references - california institute of technology · thermoelectric materials: current research and...

22
References 1. Salvador, J.R., J.Y. Cho, Z. Ye, J.E. Moczygemba, A.J. Thompson, J.W. Sharp, J.D. König, R. Maloney, T. Thompson, J. Sakamoto, H. Wang, A.A. Wereszczak, and G.P. Meisner, Thermal to Electrical Energy Conversion of Skutterudite-Based Thermoelectric Modules. Journal of Electronic Materials, 2013. 42(7): p. 1389- 1399. 2. Liebl, J., S. Neugebauer, A. Eder, M. Linde, B. Mazar, and W. Stütz, The thermoelectric generator from BMW is making use of waste heat. MTZ Worldwide, 2009. 70(4): p. 4-11. 3. Kristiansen, N.R. and H.K. Nielsen, Potential for Usage of Thermoelectric Generators on Ships. Journal of Electronic Materials, 2010. 39(9): p. 1746-1749. 4. Kristiansen, N.R., G.J. Snyder, H.K. Nielsen, and L. Rosendahl, Waste Heat Recovery from a Marine Waste Incinerator Using a Thermoelectric Generator. Journal of Electronic Materials, 2012. 41(6): p. 1024-1029. 5. Kaibe, H., K. Takeshi, F. Schinichi, K. Makino, and H. Hirokuni, Recovery of Plant Waste Heat by a Thermoelectric Generating System. Komatsu Technical Report, 2011. 57(164): p. 26-30. 6. Bell, L.E., Cooling, heating, generating power, and recovering waste heat with thermoelectric systems. Science, 2008. 321(5895): p. 1457-1461. 7. Carstens, T.A., M.L. Corradini, J.P. Blanchard, and M. Zhenqiang, Thermoelectric Powered Wireless Sensors for Spent Fuel Monitoring. Nuclear Science, IEEE Transactions on, 2012. 59(4): p. 1408-1413. 8. Prilepo, Y.P., A.A. Pustovalov, V.V. Sinyavskiy, N.M. Sudak, and O.B. Yatsenko, Problems of designing radioisotope thermoelectric power generators with a service life of decades for use in outer space exploration vehicles. Thermal Engineering, 2012. 59(13): p. 981-983. 9. Thomas, S., D. Leonard, H. John, and Z. June, NASA's Radioisotope Power Systems and Technologies - A Forward Look, in 9th Annual International Energy Conversion Engineering Conference. 2011, American Institute of Aeronautics and Astronautics. 10. Popoola, L., A. Grema, G. Latinwo, B. Gutti, and A. Balogun, Corrosion problems during oil and gas production and its mitigation. International Journal of Industrial Chemistry, 2013. 4(1): p. 35. 11. Minnich, A.J., M.S. Dresselhaus, Z.F. Ren, and G. Chen, Bulk nanostructured thermoelectric materials: current research and future prospects. Energy & Environmental Science, 2009. 2(5): p. 466-479. 12. Zhao, L.D., J.Q. He, S.Q. Hao, C.I. Wu, T.P. Hogan, C. Wolverton, V.P. Dravid, and M.G. Kanatzidis, Raising the Thermoelectric Performance of p-Type PbS with Endotaxial Nanostructuring and Valence-Band Offset Engineering Using CdS and ZnS. Journal of the American Chemical Society, 2012. 134(39): p. 16327-16336. 13. Kanatzidis, M.G., S. Johnsen, J.Q. He, J. Androulakis, V.P. Dravid, I. Todorov, and D.Y. Chung, Nanostructures Boost the Thermoelectric Performance of PbS. Journal of the American Chemical Society, 2011. 133(10): p. 3460-3470. 14. Biswas, K., J.Q. He, I.D. Blum, C.I. Wu, T.P. Hogan, D.N. Seidman, V.P. Dravid, and M.G. Kanatzidis, High-performance bulk thermoelectrics with all-scale hierarchical architectures. Nature, 2012. 489(7416): p. 414-418.

Upload: others

Post on 17-Jul-2020

0 views

Category:

Documents


0 download

TRANSCRIPT

Page 1: References - California Institute of Technology · thermoelectric materials: current research and future prospects.Energy ... 50. Gibbs, Z.M., H.-S. Kim, H. Wang, and G.J. Snyder,

References

1. Salvador, J.R., J.Y. Cho, Z. Ye, J.E. Moczygemba, A.J. Thompson, J.W. Sharp, J.D. König, R. Maloney, T. Thompson, J. Sakamoto, H. Wang, A.A. Wereszczak, and G.P. Meisner, Thermal to Electrical Energy Conversion of Skutterudite-Based Thermoelectric Modules. Journal of Electronic Materials, 2013. 42(7): p. 1389-1399.

2. Liebl, J., S. Neugebauer, A. Eder, M. Linde, B. Mazar, and W. Stütz, The thermoelectric generator from BMW is making use of waste heat. MTZ Worldwide, 2009. 70(4): p. 4-11.

