 35, 175 definition of α+β alloys 35 definition of β alloys 35-36 definition of heavily stabilized β alloys 283 definition of high strength β alloys 283 DEFORM 81 deformation modes 19-23, 338-341 deformation twinning 22-23, 180-181, 186 density 15, 44 die forging 79-80 diffusion 45-46, 280-281

Index 435

diffusion bonded joint 101 diffusion bonding (DB) 100-103 diffusivity data 46 direct reduction of TiCl4 151-152 discoloration 413-415 disks 82, 253, 322 distillation process 54-55 dovetail slots inspection 134 ductile fracture 190, 219-220 ductile inclusions 342-343 ductility loss 194 duplex structure (see bi-modal structure) dwell fatigue 272-279 dye penetrant inspection 126, 135-136 E eddy current inspection 126, 134 elastic properties 16-19, 247, 411-412 electrical resistivity 43-44 electrochemical machining (ECM) 125 electro-deoxidation process (EDO) 58-59,

151, 153 electrolytic polishing 138-139, 141-146, 149-

150 electrolytic production methods 151-153 electrolytic refining 58 electromagnetic probe 134 electron beam welding (EBW) 110 electrowinning 58 ELI grades 34, 176, 239, 256 environmental effects 49-50, 248-249, 263,

353-354, 414-415 equiaxed structure (see fully equiaxed struc-

ture equivalent Al content 25 equivalent Mo content 30 etching 138-140 exhaust system for motorcycles 406 extra low interstitials (ELI) 34, 176, 239, 256 eyeglass frames 397 F fan blades 251-252 fan casing 83-84 fan disk 82, 253, 322 fast diffusing elements 45-46, 280 fatigue crack nucleation - α+β alloys 211-212, 228-229, 231, 235 - β alloys 304-305 fatigue crack propagation (α+β alloys) 217 - α2 precipitation (aging) 239-241 - β annealed structure 222-226 - bi-lamellar structure 244-245

- bi-modal structure 231-233, 263 - crystallographic texture 248-249 - fully equiaxed structure 236-237 - oxygen 240-241 fatigue crack propagation (β alloys) 298, 305-

307, 312-313, 315-317 fatigue crack propagation (TMCs) 375-376 fatigue life calculation 253 fatigue specimen preparation 149-150 Fe content 176, 180-182 Fe diffusivity 45-46 Fe stabilized β phase 180-181 filler wire 109-110 first melt electrode 61-62 flame cut 61 fluidized bed 53 fluorescent dye 136 fluorescent penetrant inspection 135-136 focused ion beam device (FIB) 142, 161-167 forging 79-83 forging press 79-80 forging process modeling 81 forgings 80, 82-83, 318-319, 323 formability index 98 Formula-One racing cars 11 fracture mode - brittle 194 - ductile 190, 219-220 fracture surface examination 145-146 fracture toughness (α+β alloys) 217 - α2 precipitates (aging) 241-242 - β annealed structure 170, 172-173, 226,

232 - bi-lamellar structure 244 - bi-modal structure 232 - crystallographic texture 249 - fully equiaxed structure 238 - oxygen 241-242 - property calculations 170, 172-173 fracture toughness (β alloys) 298, 308-312,

315-316, 326-329, 332 frame type heat exchanger 198-199 freezing segregation 63 friction stir processing (FSP) 153-157 friction stir welding (FSW) 114-115 friction welding 111-114 Fukuoka Dome 9-10, 408 fully equiaxed structure (α+β alloys) - crystallographic texture 210, 246 - formation mechanism 212-213 - microstructure 212, 214 - processing route 212-214 - properties 217, 234-238, 247-248, 268

