references - home - springer978-3-642-24615...324 bowen, r. m.; wang, c.-c.: introduction to vectors...

25
REFERENCES 321 References Acharya, A.; Shawki, T. G.: The Clausius-Duhem inequality and the structure of rate-independent plasticity. Int. J. Plast. 22,2, 229-283 (1996) Akivis, M. A.; Goldberg, V. V.: Tensor Calculus with Applications. World Sci- entific Pub., Singapore (2003) Anand, L.: Constitutive equations for hot-working of metals. Int. J. Plasticity 1, 213-231 (1985) Anand, L.; Kothari, M.: A computational procedure for rate-independent crystal plasticity. J. Mech. Phys. Solids 44,4, 525-558 (1996) Antman, S. S.: Nonlinear Problems of Elasticity. Springer, New York (1995) Aretz, H.; Barlat, F.: General orthotropic yield functions based on linear stress deviator transformations. NUMIFORM 2004. Eds.: S. Ghosh, J. M. Castro, J. K. Lee. Amer. Inst. Physics, 147-151 (2004) Arminjon, M.: A regular form of the Schmid law. Application to the ambiguity problem. Textures and Microstructures 14-18, 1121-1128 (1991) Arramon, Y. P.; Mehrabadi, M. M.; Martin, D. W.; Cowin, S. C.: A multidi- mensional anisotropic strength criterion based on Kelvin modes. Int. J. Solids Structures 37, 2915-2935 (2000) Arruda, E. M.; Boyce, M. C.: A three-dimensional constitutive model for the large stretch behavior of rubber elastic materials. J. Mech. Phys. Solids 41,2, 389-412 (1993) Asaro, R. J.: Micromechanics of crystals and polycrystals. In: Advances in Ap- plied Mechanics. Eds.: J. W. Hutchinson, T. Y. Wu, Academic Press 23, 1-115 (1983) Asaro, R. J.: Crystal plasticity. J. Appl. Mech. 50, 921-934 (1983) Atkin, R. J.; Fox, N.: An Introduction to the Theory of Elasticity. Longman, Lon- don (1980) Attard, M. M.: Finite strain-isotropic hyperelasticity. Int. J. Solids Structures 40,17, 4353-4378 (2003) Backman, M. E.: Form for the relation between stress and finite elastic and plas- tic strains under impulsive loading. J. Appl. Phys. 35,8, 2524-2533 (1964) Ball, J. M.: Convexity conditions and existence theorems in nonlinear elasticity. Arch. Rational Mech. Anal. 63, 337-403 (1977) Banabic, D.; Bunge, H.-J.; Pöhlandt, K.; Tekkaya, A. E.: Formability of Metal- lic Materials. Springer, Berlin (2000) Barlat, F.; Lian, J.: Plastic behavior and stretchability of sheet metals. Part I: A yield function for orthotropic sheets under plane stress conditions. Int. J. Plasticity 5, 51-66 (1989) Barlat, F.; Lege, D. J.; Brem, J. C.: A six-component yield function for anisot- ropic materials. Int. J. Plasticity 7, 693-712 (1991) Barlat, F.; Yoon, J. W.; Cazacu, O.: On linear transformations of stress tensors for the description of plastic anisotropy. Int. J. Plasticity 23, 876-896 (2007) A. Bertram, Elasticity and Plasticity of Large Deformations, 3rd ed., DOI 10.1007/978-3-642-24615-9, © Springer-Verlag Berlin Heidelberg 2012

Upload: ngotu

Post on 24-Apr-2018

214 views

Category:

Documents


2 download

TRANSCRIPT

REFERENCES

321

References Acharya, A.; Shawki, T. G.: The Clausius-Duhem inequality and the structure of rate-independent plasticity. Int. J. Plast. 22,2, 229-283 (1996) Akivis, M. A.; Goldberg, V. V.: Tensor Calculus with Applications. World Sci-entific Pub., Singapore (2003) Anand, L.: Constitutive equations for hot-working of metals. Int. J. Plasticity 1, 213-231 (1985) Anand, L.; Kothari, M.: A computational procedure for rate-independent crystal plasticity. J. Mech. Phys. Solids 44,4, 525-558 (1996) Antman, S. S.: Nonlinear Problems of Elasticity. Springer, New York (1995) Aretz, H.; Barlat, F.: General orthotropic yield functions based on linear stress deviator transformations. NUMIFORM 2004. Eds.: S. Ghosh, J. M. Castro, J. K. Lee. Amer. Inst. Physics, 147-151 (2004) Arminjon, M.: A regular form of the Schmid law. Application to the ambiguity problem. Textures and Microstructures 14-18, 1121-1128 (1991) Arramon, Y. P.; Mehrabadi, M. M.; Martin, D. W.; Cowin, S. C.: A multidi-mensional anisotropic strength criterion based on Kelvin modes. Int. J. Solids Structures 37, 2915-2935 (2000) Arruda, E. M.; Boyce, M. C.: A three-dimensional constitutive model for the large stretch behavior of rubber elastic materials. J. Mech. Phys. Solids 41,2, 389-412 (1993) Asaro, R. J.: Micromechanics of crystals and polycrystals. In: Advances in Ap-plied Mechanics. Eds.: J. W. Hutchinson, T. Y. Wu, Academic Press 23, 1-115 (1983) Asaro, R. J.: Crystal plasticity. J. Appl. Mech. 50, 921-934 (1983) Atkin, R. J.; Fox, N.: An Introduction to the Theory of Elasticity. Longman, Lon-don (1980) Attard, M. M.: Finite strain-isotropic hyperelasticity. Int. J. Solids Structures 40,17, 4353-4378 (2003) Backman, M. E.: Form for the relation between stress and finite elastic and plas-tic strains under impulsive loading. J. Appl. Phys. 35,8, 2524-2533 (1964) Ball, J. M.: Convexity conditions and existence theorems in nonlinear elasticity. Arch. Rational Mech. Anal. 63, 337-403 (1977) Banabic, D.; Bunge, H.-J.; Pöhlandt, K.; Tekkaya, A. E.: Formability of Metal-lic Materials. Springer, Berlin (2000) Barlat, F.; Lian, J.: Plastic behavior and stretchability of sheet metals. Part I: A yield function for orthotropic sheets under plane stress conditions. Int. J. Plasticity 5, 51-66 (1989) Barlat, F.; Lege, D. J.; Brem, J. C.: A six-component yield function for anisot-ropic materials. Int. J. Plasticity 7, 693-712 (1991) Barlat, F.; Yoon, J. W.; Cazacu, O.: On linear transformations of stress tensors for the description of plastic anisotropy. Int. J. Plasticity 23, 876-896 (2007)

A. Bertram, Elasticity and Plasticity of Large Deformations, 3rd ed., DOI 10.1007/978-3-642-24615-9, © Springer-Verlag Berlin Heidelberg 2012

322

Başar, Y.; Weichert, D.: Nonlinear Continuum Mechanics of Solids. Springer, Berlin (2000) Bassani, J. L.: Single crystal hardening. Appl. Mech. Rev. 43,5,2, 320-327 (1990) Bassani, J. L.: Plastic flow of crystals. In: Advances in Applied Mechanics. Eds.: J. W. Hutchinson, T. Y. Wu, Academic Press 30, 191-258 (1994) Beatty, M. F.: A class of universal relations in isotropic elasticity theory. J. Elas-ticity 17, 113-121 (1987) Beatty, M. F.: Topics in finite elasticity: Hyperelasticity of rubber, elastomers, and biological tissues − with examples. Appl. Mech. Rev. 40,12, 1699-1734 (1987) Beatty, M. F.: Seven lectures on finite elasticity. In: Topics in Finite Elasticity. Eds.: M. Hayes, G. Saccomandi. CISM course 424. Springer, Wien, 31-93 (2001) Beatty, M. F.: An average-stretch full-network model for rubber elasticity. In: The Rational Spirit in Modern Continuum Mechanics, Eds.: C.-S. Man, R. L. Fosdick, Kluwer Academic Publishers, Dordrecht, 65-86 (2004) Bermúdez de Castro, A.: Continuum Thermomechanics. Birkhäuser, Basel (2005) Bertram, A.; Haupt, P.: A Note on Andreussi - Guidugli´s theory of thermome-chanical constraints in simple materials. Bull. acad. polonaise sci., Serie sci. techn. 14,1, 47-51 (1976) Bertram, A.: Material systems − a framework for the description of material behavior. Arch. Rational Mech. Anal. 80,2, 99-133 (1982) Bertram, A.: Axiomatische Einführung in die Kontinuumsmechanik. BI Wissen-schaftsverlag, Mannheim (1989) Bertram, A.: Description of finite inelastic deformations. In: Proceedings of ME-CAMAT'92 Multiaxial Plasticity (1992) in Cachan, France. Eds.: A. Benallal, R. Billardon, D. Marquis, 821-835 (1992) Bertram, A.: What is the general constitutive equation? In: Beiträge zur Mecha-nik. Eds.: C. Alexandru, G. Gödert, U. Görn, R. Parchem, J. Villwock, TU Berlin, 28-37 (1993) Bertram, A.; Kraska, M.: Determination of finite plastic deformations in single crystals. Arch. Mech. 47, 2, 203-222 (1995a) Bertram, A.; Kraska, M.: Description of finite plastic deformations in single crystals by material isomorphisms. Proceedings of IUTAM & ISIMM Symposium on Anisotropy, Inhomogeneity and Nonlinearity in Solid Mechanics (1994) in Nottingham, Kluwer Academic Publ., Eds.: D. F. Parker, A. H. England, Dordrecht, 77-90 (1995b) Bertram, A.: On general frameworks for material modeling. In: Conference Pa-pers of the 4. Int. Conf. on Constitutive Laws for Engineering Materials. Eds.: R. C. Picu, E. Krempl, Troy, 46-49 (1999a) Bertram, A.: An alternative approach to finite plasticity based on material iso-morphisms. Int. J. Plasticity 15,3, 353-374 (1999b) Bertram, A.; Svendsen, B.: On material objectivity and reduced constitutive equations. Arch. Mech. 53,6, 653-675 (2001) Bertram, A.: Finite thermoplasticity based on isomorphisms. Int. J. Plasticity 19, 2027-2050 (2003)