436 Index

fusion weld 106-107 fusion welded pressure vessel 105 fusion welding 104-111 Fuzzy logic 169 G γ alloys - α2+γ lath structure 345-346 - alloying elements 341, 345, 347-348 - applications 356-366 - β2 phase 347 - boron additions 354 - microstructures 345-346, 362-363 - oxidation behavior 348 - processing 354-355 - product forms 354 - product introduction 360-366 - properties 355, 362, 364-365 γ phase (TiAl) - crystal structure 340 - ordered lattice 341 - slip systems 340 gas atomization process 91 gas atomized powder 92 gas metal arc welding (GMAW) 109 gas tungsten arc welding (GTAW) 108 gates 90 general corrosion 47-48 GFM 74 globular α particles (β alloys) 292-293 globular structure (see fully equiaxed struc-

ture) globularization mechanism 211, 213 golf club heads 10-11, 406-407 Goodman diagram 365-366 grade designations 175 grade numbers 176 grain boundary α (see α layer) grain shape 207-208, 291-293, 299-310, 324-

330 grain size (see α grain size, β grain size) “grain switching” mechanism 99 gravity separation 65 Gregor 2 growth of α plates 32 Guggenheim Museum 414-415 H Hall-Petch relationship 180, 189 hard alpha 60, 69, 129-130 hardening mechanisms 36-42 hardening of α phase 37-38 hardening of β phase 38-42

HCF strength (α+β alloys) 217 - α2 precipitates (aging) 239 - β annealed structure 221 - bi-lamellar structure 244 - bi-modal structure 228-230 - crystallographic texture 248 - fully equiaxed structure 234-235 - oxygen 239 HCF strength (β alloys) 298, 302-305, 313-

315, 329-330, 332-333, 335, 411, 413 HCF strength (CP titanium) 186, 188 HCF strength (γ alloys) 355, 365-366 HCF strength (Super α2 alloy) 352 HCF strength (TMCs) 375-376 HCF strength/yield stress ratio 186, 188, 221,

314-315 HDH process 24, 93 “hearth only” process 68 heat affected zone (HAZ) 106-107 heat exchanger 184-185, 193, 198-199 heating rate 285-286 helicopter exhaust nozzle 332 helicopter rotor head 322-323 hexagonal martensite (α') 29 hexagonal unit cell 16 HF/HNO3 etching 132-133, 414 high density inclusions (HDIs) 59-61, 65, 67-

68, 72 high interstitial defects (HIDs) 59 high loading rates 191 high temperature alloys (α+β alloys) - α2 precipitates 259 - alloy element partitioning 266-267 - applications 270-272 - cooling rate 261-262, 264-267 - dwell fatigue 272-279 - effect of Ni impurities 279-282 - intermediate annealing treatment (bi-modal

structure) 266-267 - intermediate annealing treatment (lamellar

structure) 268-269 - processing 260-261 - silicides 259-261, 269 - volume fraction of primary α 266 high temperature properties (α+β alloys) - creep resistance 264-269, 279-282 - fatigue crack propagation 263 - HCF strength 228, 230 - LCF strength 262-263 - tensile ductility 228, 262 - yield stress 228, 261-262 high temperature properties (orthorhombic

alloys) 351-353

Index 437

high temperature properties (Super α2 alloy) 349-350, 352, 354

high temperature properties (γ alloys) 362, 365-366

hip joint implant 401-402 history of titanium 2 homogeneous distribution of α platelets 41-

42, 286-287, 332-336, 412-413 homogenization annealing 72 homogenization time 178 hot band 78, 178-179 hot isostatic pressing (HIP) 87, 90-91,93 hot rolling 76, 177-178 hot working 73 Hunter process 55 hybride vehicle 392 hydraulic fluid resistance 321 hydride precipitation 194-195 hydrides (TEM artifacts) 142-144 hydrogen content 24 hydrogen diffusivity 46 hydrogen effects on properties 50, 248-249,

263 hydrogen embrittlement 50, 194 hydrogen pickup 49-50, 124, 182, 194 hydrogen powered vehicles 392 hydrogen removal 124 hydrogen storage materials 392-393 hydrogen tolerance 50, 182 hydrostatic tensile stress 195 I ignition tests 390-391 ilmenite 2, 53 impeller 123, 270-271 incoherent α platelets 41, 289 incoherent α plates 32, 289 inert gas shield 108 inert gas sweep 56 inertia weld macrostructure 112 inertia welded fan disk 82, 322 inertia welded compressor rotor 112-113, 135,

322 inertia welded compressor spool 253-254, 270 inertia welding 111-113 inertia welding modeling 111-112 ingot - non-axisymmetric 65, 67, 177, 179 - round 61-62 ingot conditioning 73 inhomogeneous distribution of α platelets 42,

286, 332-336 inspection methods 125-136

inspection of DB joints 102 integrally bladed rotor 113-114, 253 intercrystalline fracture 219 interface phase (TEM artifact) 142-143 interference microscopy 139-140 intermediate annealing treatment (bi-modal

structure) 229-230, 266-267 intermediate annealing treatment (high

strength β alloys) 289 intermediate annealing treatment (lamellar

structure) 243, 268 internal fatigue crack nucleation 117, 250,

275-277 internal hydrogen 50 internal porosity 87 internal stress measurement 148-149 International Conferences on Titanium 1 interstitial stabilized defects 57 investment cast aero-engine frame 87, 255 investment casting 87-91 ion milling 141-144 iron content 176, 180-182 iron diffusivity 45-46 iron stabilized β phase 180-181 isothermal ω particles 39-40 J jet polishing 141 joining methods 104-115 K Klaproth 2 Kroll 2 Kroll process 2, 53, 55 Kroll’s etch 138-139 L lamellar microstructure 32-33, 203-206 landing gear beam forging 81-82, 250, 317-

318, 330 laser deposition 95-96 laser deposition apparatus 97 laser shock processed impeller 123 laser shock processing 120-122 - intensity 121 - laser coupling 121-122 - residual stresses 122 lath structure (α2+γ) 345-346, 362-363 LCF strength (α+β alloys) - α2 precipitates (aging) 240 - β annealed structure 225, 231 - bi-lamellar structure 224 - bi-modal structure 231, 262

438 Index

- oxygen 240 light microscopy (LM) 137-140 limiting draw ratio (LDR) 184 linear friction weld microstructure 114-115,

253 linear friction welding 9, 113-114, 253 liquid hydrogen fuel system 200 LM artifacts 36, 138 low cost titanium 150-153 low cost titanium parts 11 low plasticity burnishing (LPB) 157-161 M m value 99, 103 machined blisk 271-272 machined fan disk 82 machining 81-82, 85-86 macrostructure of inertia weld 112 manifold 103-104, 254-255 market dynamics 12-14 market shares (alloy type) 7 market shares (application) 5-8 martensite - microstructure 29-30, 204-205 - modulus of elasticity 18-19 - MS temperature 30-31 - transformation 29 martensite (LM artifact) 36, 138 martensite (TEM artifact) 144-145 massive martensite 29 mean stress effect on HCF strength 250 mechanical polishing 137, 149 mechanical polishing artifacts 138 mechanical testing 149-150 melt related defects 59-60, 68-72 metal inert gas welding (MIG) 109 metallic titanium production - processes 58-59, 150-153 - sponge 53-57 melting 59-68 melting temperature 15 metastable phase diagram 39 metastable phases (ω, β') 38-40 Mg reduction 2, 55-57 microstructural effect on dwell fatigue 273-

275 microstructural features - α+β alloys 170-172, 203-216, 259-260 - β alloys 284-297, 330-331 - CP titanium 177-178 microstructure of α colonies 32-33, 145-146,

204-205 microstructure of cast γ LPT blades 362-363

microstructure of compressor disk 208-209 microstructure of DB joint 101 microstructure of FSP zone 154-157 microstructure of fusion weld 106-107 microstructure of HAZ 106-107 microstructure of linear friction weld 114-115 microstructure of martensite 29-30, 204-205 microtexture investigation 139-140, 146-147 mill products 73-75 mill-annealed condition 76, 215-216 mill-annealed structure (α+β alloys) - crystallographic texture 210, 246 - microstructure 108, 216 - processing route 215-216 Mo equivalent content 30 modeling of dwell fatigue 277-279 modeling of forging process 81 modeling of inertia welding 111-112 modeling of properties 167-173 modulated structure 30, 37-38 modulus of elasticity 16-19, 186, 247, 373,