REFERENCES

REFERENCES

323

Bertram, A.; Svendsen, B.: Reply to Rivlin's Material symmetry revisited − or Much ado about nothing. GAMM-Mitteilungen 27,1, 88-93 (2004) Bertram, A.; Böhlke, T.; Šilhavy, M.: On the rank 1 convexity of stored energy functions of physically linear stress-strain relations. J. Elasticity 86, 235-243 (2007) Bertram, A.; Forest, S.: Mechanics based on an objective power functional. Technische Mechanik 27,1, 1-17 (2007) Bertram, A.; Tomas, J. (Eds.): Micro-Macro-Interactions in Structured Media and Particle Systems. Springer, Berlin (2008) Besseling, J. F.: A thermodynamic approach to rheology. In: Irreversible Aspects of Continuum Mechanics and Transfer of Physical Characteristics in Moving Fluids. Eds.: H. Parkus, L. I. Sedov, Springer, Wien, 16-51 (1968) Besseling, J. F.; Giessen, E. v. d.: Mathematical Modelling of Inelastic Deforma-tion. Chapman & Hall, London (1994) Besson, J.; Cailletaud; G.; Chaboche, J.-L.; Forest, S.: Mécanique non linéaire des matériaux. Hermes Science, Paris (2001) Besson, J.; Cailletaud; G.; Chaboche, J.-L.; Forest, S. ; Blétry, M.: Non-Linear Mechanics of Materials. Springer, Dordrecht (2010) Betten, J.: Über die Konvexität von Fließkörpern isotroper und anisotroper Stof-fe. Acta Mech. 32, 233-247 (1979) Betten, J.: Kontinuumsmechanik. Springer, Berlin (1993), 2nd rev. ed. (2001) Biegler, M. W.; Mehrabadi, M. M.: An energy-based constitutive model for anisotropic solids subject to damage. Mech. Materials 19, 151-164 (1995) Billington, E. W.: Introduction to the Mechanics and Physics of Solids. Adam Hilger, Bristol (1986) Bishop, J. F. W.; Hill, R.: A theory of the plastic distortion of a polycrystalline aggregate under combined stresses. Phil. Mag. Ser. 7, 42, 414-427 (1951) Bishop, R. L.; Goldberg, S. I.: Tensor Analysis on Manifolds. Dover Pub., New York (1968) Blatz, P. J.; Ko, W. L.: Application of finite elasticity theory to deformation of rubbery materials. Tans. Soc. Rheol. 6, 223-251 (1962) Blume, J. A.: On the form of the inverted stress-strain law for isotropic hypere-lastic solids. Int. J. Non-Linear Mechnics 27,3, 413-421 (1992) Boehler, J. P.; Raclin, J.: Écrouissage anisotrope des matériaux orthotropes prédéformés. J. Méca. Théor. Appl., Numéro spécial 23-44 (1982) Böhlke, T.; Bertram, A.; Krempl, E.: Modeling of deformation induced anisot-ropy in free-end torsion. Int. J. Plasticity 19, 1867-1884 (2003) Boer, R. de: Vektor- und Tensorrechnung für Ingenieure. Springer, Berlin (1982) Bonet, J.; Wood, R. D.: Nonlinear Continuum Mechanics for Finite Element Analysis. Cambridge Univ. Press (1997) Borisenko, A. I.; Tarapov, I.E.: Vector and Tensor Analysis with Applications. Prentice-Hall, Englewood Cliffs (1968) Borsch, S.; Schurig, M.: Regularisation of the Schmid law in crystal plasticity. In BERTRAM/ TOMAS, 77-91 (2008) Borst, R. de; Giessen, E. v. d. (Eds.): Material Instabilities in Solids. John Wiley & Sons, Chichester (1998)

324

Bowen, R. M.; Wang, C.-C.: Introduction to Vectors and Tensors. 2 volumes. Plenum Press, New York (1976) Brand, L.: Vector and Tensor Analysis. New York, John Wiley & Sons (1947) Brillouin, L.: Tensors in Mechanics and Elasticity. Acad. Press, New York (1964) Bron, F.; Besson, J.: A yield function for anisotropic materials − Application to aluminum alloys. Int. J. Plasticity 20,4-5, 937-963 (2004) Brown, A. A.; Casey, J.; Nikkel, D. J.: Experiments conducted in the context of the strain-space formulation of plasticity. Int. J. Plasticity 19,11, 1965-2005 (2003) Bruhns, O. T.; Xiao, H.; Meyers, A.: On representations of yield functions for crystals, quasicrystals and transversely isotropic solids. Eur. J. Mech. A/Solids 18, 47-67 (1999) Cailletaud, G.: Crystalline viscoplasticity applied to single crystals. In: Hand-book of Materials Behavior Models. Vol. 1. Ed.: J. Lemaitre, 308-317 (2001) Carlson, D. E.; Shield, R. T. (eds.): Finite Elasticity. Martinus Nijhoff Pub., The Hague (1982) Carroll, M. M.: Finite strain solutions in compressible isotropic elasticity. J. Elasticity 20, 65-92 (1988) Casey, J., Naghdi, P. M.: A remark on the use of the decomposition F = Fe Fp in plasticity. J. Appl. Mech. 47, 672-675 (1980) Casey, J.; Naghdi, P. M.: A prescription for the identification of finite plastic strain. Int. J. Engng. Sci. 30,10, 1257-1278 (1992) Casey, J.: On elastic-thermo-plastic materials at finite deformations. Int. J. Plas-ticity 14,1-3, 173-191 (1998) Cazacu, O.; Barlat, F.: A criterion for description of anisotropy and yield differ-ential effects in pressure-insensitive metals. Int. J. Plasticity 20, 2027-2045 (2004) Cazacu, O.; Plunkett, B.; Barlat, F.: Orthotropic yield criterion for hexagonal closed packed metals. Int. J. Plasticity 22, 1171-1194 (2006) Chadwick, P.: Continuum Mechanics − Concise Theory and Problems. George Allen & Unwin, London (1976) Choquet-Bruhat, Y.; de Witt-Morette, C.; Dillard-Bleick, M.: Analysis, Mani-folds and Physics. North Holland, Amsterdam (1977) Chu, E.: Generalization of Hill's 1979 anisotropic yield criteria. J. Mat. Process. Techn. 50, 207-215 (1995) Ciarlet, P. G.: Lectures on Three-Dimensional Elasticity. Tata Inst. of Fundamen-tal Research, Bombay (1983) Ciarlet, P. G.: Mathematical Elasticity. Vol. I. North Holland, Amsterdam (1988) Cleja-Ţigoiu, E.; Soós, S.: Elastoviscoplastic models with relaxed configurations and internal state variables. Appl. Mech. Rev. 43,7, 131-151 (1990) Cleja-Ţigoiu, S.: Large elasto-plastic deformations of materials with relaxed configurations. I. Constitutive assumptions. Int. J. Engng. Sci. 28,3, 171-180 (1990) Clifton, R. J.: On the equivalence of Fe Fp and Fp Fe. J. Appl. Mech. 39, 287-289 (1972) Coleman, B. D.; Noll, W.: Material symmetry and thermostatic inequalities in finite elastic deformations. Arch. Rational Mech. Anal. 15, 87-111 (1964)

REFERENCES

REFERENCES

325

Cosserat, E.; Cosserat, F.: Théorie des corps déformables. Herman et fils, Paris (1909) Criscione, J. C.; Humphrey, J. D.; Douglas, A. S.; Hunter, W. C.: An invariant basis for natural strain which yields orthogonal stress response terms in isotropic hyperelasticity. J. Mech. Phys. Solids 48,12, 2445-2465 (2000) Criscione, J. C.: Rivlin's representation formula is ill-conceived for the determi-nation of response functions via biaxial testing. In: The Rational Spirit in Modern Continuum Mechanics, Eds.: C.-S. Man, R. L. Fosdick, Kluwer Academic Pub-lishers, Dordrecht, 197-215 (2004) Dafalias, Y. F.: Corotational rates for kinematic hardening at large plastic de-formations. J. Appl. Mech. 50, 561-565 (1983) Dafalias, Y. F.: The plastic spin concept and a simple illustration of its role in finite plastic transformation. Mech. Materials 3, 223-233 (1984) Dafalias, Y. F.: The plastic spin. J. Appl. Mech. 52, 865-871 (1985) Dafalias, Y. F.: On the microscopic origin of the plastic spin. Acta Mech. 82, 31-48 (1990) Dafalias, Y. F.: Plastic spin: necessity or redundancy. Int. J. Plasticity 14,9, 909-931(1998) Darrieulat, M.; Piot, D.: A method of generating analytical yield surfaces of crystalline materials. Int. J. Plasticity 12,5, 575-610 (1996) Dashner, P. A.: Invariance considerations in large strain elasto-plasticity. J. Appl. Mech. 53, 55-60 (1986a) Dashner, P. A.: Plastic potential theory in large strain elastoplasticity. Int. J. Solids Structures 22,6, 593-623 (1986b) Davison, L.: Kinematics of finite elastoplastic deformation. Mech. Materials 21, 73-88 (1995) Dawson, P. R.; MacEwen, S. R.; Wu, P.-D.: Advances in sheet metal forming analyses: dealing with mechanical anisotropy from crystallographic texture. Int. Mater. Rev. 28,2, 86-122 (2003) Del Piero, G.: On the elastic-plastic material element. Arch. Rational Mech. Anal. 59,2, 111-130 (1975) Desmorat, R., Marull, R.: Non-quadratic Kelvin modes based plasticity criteria for anisotropic materials. Int. J. Plasticity 27, 328-351 (2011) Dimitrienko, Y. I.: Tensor Analysis and Nonlinear Tensor Functions. Kluwer Acad. Pub., Dordrecht (2002) Dimitrienko, Y. I.: Nonlinear Continuum Mechanics and Large Inelastic Defor-mations. Springer, Dordrecht (2011) Doghri, I.: Mechanics of Deformable Solids. Springer, Berlin (2000) Doyle, T. C.; Ericksen, J. L.: Nonlinear Elasticity. In: Advances in Appl. Mech. IV. Eds.: H. I. Dryden, T. v. Karman, Acad. Press, New York, 53-115 (1956) Drozdov, A. D.: Finite Elasticity and Viscoelasticity. World Scientific Pub., Sin-gapore (1996) Dunne, F.; Petrinic, N.: Introduction to Computational Plasticity. Oxford Univ. Press (2005) Dunwoody, J.; On universal deformations with non-uniform temperatures in isotropic, incompressible elastic solids. Math. Mech. Solids 8,5, 507-513 (2003)

326

Eckart, C.: The thermodynamics of irreversible processes. IV. The theory of elas-ticity and anelasticity. Physical Review 73,4, 373-382 (1948) Ehlers, W.; Eipper, G.: The simple tension problem at large volumetric strains computed from finite hyperelastic material laws. Acta Mech. 130, 17-27 (1998) Ericksen, J. L.: Deformations possible in every compressible, isotropic, perfectly elastic material. J. Math. Phys. 34, 126-128 (1955) Ericksen, J. L.: Tensor Fields. In: C. Truesdell, R. A. Toupin: The Classical Field Theories. In: Handbuch der Physik. Vol. III/1. Ed.: S. Flügge, Springer, Berlin (1960) Ericksen, J. L.: Introduction to the Thermodynamics of Solids. Chapman & Hall, London (1991) Farren, W. S.; Taylor, G. I.: The heat developed during plastic extension of metals. Proc. Royal Soc. London, Ser. A, 107, 422-451 (1925) Feigenbaum, H. P.; Dafalias, Y. F.: Directional distortional hardening in metal plasticity within thermodynamics. Int. J. Solids Structures 44, 7526-7542 (2007) Finger, J.: Über die gegenseitigen Beziehungen von gewissen in der Mechanik mit Vortheil anwendbaren Flächen zweiter Ordnung nebst Anwendungen auf Proble-me der Astatik. Sitzungsber. der Kaiserl. Akad. the Wissenschaften, Mathema-tisch-Naturwiss. Classe 101, IIa, 1105-1142 (1892) Finger, J.: Über die allgemeinsten Beziehungen zwischen endlichen Deformatio-nen und den zugehörigen Spannungen in aeolotropen and isotropen Substanzen. Sitzungsber. der Kaiserl. Akad. the Wissenschaften, Mathematisch-Naturwiss. Classe 103,10,IIa, 1073-1100 (1894) Fitzgerald, J. E.: A tensorial Hencky measure of strain and strain rate for finite deformations. J. Appl. Phys. 51,10, 5111-5115 (1980) Fleming, W.: Functions of Several Variables. Springer, New York (1977) Forest, S.; Parisot, R.: Material crystal plasticity and deformation twinning. Rend. Sem. Mat. Univ. Pol. Torino, 58,1, 99–111 (2000) Fosdick, R. L.; Serrin, J.: On the impossibility of linear Cauchy and Piola-Kirchhoff constitutive theories for stress in solids. J. Elasticity 9,1, 83-89 (1979) Fox, N.: On the continuum theories of dislocations and plasticity. Quart. J. Mech. Appl. Math. 21, 67-75 (1968) Fraeijs de Veubeke, B. M.: A Course in Elasticity. Springer, New York (1979) François, D.; Pineau, A.; Zaoui, A.: Mechanical Behaviour of Materials. Vol 1: Elasticity and Plasticity. Kluwer Acad. Pub., Dordrecht (1998) François, M.: A plasticity model with yield surface distortion for non propor-tional loading. Int. J. Plasticity 17, 703-717 (2001) Freudenthal, A. M.; Gou, P. F.: Second order effects in the theory of plasticity. Acta Mech. 8, 34-52 (1969) Frewer, M.: More clarity on the concept of material frame-indifference in classi-cal continuum mechanics. Acta Mech. 202, 213-246 (2009) Frischmuth, F.; Kosiński, W.; Perzyna, P.: Remarks on mathematical theory of materials. Arch. Mech. 38,1-2, 59-69 (1986) Fung, Y. C. B.: Elasticity of soft tissues in simple elongation. American J. Physi-ology 213,6, 1532-1544 (1967) Gambin, W.: Plasticity of crystals with interacting slip systems. Engn. Trans. 39,3-4, 303-324 (1991)

REFERENCES

REFERENCES

327

Gambin, W.: Crystal plasticity based on yield surfaces with rounded-off corners. Z. Angew. Math. Mech. 71,4, T265-T268 (1991) Gent, A. N.: A new constitutive relation for rubber. Rubber Chem. Technol. 69,1, 59-61 (1996) Germain, P.; Nguyen, Q. S.; Suquet, P.: Continuum Thermodynamics. J. Appl. Mech. 50, 1010-1020 (1983) Giessen, E. v. d.: Continuum models of large deformation plasticity − Part I. Eur. J. Mech. A/Solids 8,1, 15-34 (1989) Giessen, E. v. d.: Micromechanical and thermodynamic aspects of the plastic spin. Int. J. Plasticity 7, 365-386 (1991) Gilman, J. J.: Physical nature of plastic flow and fracture. In: Plasticity, Proc. 2nd Symp. on Naval Structural Mechanics. Eds.: E. H. Lee, P. S. Symonds, Per-gamon Press, Oxford, 43-99 (1960) Goldenblat, I. I.: On a problem in the mechanics of finite deformation of continu-ous media (in Russian). C. R. Dokl. Acad. Sci. SSR 70,6, 973-976 (1950) Goldenblat, I. I.; Kopnov, V. A.: Strength of glass-reinforced plastics in the complex stress state. Mekhanika Polimerov, vol.1 (1965). English translation: Polymer Mechanics, vol. 1, Faraday Press (1966) Gonzalez, O.; Stuart, A.M.: A First Course in Continuum Mechanics, Cambridge University Press (2008) Green, A. E.; Zerna, W.: Theoretical Elasticity. Oxford at the Clarendon Press (1954, 1968, 1975, 2002) Green, A. E.; Adkins, J. E.: Large Elastic Deformations. Oxford Univ. Press, Oxford (1960), 2nd ed. (1970) Green, A. E.; Naghdi, P. M.: A general theory of an elastic-plastic continuum. Arch. Rational Mech. Anal. 18,4, 251-281 (1965) Green, A. E.; Naghdi, P. M.; Trapp, J. A.: Thermodynamics of a continuum with internal constraints. Int. J. Engn. Sci. 8, 891-908 (1970) Green, A. E.; Naghdi, P. M.: Some remarks on elastic-plastic deformation at finite strain. Int. J. Engn. Sci., 9, 1219-1229 (1971) Greve, R.: Kontinuumsmechanik. Ein Grundkurs. Springer, Berlin (2003) Gurtin, M. E.; Podio Guidugli, P.: The thermodynamics of constrained materi-als. Arch. Rat. Mech. Anal. 51,3, 192-208 (1973) Gurtin, M. E.: An Introduction to Continuum Mechanics. Academic Press, New York (1981) Habraken, A. M.: Modelling the plastic anisotropy of metals. Arch. Comput. Meth. Engng. 11,1, 3-96 (2004) Hackl, K.: Generalized standard media and variational principles in classical and finite strain elastoplasticity. J. Mech. Phys. Solids 45,5, 667-688 (1997) Halmos, P. R.: Finite-Dimensional Vector Spaces. Springer, New York (1974, 1987) Halphen, M. B.; Nguyen, Q. S.: Sur les matériaux standards généralisés. J. Mé-ca. 14,1, 39-63 (1975) Halphen, M. B.: Sur le champ des vitesses en thermoplasticité finie. Int. J. Solids Structures 11,9, 947-960 (1975) Hamel, G.: Theoretische Mechanik. Springer, Berlin (1949)

328

Han, W.; Reddy, B. D.: Plasticity – Mathematical Theory and Numerical Analy-sis. Springer, Berlin (1999) Hanyga, A.; Ogden, R. W.: Mathematical Theory of Non-Linear Elasticity. Ellis Horwood Pub., Chichester (1985) Haupt, P.: Viskoelastizität und Plastizität. Springer, Berlin (1977) Haupt, P.: On the concept of an intermediate configuration and its application to a representation of viscoelastic-plastic material behavior. Int. J. Plasticity 1, 303-316 (1985) Haupt, P.; Tsakmakis, C.: On the application of dual variables in continuum mechanics. J. Continuum Mech. Thermodyn. 1, 165-196 (1989) Haupt, P.: Thermodynamics of solids. In: Non-Equilibrium Thermodynamics with Application to Solids. W. Muschik (Edt.). Springer-Verlag Wien, CISM Course 336, (1993) Haupt, P.: Continuum Mechanics and Theory of Materials. Springer, Berlin (2000), 2nd rev. ed. (2002) Havner, K. S.: A discrete model for the prediction of subsequent yield surfaces in polycrystalline plasticity. Int. J. Solids Structures 7, 719-730 (1971) Havner, K. S.: Comparisons of crystal hardening laws in multiple slip. Int. J. Plasticity 1, 111-124 (1985) Havner, K. S.: Finite Plastic Deformation of Crystalline Solids. Cambridge Uni-versity Press (1992) Hayes, M.; Saccomandi, G. (eds.): Topics in Finite Elasticity. CISM course 424. Springer, Wien (2001) Heidari, M.; Vafai, A.; Desai, C.: An Eulerian multiplicative constitutive model of finite elastoplasticity. Eur. J. Mech. A/Solids 28, 1088-1097 (2009) Hershey, A. V.: The plasticity of an isotropic aggregate of anisotropic face-centered cubic crystals. J. Appl. Mech. 21, 241-249 (1954) Hill, R.: A theory of the yielding and plastic flow of anisotropic metals. Proc. Roy. Soc. London A 193, 281-297 (1948) Hill, R.: The Mathematical Theory of Plasticity. Clarendon Press, Oxford (1950, 1998) Hill, R.: Elastic properties of reinforced solids: some theoretical principles. J. Mech. Phys. Solids 11, 357-372 (1963) Hill, R.: Continuum micro-mechanics of elastoplastic polycrystals. J. Mech. Phys. Solids 13, 89-101 (1965) Hill, R.: Generalized constitutive relations for incremental deformation of metal crystals by multislip. J. Mech. Phys. Solids 14,2, 95-102 (1966) Hill, R.: On constitutive inequalities for simple materials − I. J. Mech. Phys. Sol-ids 16, 229-242 (1968) Hill, R.: On constitutive macro-variables for heterogeneous solids at finite strain. Proc. R. Soc. Lond. A. 326, 131-147 (1972) Hill, R.; Rice, J. R.: Constitutive analysis of elastic-plastic crystals at arbitrary strain. J. Mech. Phys. Solids 20, 401-413 (1972) Hill, R.: Aspects of invariance in solid mechanics. In: Advances in Applied Me-chanics. Ed.: C.-S. Yih, Academic Press 18, 1-75 (1978) Hill, R.: Theoretical plasticity of textured aggregates. Math. Proc. Camb. Phil Soc. 85, 179-191 (1979)