411-412 MS temperature 30 multiple regression analysis 167-168 multistage compressor rotor 112-113 multi-zone ultrasonic inspection 129 N “95-99” curves 116 Na reduction 2, 55 “near α” alloys 35 “necklace” microstructure 292-293 neural networks 167-173 Ni diffusivity 280 Ni impurities 279-282 noble metals addition 47, 49, 176, 192-193,

196-197 non-aerospace applications 9-11 nonuniform α platelets distribution 41-42,

286-287 nonuniform recrystallization 286 Normaski interference microscopy 139-140 nucleation of α plates 32 nut clips 319 O off-road racing trucks 11 offshore applications 9-10, 256 omega phase - athermal transformation 30-31 - modulus of elasticity 18-19 - precipitation 39-40, 285 open die forging 79

Index 439

ordered β2 phase 337, 342-343 ordered lattice 337, 339, 341, 345 orientation imaging microscopy (OIM) 146-

147, 164-165 orientation polyhedron 147 Orowan mechanism 310 orthorhombic alloys 351 orthorhombic martensite (α'') 29, 37-38 orthorhombic phase 344-345 overpeening 119-120 oxalic acid stain etch 138, 140 oxidation 50-52 oxidation resistant alloys 51, 320-321, 348 oxide layer 51, 137, 348 oxide layer thickness 409-410, 413-414 oxide surface film passivation 47, 196 oxidizing environments 47, 187 oxygen content 33-34, 37, 176, 187-188, 217,

238-242 P pack rolling 77, 178 paint 2 particulate reinforcement 94-95 passive oxide film 47, 196 permanent mold casting 91 PGM additions 47, 49, 176, 192-193, 196-197 phase diagrams 23-28 - Ti-Al 25 - Ti-Al-V (isothermal sections) 28 - Ti-Cr 27 - Ti-Fe 70 - Ti-Mo 26 phase transformations 29-33 pickling 123, 414 pile-ups 37, 40, 299, 339 pillar 166-167 pitting corrosion 48 planar slip 37, 40, 188, 249, 340 plasma arc welding (PAW) 110-111 plate 73, 75-77 plate heat exchanger 198-199 plateau etching 145-146 platinum group metals (PGM) addition 47, 49,

176, 192-193, 196-197 polarized light microscopy 139-140, 182 pole figure determination 148 pole figures 187, 210, 246 polishing artifacts 138 porosity 87 powder metallurgy 91-94 powder size 92-93 pre-aging 42, 286-287, 336, 412-413

pre-alloyed particulates 152 precipitate-free-zone 284, 330-331 precipitation hardening 37-42, 186, 201, 217,

238-242, 249, 259, 268, 298, 310-314, 323-330, 332-336

precipitation of α platelets 40-41, 284-286, 289, 332-336, 411-413

precipitation of α2 37-38, 186, 201, 217, 238-242, 249, 259, 268

precursors 40, 42, 285-286, 332-336, 411-413 PREP powder 92 pressure vessel 105, 200 primary α (αp) size 208, 210, 230-232 primary α (αp) volume fraction 210, 228, 235-

237, 266, 296 primary processing 72-78 processing control 290, 292-294 processing modeling 81 processing route - α+β alloys 203-215, 260-261 - β alloys 284-297 - CP titanium 178, 180 processing temperature 210, 260-261, 285 product introduction 360-366 product methods 150-153 protective surface oxide film 47-48, 196 pseudo-binary phase diagram 35 purification of sponge - acid leaching 56 - inert gas sweep 56-57 - vacuum distillation 56-57 R R-ratio 217-218, 225, 241, 249-250 r value 184 racing bicycle 406-407 racing cars 11, 406 racing motorcycles 406 racing wheelchair 406-407 radiographic inspection 126, 131 rammed graphite casting 88 rectilinear shape 81 recrystallization 73, 180, 210-211, 213, 296 recrystallization annealing temperature 182,

210, 213, 296 recrystallization annealing time 285 reducing environments 47, 192 reduction by - Mg 2, 55-57 - Na 2, 55 REP powder 91-92 residual compressive stress 116-117, 159 residual tensile stress 117