REFERENCES

REFERENCES

329

Hill, R.: On macroscopic effects of heterogeneity in elastoplastic media at finite strain. Math. Proc. Camb. Phil. Soc. 95, 481-494 (1984) Hill, R.: Constitutive modelling of orthotropic plasticity in sheet metals. J. Mech. Phys. Solids 38,3, 405-417 (1990) Hill, R.: A user-friendly theory of orthotropic plasticity in sheet metals. Int. J. Mech. Sci. 35,1,19-25 (1993) Hill, J. M.; Arrigo, D. J.: A note on Ericksen´s problem for radially symmetric deformations. Math. Mech. Solids 4, 395-405 (1999) Holsapple, K. A.: On natural states and plastic strain in simple materials. Z. Angew. Math. Mech. 53, 9-16 (1973) Holzapfel, G. A.: Nonlinear Solid Mechanics. A Continuum Approach for Engi-neering. John Wiley & Sons, Chichester (2000) Honeycombe, R. W. K.: The Plastic Deformation of Metals. Edward Arnold, ASM (1968, 1984) Horgan, C. O.; Saccomandi, G.: Constitutive modelling of rubber-like and bio-logical materials with limiting chain extensibility. Math. Mech. Solids 7, 353-371 (2002) Hosford, W. F.: On the yield loci of anisotropic cubic metals. 7th North. Amer. Metalworking Conf., S. M. E., Dearborn MI, 191-197 (1979 Hosford, W. F.; Caddell, R. M.: Metal Forming – Mechanics and Metallurgy. Prentice-Hall, Englewood Cliffs (1983, 1993) Hosford, W. F.: The Mechanics of Crystals and Textured Polycrystals. Oxford University Press, New York (1993) Hoss, L.; Marczak, R. J.: A new constitutive model for rubber-like materials. Mecánica Computacional 19, 2759-2773 (2010) Hsu, T. C.: A theory of the yield locus and flow rule of anisotropic materials. J. Strain Anal. 1,3, 204-215 (1966) Huber, M. T.: Właściwa praca odkształcenia jako miara wytężenia materyału (The specific strain work as a measure of material effort). Czasopismo Techniczne 22, 81-83 (1904) Huilgol, R. R.: On the structure of the group g1* appearing in hyperelasticity. Int. J. Non-Linear Mechanics 6, 677-681 (1971) Hutchinson, J. W.: Bounds and self-consistent estimates for creep of polycrystal-line materials. Proc. R. Soc. Lond. A. 348,101-127 (1976) Hutter, K.; Baaser, H. (eds.): Deformation and Failure in Metallic Materials. Springer, Berlin (2003) Ignatieff, Y. A.: The Mathematical World of Walter Noll. A Scientific Biography. Springer, Berlin (1996) Ikegami, K.: Experimental plasticity on the anisotropy of metals. In: Colloques internationaux du CNRS 295 Comportement mécanique de solides anisotropes. 201-242 (1982) Irgens, F.: Continuum Mechanics. Springer, Berlin (2008) Itskov, M.: On the application of the additive decomposition of generalized strain measures in large strain plasticity. Mech. Res. Comm. 31, 507-517 (2004) Itskov, M.: Tensor Algebra and Tensor Analysis for Engineers. Springer, Berlin (2007)

330

Ivey, H. J.: Plastic stress-strain relations and yield surfaces for aluminium alloys. J. Mech. Engng. Sci. 3,1, 15-31 (1961) Jaumann, G.: Geschlossenes System physikalischer und chemischer Differential-gesetze. Sitzungsber. Akad. Wiss. Wien (IIa) 120, 385-530 (1911) Kappus, R.: Zur Elastizitätstheorie endlicher Verschiebungen. Z. Angew. Math. Mech. 19,5, 271-285, 19,6,344-361 (1939) Karafillis, A. P.; Boyce, M. C.: A general anisotropic yield criterion using bounds and a transformation weighting tensor. J. Mech. Phys. Solids 41,12, 1859-1886 (1993) Karni, Z.; Reiner, M.: The general measure of deformation. In: Second-order Effects in Elasticity, Plasticity and Fluid Dynamics. Eds.: M. Reiner, D. Abir, Jerusalem Academic Press, Pergamon Press, Oxford, 217-227 (1964) Kellogg, O. D.: Foundations of Potential Theory. F. Ungar Pub. Comp., New York (1929) Kettunen, P. O.; Kuokkala, V.-T.: Plastic Deformation and Strain Hardening. Trans Tech Pub., Zürich (2003) Khan, A. S.; Huang, S.: Continuum Theory of Plasticity. John Wiley & Sons, New York (1995) Khan, A. S.; P. Cheng: An anisotropic elastic-plastic constitutive model for sin-gle and polycrystalline metals. I- Theoretical Developments. Int. J. Plasticity 12,2, 147-162 (1996) Knockaert, R.; Chastel, Y.; Massoni, E.: Rate-independent crystalline and poly-crystalline plasticity, application to FCC materials. Int. J. Plasticity 16, 179-198 (2000) Knops, R. J.; Payne, L. E.: Uniqueness Theorems in Linear Elasticity. Springer, Berlin (1971) Knops, R. J.; Wilkes, E. W.: Theory of elastic stability. In: Handbuch der Physik. Vol. VIa/3. Ed.: S. Flügge, Springer, Berlin (1973) Kocks, U. F.; Tomé, C. N.; Wenk, H.-R.: Texture and Anisotropy: Preferred Orientations in Polycrystals and their Effect on Material Properties. Cambridge Univ. Press (1998) Kocks, U. F.; Mecking, H.: Physics and phenomenology of strain hardening: the FCC case. Progr. Mat. Sci. 48, 171-273 (2003) Koiter, W. T.: Stress-strain relations, uniqueness and variational theorems for elastic-plastic materials with a singular yield surface. Quart. Appl. Math. 11,3, 350-354 (1953) Knowles, J. K.: The finite anti-plane shear field near the tip of a crack for a class of incompressible elastic solids. Int. J. Fracture 13,5, 611-639 (1977) Korobeynikov, S. N.: Objective tensor rates and applications in formulation of hyperelastic relations. J. Elast 93, 105-140 (2008) Kratochvíl, J.; Dillon, O. W.: Thermodynamics of crystalline elastic-visco-plastic materials. J. Appl. Phys. 41,4, 1470-1479 (1970) Kratochvíl, J.: Finite-strain theory of crystalline elastic-inelastic materials. J. Appl. Phys. 42,3, 1104-1108 (1971) Kratochvíl, J.: On a finite strain theory of elastic-inelastic materials. Acta Mech. 16,1-2, 127-142 (1973)

REFERENCES

REFERENCES

331

Krausz, A. S.; Krausz, K. (eds.): Unified Constitutive Laws of Plastic Deforma-tion. Acad. Press, San Diego (1996) Krawietz, A.: Passivität, Konvexität und Normalität bei elastisch-plastischem Material. Ingenieur-Archiv 51, 257-274 (1981) Krawietz, A.: Materialtheorie. Springer, Berlin (1986) Krawietz, A.; Mathiak, F.: Constitutive behavior of sheet metal − theoretical and experimental investigations. In: Proc. of COMPLAS II, Barcelona (1989) Krempl, E.: A small-strain viscoplasticity theory based on overstress. In: Unified Constitutive Laws of Plastic Deformation. Eds.: A. S. Krausz, K. Krausz, Acad. Press, San Diego, 282-318 (1996) Kurtyka, T.; Życzkowski, M.: A geometric description of distortional plastic hardening of deviatoric materials. Arch. Mech. 37,4-5, 383-395 (1985) Kurtyka, T.; Życzkowski, M.: Evolution equations for distortional plastic hard-ening. Int. J. Plasticity. 12,2, 191-213 (1996) Lainé, E.; Vallée, C.; Fortuné, D.: Nonlinear isotropic constitutive laws: choice of the three invariants, convex potentials and constitutive inequalities. Int. J. Engn. Sci. 37, 1927-1941 (1999) Lebedev, L. P.; Cloud, M. J.: Tensor Analysis. World Scientific Pub., Singapore (2003) Lee, E. H.; Liu, D. T.: Finite-strain elastic-plastic theory with application to plane-wave analysis. J. Appl. Phys. 38,1, 19-27 (1967) Lee, E.: Elastic-plastic deformation at finite strains. J. Appl. Mech. 36, 1-6 (1969) Lee, E. H., Germain, P. : Elastic-plastic theory at finite strain. In: Problems of Plasticity. Int. Symp., Warsaw 1972, Ed.: A. Sawczuk, Nordhoff, Leyden, 117-133 (1974) Leigh, D. C.: Nonlinear Continuum Mechanics. McGraw-Hill, New York (1968) Lemaitre, J. (Ed.): Handbook of Materials Behavior Models. Vol. 1. Academic Press, San Diego (2001) Lian, J.; Chen, J.: Isotropic polycrystal yield surfaces of b.c.c. and f.c.c. metals: crystallographic and continuum mechanics approaches. Acta Metall. Mater. 39,10, 2285-2294 (1991) Liu, I-S.: Continuum Mechanics. Springer, Berlin (2002) Liu, I-S.: On Euclidean objectivity and the principle of material frame-indifference. J. Continuum Mech. Thermodyn. 16,1-2, 177-183 (2004) Liu, C.; Huang, Y.; Stout, M. G.: On the asymmetric yield surface of plastically orthotropic materials: A phenomenological study. Acta Mater. 45,6, 2397-2406 (1997) Loomis, L. H.; Sternberg, S.: Advanced Calculus. Addison-Wesley, Reading (1968) Lowe, T. C.; Rolett, A. D.; Follansbee, P. S.; Daehn, G. S. (eds.): Modeling the Deformation of Crystalline Solids. TMS, Warrendale (1991) Lubarda, V. A.; Shih, C. F.: Plastic spin and related issues in phenomenological plasticity. J. Appl. Mech. 61, 524-529 (1994) Lubarda, V. A.: Duality in constitutive formulation of finite-strain elasto-plasticity based on F = Fe Fp and F = Fp Fe decompositions. Int. J. Plasticity 15, 1277-1290 (1999)