440 Index

revert 61, 72 ring rolled cylinder 84-85 ring rolling 83 risers 90 robotic peening 118 roller expansion 184, 198 rolling mill 76 room temperature creep 275-276 rotating electrode process (REP) 91-93 rutile 2, 53 S scale (oxide layer) 51, 348 scanning electron microscopy (SEM) - fracture surface 145 - microstructure 145 - orientation imaging (OIM) 146-147, 164-

165 Schmidt factor 20 scrap 61, 72 seamless cylinder 83 secondary α precipitates (α+β alloys) 214,

217, 243-244 segregation 63, 69 self-diffusion of titanium 45-46, 280 Sendzimir mill 78 shape memory alloys (TiNi) - applications 397-398 - aging effect on MS 396-397 - crystal structure 393 - composition effect on MS 396 - “one-way” shape memory 397 - strain reversibility 395 - superelasticity 394-395, 398 - transformation sequence 394-395 - twinned martensite 383, 395 - “two-way” shape memory 398 shaped eddy current probe 134-135 shear modulus 17-18 shearing of coherent particles 37, 40, 238 sheet 73, 75, 77 sheet formability index 98 sheet formed parts 319 sheet forming 97-98 shell type heat exchanger 184, 198 shortage of titanium 12 shot peening - Almen intensity 119 - fatigue life 119-120, 149-150 - machines 118 - pressure 116, 119 - residual stresses 116, 121-122 - stress relaxation 117

- time 119-120 shrinkage pores 88 side-plates 288-289, 291 silicides 259-261, 269 slip bands 37, 40, 188, 221-222, 239, 249 slip length/property correlation 218, 239 slip modes 19-21, 338-341 slip steps at the surface 50, 263 slow diffusing elements 45-46 smeared metal 137 soft ball bats 407-408 soft zones along β grain boundaries 284, 299-

316, 323-330 solid solution hardening 37-38, 186 solidification 63, 69 “sonic shape” 81 specific heat capacity 43 SPF 99-101 SPF/DB 100-103 SPF/DB component 103-104 spinodal decomposition 30, 37-38 split crucible furnace 90 sponge 2 sponge cake 55 sponge cost elements 57-58 sponge crushing 57 sponge fines 93, 95 sponge fire 57 sponge particle size 57 sponge price 5-6 sponge production 53-57 sponge production (USA) 4 sponge production capacity (worldwide) 3-5,

12 sports equipment 9-11, 405-407 “spring back” 98, 184-185 springs 320, 404-405 steam turbine blades 256-257 Steckel mill 78, 179 stent 397-398 stop-off agent 102 strain induced porosity 74-75, 129-130 strain localization 37-38, 40, 186, 188, 221-

222, 239, 249, 299-300, 311, 323-330 strain rate sensitivity 99 strength to density ratio 44 stress corrosion susceptibility 201, 249 stress induced martensite (artifact) 36, 138 stress relieving treatment 206, 215, 235, 239-

240 strip 77-78 structure/property correlations - α+β alloys 167-173, 217

Index 441

- β alloys 298 subsurface fatigue crack nucleation 117, 250,

275-277 Super α2 alloy 342-344, 350-352 superconducting Nb-47Ti alloy - artificial pinning center material (APC) 387 - microstructure 386 - processing 386 - wire 386-388 superconductivity 383-385 superheat 67, 88 superplastic behavior 99 superplastic forming 98-100 superplastically formed part 101 surface damage 86, 116 surface effects on fatigue life 149-150 surface etching inspection 126, 131-133 surface oxide layer 51, 348, 413-414 surface replication inspection 126, 136 surface treatment 115-125, 153-161 suspension springs 404-405 symphathetic nucleation and growth 32 T TR value 98 TEM artifacts 142-144, 330-331 temperature dependence of CRSS 21 temperature dependence of E 18 temperature dependence of G 18 tensile ductility (α+β alloys) 217 - α2 precipitates (aging) 239 - β annealed structure 219-220, 228 - bi-lamellar structure 244-245 - bi-modal structure 220, 228, 262 - crystallographic texture 247 - fully equiaxed structure 234 - oxygen 239 tensile ductility (β alloys) 298-301, 311-312,