332

Lubarda, V. A.: Elastoplasticity Theory. CRC Press, Boca Raton (2002) Lubliner, J.: Normality rules in large-deformation plasticity. Mech. Materials 5, 29-34 (1986) Lubliner, J.: Plasticity Theory. Macmillan, New York (1990) Lütkepohl, H.: Handbook of Matrices. John Wiley & Sons, Chichester (1996) Lurie, A. I.: Nonlinear Theory of Elasticity. North Holland, Amsterdam (1990) Macvean, D. B.: Die Elementararbeit in einem Kontinuum und die Zuordnung von Spannungs- und Verzerrungstensoren. Z. angew. Math. Phys. 19, 157-184 (1968) Mandel, J.: Contribution théorique à l´étude de l´écrouissage et des lois de l´écoulement plastique. In: Proc. 11th Int. Congr. Appl. Mech. München 1964, Ed.: H. Görtler, Springer, Berlin, 502-509 (1966) Mandel, J.: Plasticité classique et viscoplasticité. CISM course No. 97, Springer, Wien (1971) Mandel, J.: Equations constitutive et directeurs dans les milieux plastiques et viscoplastique. Int. J. Solids Structures 9,6, 725-740 (1973) Mandel, J.:. Thermodynamics and plasticity. In: Proc. Int. Symp. Foundations of Continuum Thermodynamics. Eds.: J. J. Delgado Domingos, M. N. R. Nina, J. H. Whitlaw, McMillan, London, 283-304 (1974) Mandel, J.: Définition d´un repère privilégié pour l´étude des transformations anélastiques du polycristal. J. Méca. Théor. Appl. 1,1, 7-23 (1982) Marris, A. W.; Shiau, J. F.: Universal deformations in isotropic incompressible hyperelastic materials when the deformation tensor has equal proper values. Arch. Rat. Mech. Anal. 36,2, 135-160 (1970) Marris, A. W.: Two new theorems on Ericksen´s problem. Arch. Rat. Mech. Anal. 79,2, 131-173 (1982). Marsden, J. E.; Hughes, T. J. R.: Mathematical Foundations of Elasticity. Pren-tice-Hall, Englewood Cliffs (1983) Maugin, G. A.: The Thermomechanics of Plasticity and Fracture. Cambridge Univ. Press, Cambridge (1992) Maugin, G. A.: Thermomechanics of Nonlinear Irreversible Behaviors: An Intro-duction, No.27 of WSP Series on Nonlinear Science, World Scientific Publ., Sin-gapore (1999) McConnell, A. J.: Applications of Tensor Analysis. Dover, New York (1957) McLellan, A. G.: The Classical Thermodynamics of Deformable Materials. Cam-bridge Univ. Press (1980) Menzel, A.; Steinmann, P.: On the spatial formulation of anisotropic multiplica-tive elasto-plasticity. Comput. Methods Appl. Mech. Engn. 192, 3431-3470 (2003) Méric, L.; Poubanne, P.; Cailletaud, G.: Single crystal modeling for structural calculations: Part 1– Model presentation. J. Engrg. Mat. Techn. 113, 162-182 (1991) Miehe, C.: A constitutive frame of elastoplasticity at large strains based on the notion of a plastic metric. Int. J. Solids Structures 35,30, 3859-3897 (1998) Miehe, C.; Schröder, J.; Schotte, J.: Computational homogenization analysis in finite plasticity – Simulation of texture development in polycrystalline materials. Comput. Methods Appl. Mech. Engrg. 171, 387-418 (1999)

REFERENCES

REFERENCES

333

Miehe, C.: Computational micro-to-macro transitions for discretized micro-structures of heterogeneous materials at finite strains based on the minimization of averaged incremental energy. Comput. Methods Appl. Mech. Engn. 192, 559-591 (2003) Mielke, A.: Energetic formulation of multiplicative elasto-plasticity using dissipa-tion distances. Continuum Mech. Thermodyn. 15, 351-382 (2003) Mises, R. v.: Mechanik der festen Körper im plastisch-deformablen Zustand. Nachr. Kgl. Ges. Wiss. Göttingen, Math. Phys. Klasse 582-592 (1913) Mises, R. v.: Mechanik der plastischen Formänderung von Kristallen. Z. Angew. Math. Mech. 8,3, 161-185 (1928) Mollica, F.; Srinivasa, A. R.: A general framework for generating convex yield surfaces for anisotropic metals. Acta Mech. 154, 61-84 (2002) Montheillet, F.; Jonas, J. J.; Benferrah, M.: Development of anisotropy during the cold rolling of aluminium sheet. Int. J. Mech. Sci. 33,3,197-209 (1991) Mooney, M.: A theory of large elastic deformation. J. Appl Phys., 11, 582-592 (1940) Müller, W. C.: Universal solutions for simple thermodynamic bodies. Arch. Ra-tional Mech. Anal. 35, 220- 225 (1970) Müller, I.: Thermodynamics. Pitman, Boston (1985) Müller, I.; Strehlow, P.: Rubber and Rubber Balloons. Paradigms of Thermody-namics. Lecture Notes in Physics 637, Springer, Heidelberg (2004) Murnaghan, F. D.: Finite deformations of an elastic solid. Amer. J. Math. 59, 235-260 (1937) Naghdi, P.: Stress-strain relations in plasticity and thermoplasticity. In: Plasti-city, Proc. 2nd Symp. on Naval Structural Mechanics. Eds.: E. H. Lee, P. S. Sy-monds, Pergamon Press, Oxford, 121-169 (1960) Naghdi, P. M.; Trapp, J. A.: The significance of formulating plasticity theory with reference to loading surfaces in strain space. Int. J. Engn. Sci. 13, 785-797 (1975) Naghdi, P.: A critical review of the state of finite plasticity. J. Appl. Math. Phys. 41, 315-394 (1990) Naghdi, P. M.; Srinivasa, A.: Some general results in the theory of crystallo-graphic slip. Z. angew. Math. Phys. 45, 687-732 (1994) Narasimhan, M. N. L.: Principles of Continuum Mechanics. John Wiley & Sons, New York (1993) Nemat-Nasser, S.: Decomposition of strain measures and their rates in finite deformation elastoplasticity. Int. J. Solids Structures 15, 155-166 (1979) Nemat-Nasser, S.; Hori, M.: Micromechanics: Overall Properties of Heteroge-neous Materials. North-Holland, Amsterdam (1993) Nemat-Nasser, S.: Plasticity. Cambridge University Press (2004) Neumann, C.: Zur Theorie der Elasticität. Borchardt´s J. für reine and angewand-te Math. 57, 281-318 (1860) Neutsch, W.: Koordinaten. Spektrum Akademischer Verlag, Heidelberg (1995) Nguyen, H. V.; Raniecky, B.: Observable plastic spin and comparison with other approaches. Arch. Mech. 51,2, 207-221 (1999)

334

Nguyen, Q. S.: Stability and Nonlinear Solid Mechanics. John Wiley & Sons Chichester (2000) Noll, W.: On the continuity of the solid and fluid states. J. Rational Mech. Anal. 4, 3-81 (1955) Noll, W.: A mathematical theory of the mechanical behavior of continuous media. Arch. Rational Mech. Anal. 2, 197-226 (1958) Noll, W.: Euclidean geometry and Minkowskian chronometry. Amer. Math. Monthly 71, 129-144 (1964) Noll, W.: Proof of the maximality of the orthogonal group in the unimodular group. Arch. Rational Mech. Anal. 18, 100-102 (1965) Noll, W.: A new mathematical theory of simple materials. Arch. Rational Mech. Anal. 48, 1-50 (1972) Noll, W.: The Foundations of Mechanics and Thermodynamics. Selected Papers. Springer, Berlin (1974) Noll, W.: Finite-Dimensional Spaces. Algebra, Geometry, and Analysis. Martinus Nijhoff Publ., Dordrecht (1987) Noll, W.: A frame-free formulation of elasticity. J. Elasticity 83,3, 291-307 (2006) Ogden, R. W.: Large deformation isotropic elasticity − on the correlation of theory and experiment for incompressible rubber-like solids. Proc. Roy. Soc. A 326, 565-584 (1972) Ogden, R. W.: Non-Linear Elastic Deformations. John Wiley & Sons, New York (1984a) Ogden, R. W.: On Eulerian and Lagrangean objectivity in continuum mechanics. Arch. Mech. 36,2, 207-218 (1984b) Ogden, R. W.: Nonlinear elasticity, anisotropy, material stability and residual stresses in soft tissue. In: CISM Course 441 Biomechanics of Soft Tissue in Car-diovascular Systems. Eds.: G. A. Holzapfel, R. W. Ogden, Springer, Wien (2003) Ortiz, M.; Popov, E. P.: Distortional hardening rules for metal plasticity. J. Eng. Mech. ASCE 109,4, 1042-1057 (1983) Ota, T.; Shindo, A.; Fufuoka, H.: A consideration on an anisotropic yield crite-rion. Proc. 9th Japan National Congress for Applied Mechanics, 117-120 (1959) Ottosen, N. S.; Ristinmaa, M.: The Mechanics of Constitutive Modeling. El-sevier, Amsterdam (2005) Owen, D. R.: A mechanical theory of materials with elastic range. Arch. Rational Mech. Anal. 37, 85-110 (1970) Pach, K.; Frey, T.: Vector and Tensor Analysis. Terra, Budapest (1964) Paglietti, A.: Plasticity of Cold Worked Metals − a Deductive Approach. WIT-press (2007) Penn, R. W.: Volume changes accompanying the extension of rubber. Trans Soc. Rheol. 14,4, 509-517 (1970) Perzyna, P.; Kosiński, W.: A mathematical theory of materials. Bull. acad. polo-naise sci., Série sci. techn. 21,12, 647-654 (1973) Petroski, H. J.; Carlson, D. E.: Controllable states of elastic heat conductors. Arch. Rational Mech. Anal. 31,2, 127-150 (1968) Petroski, H. J.; Carlson, D. E.: Some exact solutions to the equations of nonlin-ear thermoelasticty. J. Appl. Mech. 37, 1151-1154 (1970)

REFERENCES

REFERENCES

335

Petroski, H. J.: On the insufficiency of controllable states to characterize a class of rigid heat conductors. Z. Angew. Math. Mech. 51, 481-482 (1971) Petryk, H.: Macroscopic rate-variables in solids undergoing phase transforma-tion. J. Mech. Phys. Solids 46,5, 873-894 (1998) Petryk, H.: On the micro-macro transition and hardening moduli in plasticity. In: Proc. IUTAM Symposium on Micro- and Macrostructural Aspects of Thermo-plasticity. Bochum 1997, Eds.: O. T. Bruhns, E. Stein, Kluwer, Dordrecht 219-230 (1999) Phillips, A.; Liu, C. S.; Justusson, J. W.: An experimental investigation of yield surfaces at elevated temperatures. Acta Mech. 14, 119-146 (1972) Phillips, A.: The foundations of thermoplasticity - experiments and theory. In: Topics in Applied Continuum Mechanics. Eds.: J. L. Zeman, F. Ziegler, 1-21 (1974) Plunkett, B.; Lebensohn, R. A.; Cazacu, O.; Barlat, F.: Anisotropic yield func-tion of hexagonal materials taking into account texture development and anisot-ropic hardening. Acta Mater. 54, 4159-4169 (2006) Podio-Guidugli, P.: A primer in elasticity. J. Elasticity 58,1, 1-103 (2000). In book form: Kluwer Academic Publishers (2000) Pozdeyev, A. A.; Trusov, P. V.; Nyashin, Y. I.: Large Elastoplastic Strains (in Russian). Nauka, Moscow (1986) Raabe, D.; Roters, F.; Barlat, F.; Chen, L.-Q.: Continuum Scale Simulations of Engineering Materials. WILEY-VCH Verlag (2004) Raghavan, M. L.; Vorp, D. A.: Toward a biomechanical tool to evaluate rupture potential of abdominal aortic aneurysm: identification of a finite strain constitu-tive model and evaluation of its applicability. J. Biomechanics 33, 475-482 (2000) Rajagopal, K. R., Srinivasa, A. R.: Mechanics of the inelastic behavior of mate-rials − Part I Theoretical underpinnings. Int. J. Plasticity 14,10-11, 945-968 (1998) Rees, D. W. A.: The theory of scalar plastic deformation functions. Z. Angew. Math. Mech. 63, 217-228 (1983) Reese, S.: On material and geometrical instabilities in finite elasticity and elasto-plasticity. Arch. Mech. 52,6, 969-999 (2000) Reuss, A.: Vereinfachte Berechnung der plastischen Formänderungs-geschwindigkeiten bei Voraussetzung der Schubspannungsfließbedingung. Z. Angew. Math. Mech. 13,5, 356-360 (1930) Rice, J. R.: Inelastic constitutive relations for solids: an internal-variable theory and its application to metal plasticity. J. Mech. Phys. Sol. 19, 433-455 (1971) Richter, H.: Das isotrope Elastizitätsgesetz. Z. Angew. Math. Mech. 28,7/8, 205-209 (1948) Richter, H.: Zur Elastizitätstheorie endlicher Verformungen. Math. Nachr. 8, 65-73 (1952) Ristinmaa, M.; Wallin, M.; Ottosen, N. S.: Thermodynamic format and heat generation of isotropic hardening plasticity. Acta Mech. 194, 103-121 (2007) Rivlin, R. S.: Large elastic deformations of isotropic materials, I. Fundamental concepts. Phil. Trans. Roy. Soc. Lond. A 240, 459-490 (1948)

336

Rivlin, R. S.; Saunders, D. W.: Large elastic deformations of isotropic materials, VII. Experiments on the deformation of rubber. Phil. Trans. Roy. Soc. Lond. A 243, 251-288 (1951) Rivlin, R. S.; Ericksen, J. L.: Stress-deformation relations for isotropic materi-als. J. Rational Mechan. Anal. 4, 323-425 (1955) Rivlin, R. S.: Material symmetry revisited. GAMM-Mitteilungen 1/2, 109-126 (2002) Rösler, J.; Harders, H.; Bäker, M.: Mechanisches Verhalten der Werkstoffe. B. G. Teubner, Stuttgart (2003) Rougée, P.: Mécanique des grandes transformations. Springer, Berlin (1997) Rubin, M. B.: Plasticity theory formulated in terms of physically based micro-structural variables Part- I. Theory. Int. J. Solids Structures 31,19, 2615-2634 (1994) Rubin, M. B.: On the treatment of elastic deformation in finite elastic-viscoplastic theory. Int. J. Plasticity 12,7, 951-965 (1996) Ruiz-Tolosa, J. R.; Castillo, E.: From Vectors to Tensors. Spinger, Berlin (2005) Saccomandi, G.: On inhomogeneous deformations in finite thermoelasticity. IMA J. Appl. Math. 63, 131-148 (1999) Saccomandi, G.: Universal solutions and relations in finite elasticity. In: Topics in Finite Elasticity. Eds.: M. Hayes, G. Saccomandi. CISM course 424. Springer, Wien, 95-167 (2001) Salençon, J.: Handbook of Continuum Mechanics. Springer, Berlin (2001) Sansour, C.: On the dual variable of the logarithmic strain tensor, the dual vari-able of the Cauchy stress tensor, and related issues. Int. J. Solids Structures 38, 9221-9232 (2001) Sansour, C.; Karšaj, I.; Sorić, J.: A formulation of anisotropic continuum elas-toplasticity at finite strains. Part I: Modelling. Int. J. Plasticity 22, 2346-2365 (2006) Schade, H.: Tensoranalysis. Walter de Gruyter, Berlin (1997) Scheidler, M.; Wright, T. W.: A continuum framework for finite viscoplasticity. Int. J. Plasticity 17,8, 1033-1085 (2001) Schmid, E.: "Streckgrenze" von Kristallen. Schubspannungsgesetz. Proc. Int. Congr. Appl. Mech., Delft, 342 (1924) Schmid, E.; Boas, W.: Kristallplastizität. Julius Springer, Berlin (1935) Schmidt-Baldassari, M.: Numerical concepts for rate-independent single crystal plasticity. Comp. Methods Appl. Mech. Engrg. 192, 1261-1280 (2003) Schreyer, H. L.; Zuo, Q. H.: Anisotropic yield surfaces based on elastic projec-tion operators. J. Appl. Mech. 62, 780-785 (1995) Schröder, J.; Miehe, C.: Aspects of computational rate-independent crystal plas-ticity. Comp. Material Sci. 9, 168-176 (1997) Schurig, M.; Bertram, A.: A rate independent approach to crystal plasticity with a power law. Comp. Material Sci. 26, 154-158 (2003) Seth, B. R.: Generalized strain measure with applications to physical problems. In: Second-Order Effects in Elasticity, Plasticity and Fluid Dynamics. Eds.: M. Reiner, D. Abir, Pergamon Press, Oxford, 162-172 (1964). Shouten, J. A.: Tensor Analysis for Physicists. Dover Pub., New York (1990)

REFERENCES

REFERENCES

337

Shutov, A. V. ; Panhans, S.; Kreißig, R.: A phenomenological model of finite strain viscoplasticity with distortional hardening. Z. Angew. Math. Mech. 1-28 (2011) Sidoroff, F.: Quelques réflexions sur le principe d'indifférence materiélle pour un milieu ayant un état relâché. C. R. Acad. Sc. Paris, Serie A, 271, 1026-1029 (1970) Sidoroff, F.: The geometrical concept of intermediate configuration and elastic-plastic finite strain. Arch. Mech. 25,2, 299-308 (1973) Šilhavý, M.; Kratochvíl, J.: A theory of inelastic behavior of materials. Part I. Ideal inelastic materials. Arch. Rational Mech. Anal. 65,2, 97-129 (1977) Part II. Inelastic materials. Arch. Rational Mech. Anal. 65,2, 131-152 (1977) Šilhavý, M.: On transformation laws for plastic deformations of materials with elastic range. Arch. Rational Mech. Anal. 63,2, 169-182 (1977) Šilhavý, M.: The Mechanics and Thermodynamics of Continuous Media. Springer, Berlin (1997) Simo, J. C.; Hughes, T. J. R.: Computational Inelasticity. Springer, New York (1998) Simo, J. C.: Numerical analysis and simulation of plasticity. In: Handbook of Numerical Analysis. Vol. VI. Eds.: P. G. Ciarlet, J. L. Lions, North-Holland (1998) Skrzypek, J. J.: Plasticity and Creep. CRC Press, Boca Raton (1993) Sluzalec, A.: Theory of Metal Forming Plasticity. Springer, Berlin (2004) Smith, D. R.: An Introduction to Continuum Mechanics − after Truesdell and Noll. Kluwer, Dordrecht (1993) Sokolnikoff, I. S.: Tensor Analysis. John Wiley & Sons, New York (1951, 1964) Spitzig, W. A.; Richmond, O.: The effect of pressure on the flow stress of metals. Acta Metallurgica 31,1, 457-463 (1984) Steinmann, P.: On localization analysis in multisurface hyperelasto-plasticity. J. Mech. Phys. Solids, 44,10, 1691-1713 (1996) Svendsen, B.: A thermodynamic formulation of finite deformation elastoplasticity with hardening based on the concept of material isomorphism. Int. J. Plasticity 14,6, 473-488 (1998) Svendsen, B.; Bertram, A.: On frame-indifference and form-invariance in consti-tutive theory. Acta Mech. 132, 195-207 (1999) Svendsen, B.: On the modelling of anisotropic elastic and inelastic material be-haviour at large deformation. Int. J. Solids Structures 38, 9579-9599 (2001) Szczepiński, W.: Introduction to the Mechanics of Plastic Forming of Metals. Sijthoff & Noordhoff, Alphen aan den Rijn (1979) Taber, L. A.: Nonlinear Theory of Elasticity. Applications in Biomechanics. World Scientific, New Jersey (2004) Talbert, S. H.; Avitzur, B.: Elementary Mechanics of Plastic Flow in Metal Forming. John Wiley & Sons, Chichester (1996) Taylor, G. I.; Elam, C. F.: The plastic extension and fracture of aluminium crys-tals. Proc. Roy. Soc. A108, 28-51 (1925) Taylor, G. I.: Plastic strain in metals. J. Inst. Metals 62, 307-324 (1938)