315, 325-326, 332, 411-412 tensile ductility (CP titanium) 186 tensile ductility (γ alloys) 355, 362, 364 tensile ductility (orthorhombic alloys) 353 tensile ductility (Super α2 alloy) 349-351 tension twins 22 texture 77-78, 183-184, 187, 210, 217, 246-

250, 269 texture investigation 139-140, 146-147 thermal conductivity 43 thermal expansion coefficient 43-44 thermo-mechanical processing 81-82 thickness of oxide layer 409-410, 413-414 thin foil artifacts 142-144, 330-331 thin foil preparation 139, 141-142, 163-164

through-transus processed structure (high strength β alloys) 298

- microstructure 293-294 - processing route 292, 294 Ti-Al phase diagram 25 Ti-Al-V (isothermal sections) 28 Ti-Cr phase diagram 27 Ti-Fe phase diagram 70 Ti-Mo phase diagram 26 TiCl4 2, 53-55, 57-58 - distillation 54-55 - reduction by Mg 2, 55-57 - reduction by Na 2, 55 TiN 70 TiO2 2, 53-55 titanium fire (aero-engine compressor) 389-

390 titanium matrix composites (TMCs) - applications 379-382 - carbon coating on fibres 371 - cost 379-380, 382 - cross plies 369 - cross weave wires 371 - degradation 377, 379 - fibre architecture 373-375, 377-378 - fibre/matrix interface 371 - fibre orientation 373-375, 377-378 - fibre touching 368, 370 - fibres 367-368 - microstructure 369 - monotape 369-370 - oxidation 377, 379 - processing methods 368 - properties 372-378 titanium production methods 150-153 titanium shortage 12 TNTZ 411-413 tool life 85 torque monitoring 86 transmission electron microscopy (TEM) 141-

144 tube welding 108-109, 183-184 tubes 183-184, 198 tungsten inert gas welding (TIG) 91, 108 turnings 61 twinning 140, 180, 187 twinning modes 22-23 twins 140, 181 type I defects 59-60, 69-70, 129 type II defects 59-60, 71 U ultrasonic inspection 126-130

442 Index

- detection capability 127 - “false positives” 128 - multi-zone method 129 - scan trace 127 - sonic shape 81, 130 - transducer 126 - ultrasonic image 129-130 undeformable α platelets 41 unit cell 15, 339, 341, 345 unrecrystallized grain structure 206-207, 290-

293 upsetting 80 usage by alloy type (USA) 7 usage by market sector - Japan 6 - USA 7-8 - USSR 6 V vacuum arc remelting (VAR) 60-64 vacuum casting furnace 90 vacuum distillation of sponge 56 vacuum distillation process (VDP) 56-57 vapor honing 118 VAR final step 68 VAR furnace 63-64 VAR ingot 61-62, 177 void coalescence 190 void nucleation 190 voids 74, 129-130 volume fraction of α phase 283, 286, 289 volume fraction of α plates 289, 296 volume fraction of α2 precipitates 37, 259 W warm forming 185, 285 wavy slip 37, 187-188 wax pattern 88 weld repair (castings) 90-91 weldability 177, 196 welding 104-115 welding of tubes 108-109, 183-184 Widmanstätten structure 33, 204 wingbox 102, 111 X X-ray computer tomography 131 X-ray diffraction 148-149 Y yield stress (α alloys) 176, 186, 201 yield stress (α+β alloys) 217 - α2 precipitates (aging) 239, 268-269

- β annealed structure 170-171, 219, 228 - bi-lamellar structure 244-245 - bi-modal structure 228, 262 - crystallographic texture 247 - fully equiaxed structure 234 - oxygen 239 - property calculations 170-171 yield stress (β alloys) 298-300, 311-312, 315,

323-330, 333, 335, 411-412 yield stress (CP titanium) 176, 186 yield stress (γ alloys) 332, 355, 362, 364 yield stress (orthorhombic alloys) 352-353 yield stress (Super α2 alloy) 349-352