338

Teodosiu, C.: A dynamic theory of dislocations and its applications to the theory of the elastic-plastic continuum. In: Fundamental Aspects of Dislocation Theory. Eds.: J. A. Simmons, R. de Wit, R. Bullough, Nat. Bur. Stand. (U. S.), Spec. Publ. 317,II, 837-876 (1970) Teodosiu, C.; Sidoroff, F.: A theory of finite elastoviscoplasticity of single crys-tals. Int. J. Engn. Sci. 14, 165-176 (1976) Teodosiu, C.: The plastic spin: microstructural origin and computational signifi-cance. In: Computational Plasticity. Eds.: D. R. J. Owen, E. Hinton, E. Oñate, Pineridge Press, Swansea (1989) Teodosiu, C.; Raphanel, J. L.; Sidoroff, F. (eds.): Large Plastic Deformations. A. A. Balkema, Rotterdam (1993) Thomson, W.: Elements of a Mathematical Theory of Elasticity. London (1856) Tong, W.; Tao, H.; Jiang, X.: Modelling the rotation of orthotropic axes of sheet metals subjected to off-axis uniaxial tension. J. Appl. Mech. 71, 521-531 (2004) Treloar, L. R. G.: The Physics of Rubber Elasticity. Oxford University Press, (1975) Tresca, H.: Mémoire sur l'écoulement des corps solides soumis à de fortes pres-sions. Comptes Rendus Acad. Sci. Paris 59, 754 (1864) Trostel, R.: Mathematische Grundlagen the Technischen Mechanik I, Vektor- und Tensoralgebra. Vieweg, Braunschweig (1993) Trostel, R.: Mathematische Grundlagen the Technischen Mechanik II, Vektor- und Tensoranalysis. Vieweg, Braunschweig (1997) Trostel, R.: Mathematische Grundlagen the Technischen Mechanik III, Materi-almodelle in the Ingenieurmechanik. Vieweg, Braunschweig (1999) Truesdell, C.; Toupin, R. A.: The Classical Field Theories. Handbuch der Phy-sik. Vol. III/1. Ed.: S. Flügge, Springer, Berlin (1960) Truesdell, C. A.: The nonlinear field theories in mechanics. In: Topics in Nonlin-ear Physics. Ed.: N. J. Zabusky, Springer, Berlin, 19-215 (1968) Truesdell, C. A.: Rational Thermodynamics. McGraw-Hill, New York (1969) Truesdell, C. A.; Noll, W.: The Non-linear Field Theories of Mechanics. In: Handbuch der Physik. Vol. III/3. Ed.: S. Flügge, Springer, Berlin (1965), 2nd ed. (1992), 3rd ed. by S. Antman (2004) Tsai, S. W.; Wu, E. M.: A general theory of strength for anisotropic materials. J. Composite Materials 5, 58-80 (1971) Tsakmakis, C.: Description of plastic anisotropy effects at large deformations − part I: restrictions imposed by the second law and the postulate of Il'yushin. Int. J. Plasticity 20,2, 176-198 (2004) Valanis, K. C.; Landel, R. F.: The strain-energy function of a hyperelastic mate-rial in terms of the extension ratios. J. Appl. Phys. 38,7, 2997-3002 (1967) Valent, T.: Boundary Value Problems of Finite Elasticity – Local Theorems on Existence, Uniqueness, and Analytic Dependence on Data. Springer, New York (1988) Vallée, C.; He, Q.-C.; Lerintiu, C.: Convex analysis of the eigenvalues of a 3D second-order symmetric tensor. J. Elasticity 83, 191-204 (2006) Van Houtte, P.: Models for the prediction of deformation textures. In: Advances and Applications of Quantitative Texture Analysis. Eds.: H. J. Bunge, C. Esling, DGM Informationsgesellschaft-Verlag, Oberursel, 175-198 (1991)

REFERENCES

REFERENCES

339

Vegter, H.; van den Boogaard, A. H.: A plane stress yield function for aniso-tropic sheet material by interpolation of biaxial stress states. Int. J. Plasticity 22, 557-580 (2006) Vianello, M.: The representation problem for constrained hyperelastic materials. Arch. Rational Mech. Anal. 111,1, 87-98 (1990) Vidoli, S.; Sciarra, G.: A model for crystal plasticity based on micro-slip descrip-tors. Continuum Mech. Thermodyn. 14, 425-435 (2002) Vladimirov, I. N.; Pietryga, M. P.; Reese, S.: Anisotropic finite elastoplasticity with nonlinear kinematic and isotropic hardening and application to sheet metal forming. Int. J. Plasticity 26, 659-687 (2010) Voce, E.: A practical strain-hardening function. Metallurgia, 219-226 (1955) Voigt, W.: Lehrbuch der Kristallphysik. Teubner-Verlag, Leipzig (1910) Voyiadjis, G. Z.; Foroozesh, M.: Anisotropic distortional yield model. J. Appl. Mech. 57, 537-547 (1990) Voyiadjis, G. Z.; Thiagarajan, G.; Petrakis, E.: Constitutive modelling for granular media using an anisotropic distortional yield model. Acta Mech. 110, 151-171 (1995) Wang, C.-C.: On the stored-energy functions of hyperelastic materials. Arch. Rational Mech. Anal. 23,1, 1-14 (1966) Wang, C.-C.: On the geometric structures of simple bodies, a mathematical foun-dation for the theory of continuous distributions of dislocations. Arch. Rational Mech. Anal. 27,1, 33-94 (1967) Wang, C. C.; Truesdell, C. A.: Introduction to Rational Elasticity. Noordhoff, Leyden (1973) Wang, C.-C.; Bloom, F.: Material uniformity and inhomogeneity in anelastic bodies. Arch. Rational Mech. Anal. 53, 246-276 (1974) Wang, C.-C.: Global equations of motion for anelastic bodies and bodies with elastic range. Arch. Rational Mech. Anal. 59,1, 9-23 (1975) Wegener, K.: Zur Berechnung großer plastischer Deformationen mit einem Stoff-gesetz vom Überspannungstyp. Braunschweig Series on Mechnics 2, TU Braun-schweig (1991) Wegener, K.; Schlegel, M.: Suitability of yield functions for the approximation of subsequent yield surfaces. Int. J. Plasticity 12,9, 1151-1177 (1996) Weissman, S. L.; Sackman, J. L.: Elastic-plastic multiplicative decomposition with a stressed intermediate configuration. Comput. Methods Appl. Mech. Engrn. 200, 1607-1618 (2011) Wu, P. D.; v. d. Giessen, E.: On improved network models for rubber elasticity and their applications to orientation hardening in glassy polymers. J. Mech. Phys. Solids 41,3, 427-465 (1993) Wu, H.-C.: Continuum Mechanics and Plasticity. Chapman & Hall/CRC, London (2005) Wilmański, K.: Thermomechanics of Continua. Springer, Berlin (1998) Xiao, H.; Bruhns, O. T.; Meyers, A.: A new aspect in kinematics of large defor-mations. In: Plasticity and Impact Problems. Ed.: N. K. Gupta, New Age, New Delhi, 100-109 (1996)

340

Xiao, H.; Bruhns, O. T.; Meyers, A.: Logarithmic strain, logarithmic spin and logarithmic rate. Acta Mech. 124, 89-105 (1997) Xiao, H.; Bruhns, O. T.; Meyers, A.: The choice of objective rates in finite elas-toplasticity: general results on the uniqueness of the logarithmic rate. Proc. R. Soc. Lond. A 456, 1865-1882 (2000) Xiao, H.; Bruhns, O. T.; Meyers, A.: A consistent finite elastoplasticity theory combining additive and multiplicative decomposition of the stretching and the deformation gradient. Int. J. Plasticity 16,2, 143-177 (2000) Xiao, H.; Bruhns, O. T.; Meyers, A.: Basic issues concerning finite strain meas-ures and isotropic stress-deformation relations. J. Elasticity 67,1, 1-23 (2002) Yang, W. H. (ed.): Topics in Plasticity. A. M. Press, Ann Arbor (1991) Yang, W.; Lee, W. B.: Mesoplasticity and its Applications. Springer, Berlin (1993) Yeoh, O. H.: Characterization of elastic properties of carbon-black-filled rubber vulcanizates. Rubber Chem. Technol. 63, 792-805 (1990) Yeoh, O. H.: Some forms of the strain energy function for rubber. Rubber Chem. Technol. 66, 754-771 (1993) Yu, M.: Advances in strength theories for materials under complex stress state in the 20th Century. Appl. Mech. Rev. 55,3, 169-218 (2002) Yu, M.-H.: Generalized Plasticity. Springer, Berlin (2006) Zaremba, S.: Sur une forme perfectionnée de la théorie de la relaxation. Bull. Int. Acad. Sci. Cracovie 594-614 (1903) Zheng, Q.-S.; He, Q.-C.; Curnier, A.: Simple shear decomposition of the defor-mation gradient. Acta Mech. 140, 131-147 (2000) Ziegler, H.: An Introduction to Thermomechanics. North-Holland Pub., Amster-dam (1983) Życzkowski, M.: Anisotropic yield conditions. In: Handbook of Materials Behav-ior Models. Vol. 1. Ed.: J. Lemaitre, 155-165 (2001)

REFERENCES

INDEX

341

Index acceleration 94 additive decomposition 299 ALMANSI´s strain tensor 101 anisotropic material 189 anti(sym)metric tensor 13 antisymmetriser 40 area placement tensor XII, 106 ARIANO and RIVLIN´s theorem

223 ARRUDA-BOYCE model 229 ATTARD model 227 axial vector of a tensor 29 back strain 275 back stress 275 balance of linear momentum 131 balance of moment of momentum

139 balance of power 142 balance of work 142 bijective 4 bilinear form 27 BIOT strain tensor 101 BIOT stress tensor 144 BLATZ-KO model 226 body forces 136 BOLTZMANN´s axiom 141, 142 boundary values 233 BRAUER and NOLL´s theorem 191 caloro-dynamical state 160 CAUCHY´s 1st law of motion 139 CAUCHY´s 2nd law of motion 141 CAUCHY´s lemma 139 CAUCHY´s stress tensor 139 CAUCHY´s theorem 139, 156 CAUCHY-GREEN tensor 98 CAUCHY-STOKES decomposition

107 CAYLEY-HAMILTON theorem 24,

52 center of mass 125 centripetal acceleration 134 characteristic polynomial 21 CHRISTOFFEL symbol 77

CIARLET model 226 CLAUSIUS-DUHEM inequality

152, 173, 209, 292, 295 CLAUSIUS-PLANCK inequality

152 coaxial tensors 26 COLEMAN and NOLL´s theorem

210 conjugate 145 conservation of mass 121 consistency condition 280, 290 constraint 167, 172 contact forces 136 contravariant component 75 convected stress tensor 144 convective coordinates 98 coordinate system 72 COOS (coordinate system) 5, 72 CORIOLIS acceleration 134 COSSERAT medium 140 COTTER-RIVLIN rate 148, 279 COUETTE flow 117 covariant component 76 covariant derivative 79 critical resolved shear stress 312 cross product 7 curl 57, 82 cylindrical COOS 84 deformation gradient 96 deformation process 251 derivative 54 derivative of the principal invariants

60 determinant 14 deviator 14 deviatoriser 40 diagonalisable tensor 23 directional derivative 53 displacement 93 displacement gradient 100 dissipation 152 dissipation inequality 152 divergence 57, 87

342

divergence of a tensor field 82 DOYLE-ERICKSEN formula 215 dual bases 8 dyad 17, 36 dyadic product 17 eigenbasis 22 eigenprojector 25 eigenprojector representation 25 eigenspace 22 eigenvalue 21 eigenvector 21 elastic material 178 elastic range 257 elastic reference law 271 energy balance 150, 151 entropy 151 equivalent stress 259 ERICKSEN problem 246 EUCLIDean metric 71 EUCLIDean shifter 71 EUCLIDean space 71 EUCLIDean transformation 132 EULER´s equations of motion 131 EULER´s velocity formula 109 EULERean description 94 EULER-RODRIGUES

representation 32 evolution function 254 extra stress 168 face-centred cubic crystal 310 field 75 FINGER tensor 99 FINGER´s theorem 220 flow rule 276 fluid 188 FOURIER´s theorem 149 frame of reference 131 FRECHET derivative 54 free energy 151 FUNG model 229 GALILEIan transformations 136 GATEAUX differential 53 GAUSS transformation 87 GAUSS´ theorem 87 general linear group 12, 16 general orthogonal group 35 general unimodular group 16

generalised strain tensor 103 generalised stress tensor 145 GENT model 229 global balance equation 126 GOLDENBLAT´s theorem 222 gradient 54 gradient basis 74 GREEN´s strain tensor 101 group 12 HAIGH-WESTERGAARD plane

266 hardening 275 heat conduction inequality 210 heat flux 149 heat source 149 heat supply 149 HELMHOLTZ free energy 151 HENCKY´s strain tensor 101, 147 HILL model 226 HILL strain 103 HILL´s yield criterion 260 homogeneous body 185 homogenisation 234 HOOKE´s law 203 HUBER-v. MISES yield criterion

261, 265 hyperelastic 211 hyperelastic ranges 257 identity tensor 11 incompressibility 169 indefinite tensor 27 inextensibility 170 initial values 233 inner product of tensors 15, 20, 43 inner product of vectors 6 interface 127 intermediate placement 296 internal constraint 167, 172 internal energy 149 internal variable 253 intrinsic 165 invariant under change of observer

135 inverse tensor 12 isochoric motion 108 isoclinic placement 298 isomorphism 183, 217

INDEX

INDEX

343

isomorphy 183, 271, 272, 288, 307 isotropic hardening 275, 277 isotropic material 189 isotropic tensor-function 46, 48 J2 -theory 265 JACOBI matrix 74 jump balance 130 kinematic hardening 275, 279 kinetic energy 142 KIRCHHOFF stress tensor 143 KNOWLES model 228 KRONECKER symbol 8 KUHN-TUCKER condition 281 LAGRANGEan description 94 LAMÉ constants 204 latent hardening 313 lattice 306 lattice basis 307 left CAUCHY-GREEN tensor 99 left stretch tensor 98 left subsymmetry 41 LEIBNIZ rule 55 LIE-derivative 147 linear 6 linear momentum 125 linear space 5 linear strain tensor 110 liquid crystal 195 loading condition 269, 288 local action 154 local balance equation 127 logarithmic rate 148 logarithmic strain tensor 101 MANDEL´s stress tensor 144 MANDEL´s stress tensor 298 mass 121 mass density 121 material COOS 94 material description 94 material functional 154 material stress tensor 144 matrix of tensor components 18 metric coefficient 77 moment of momentum 125 MOONEY-RIVLIN model 227 motion 92

multiplicative decomposition 296 MURNAGHAN model 227 nabla operator 83 NANSON´s formula 106, 126 natural bases 75 NAVIER-STOKES fluid 159, 170 neo-HOOKE model 227 NEUMANN´s potential 212 neutral loading 270 NOLL´s rule 187 NOLL´s theorem on hyperelastic

materials 212 non-polar medium 141 norm of a tensor 15 objective 135 objectivity 155 observer 131 OGDEN model 228 OLDROYD rate 147, 201, 279 ONB (orthonormal basis) 10 orientation preserving tensor 16 orthogonal group 35 orthogonal tensor 31 orthonormal basis 10 overstress 294 partial derivative 56 perfect heat conduction 173 PETROSKI and CARLSSON´s

theorem 246 PFI 158 physical component 75 PIOLA identity 126 PIOLA-KIRCHHOFF stress tensor

143 PISM 157, 163 placement 91 plastic consistency-parameter 277 plastic potential 280 plastic spin 302 plastic stress tensor 274 plastic transformation 272 plasticity 256 PMO 155 polar decomposition 98, 119 polar decomposition theorem 33 polar media 140

344

position vector 72 positive semi-definite tensor 27 positive-definite tensor 27 power of stresses 142 power of the external forces 142 principal invariants 14 principal stresses 141 principle of determinisms 153, 168 principle of determinisms for

thermo-mechanical materials 160 principle of equivalence of work 236 principle of form invariance 158 principle of invariance under

superimposed rigid body motions 157

principle of local action 154 principle of local action for thermo-

mechanical materials 160 principle of material objectivity 155 principle of virtual power 142 product rule 55 projector 25 proper orthogonal tensor 32 quadratic form 27 RAGHAVAN-VORP model 228 rate of deformation tensor 107 rate-independent 254, 276, 289 RAYLEIGH product 44, 45 reaction principle 139 reaction stress 168 reduced elastic forms 178 reduced form 164, 252 reduced thermo-elastic forms 179 reference placement 92, 180 REINER fluid 159 relative stress tensor 144 representative volume element 234 residual inequality 132, 139, 150 resolved shear stress 311 REYNOLDS´ transport equation

123, 124 RICHTER representation 199, 220 RIEMANN´s curvature tensor 78 right CAUCHY-GREEN tensor 98 right stretch tensor 98 right subsymmetry 41 rigidity 171

RIVLIN-SAUNDERS model 228 rotation tensor 98 scalar product of tensors 15, 20, 43 scalar product of vectors 6 SCHMID tensor 311 SCHMID´s law 312 self-hardening 313 SETH family of strain tensors 104 shear locking 171 similarity transformation 22, 45 simple material 154 simple shear 113, 119 skew tensor 13, 29 slip rule 312 slip system 308 slip system theory 306 small deformations 110 solid 189 spatial COOS 94 spatial description 94 special linear group 16 special orthogonal group 35 special unimodular group 16 spectral form 23 spherical COOS 86 spherical tensor 11 spin tensor 107 St. VENANT-KIRCHHOFF law 202 stability 233 state 253 stiffness tetrad 200 strain energy 211 stress power 142 stress power in plasticity 274 stress principle of EULER and

CAUCHY 137 stress rate 147 stress vector 137 stretch tensor 98 stretching tensor 107 subsymmetry of a tetrad 41 superimposed rigid body motion 109 SYLVESTER´s formula 26 symmetric tensor 13 symmetriser 40 symmetry group 186, 253

INDEX

INDEX

345

symmetry transformation 46, 217, 253

symmetry-transformation 185 tangent basis 74 tangential stiffness tetrad 281 TAYLOR problem 315 temperature 151 tensor 11 tensor basis 18 tensor product 17 tensor surface 28 tensor-function 26 tetrad 38 texture 305 thermo-elastic material 179 thermo-elastic range 287 thermo-kinematical process 160 time derivative 94 trace 14 traction 137 transport equation 123, 124 transposed tensor 12 transposed tetrad 40 transposer 40 transversely isotropic 195 TRESCA´s yield criterion 265 triad 37

triclinic 188 triple product 7 TRUESDELL rate 148, 201, 279 undistorted reference placement 189,

218 undistorted state 189 uniform body 185 unimodular group 16 unimodular tensor 16 universal solution 238 VALANIS-LANDEL model 228 vector product 7 vector space 5 velocity 94 velocity gradient 107 versor 32 virtual power 142 viscoplasticity 294 viscous fluid 158 VOIGT representation 42 work conjugate 145 YEOH model 228 yield criterion 258, 288 yield surface 257, 288 ZAREMBA-JAUMANN rate 148,

279 zero tensor 11