3. Kristiansen, N.R. and H.K. Nielsen, Potential for Usage of Thermoelectric Generators on Ships. Journal of Electronic Materials, 2010. 39(9): p. 1746-1749.

4. Kristiansen, N.R., G.J. Snyder, H.K. Nielsen, and L. Rosendahl, Waste Heat Recovery from a Marine Waste Incinerator Using a Thermoelectric Generator. Journal of Electronic Materials, 2012. 41(6): p. 1024-1029.

5. Kaibe, H., K. Takeshi, F. Schinichi, K. Makino, and H. Hirokuni, Recovery of Plant Waste Heat by a Thermoelectric Generating System. Komatsu Technical Report, 2011. 57(164): p. 26-30.

6. Bell, L.E., Cooling, heating, generating power, and recovering waste heat with thermoelectric systems. Science, 2008. 321(5895): p. 1457-1461.

7. Carstens, T.A., M.L. Corradini, J.P. Blanchard, and M. Zhenqiang, Thermoelectric Powered Wireless Sensors for Spent Fuel Monitoring. Nuclear Science, IEEE Transactions on, 2012. 59(4): p. 1408-1413.

8. Prilepo, Y.P., A.A. Pustovalov, V.V. Sinyavskiy, N.M. Sudak, and O.B. Yatsenko, Problems of designing radioisotope thermoelectric power generators with a service life of decades for use in outer space exploration vehicles. Thermal Engineering, 2012. 59(13): p. 981-983.

9. Thomas, S., D. Leonard, H. John, and Z. June, NASA's Radioisotope Power Systems and Technologies - A Forward Look, in 9th Annual International Energy Conversion Engineering Conference. 2011, American Institute of Aeronautics and Astronautics.

10. Popoola, L., A. Grema, G. Latinwo, B. Gutti, and A. Balogun, Corrosion problems during oil and gas production and its mitigation. International Journal of Industrial Chemistry, 2013. 4(1): p. 35.

11. Minnich, A.J., M.S. Dresselhaus, Z.F. Ren, and G. Chen, Bulk nanostructured thermoelectric materials: current research and future prospects. Energy & Environmental Science, 2009. 2(5): p. 466-479.

12. Zhao, L.D., J.Q. He, S.Q. Hao, C.I. Wu, T.P. Hogan, C. Wolverton, V.P. Dravid, and M.G. Kanatzidis, Raising the Thermoelectric Performance of p-Type PbS with Endotaxial Nanostructuring and Valence-Band Offset Engineering Using CdS and ZnS. Journal of the American Chemical Society, 2012. 134(39): p. 16327-16336.

13. Kanatzidis, M.G., S. Johnsen, J.Q. He, J. Androulakis, V.P. Dravid, I. Todorov, and D.Y. Chung, Nanostructures Boost the Thermoelectric Performance of PbS. Journal of the American Chemical Society, 2011. 133(10): p. 3460-3470.

14. Biswas, K., J.Q. He, I.D. Blum, C.I. Wu, T.P. Hogan, D.N. Seidman, V.P. Dravid, and M.G. Kanatzidis, High-performance bulk thermoelectrics with all-scale hierarchical architectures. Nature, 2012. 489(7416): p. 414-418.

Page 2: References - California Institute of Technology · thermoelectric materials: current research and future prospects.Energy ... 50. Gibbs, Z.M., H.-S. Kim, H. Wang, and G.J. Snyder,

15. Pei, Y.Z., A.D. LaLonde, N.A. Heinz, X.Y. Shi, S. Iwanaga, H. Wang, L.D. Chen, and G.J. Snyder, Stabilizing the Optimal Carrier Concentration for High Thermoelectric Efficiency. Advanced Materials, 2011. 23(47): p. 5674-5678.

16. Pei, Y.Z., X.Y. Shi, A. LaLonde, H. Wang, L.D. Chen, and G.J. Snyder, Convergence of electronic bands for high performance bulk thermoelectrics. Nature, 2011. 473(7345): p. 66-69.

17. Pei, Y., H. Wang, Z.M. Gibbs, A.D. LaLonde, and G.J. Snyder, Thermopower enhancement in Pb1-xMnxTe alloys and its effect on thermoelectric efficiency. NPG Asia Mater, 2012. 4: p. e28.

18. Pei, Y., H. Wang, and G.J. Snyder, Band Engineering of Thermoelectric Materials. Advanced Materials, 2012. 24(46): p. 6125-6135.

19. Yamini, S.A., H. Wang, Z.M. Gibbs, Y.Z. Pei, S.X. Dou, and G.J. Snyder, Chemical composition tuning in quaternary p-type Pb-chalcogenides - a promising strategy for enhanced thermoelectric performance. Physical Chemistry Chemical Physics, 2014. 16(5): p. 1835-1840.

20. Biswas, K., J.Q. He, G.Y. Wang, S.H. Lo, C. Uher, V.P. Dravid, and M.G. Kanatzidis, High thermoelectric figure of merit in nanostructured p-type PbTe-MTe (M = Ca, Ba). Energy & Environmental Science, 2011. 4(11): p. 4675-4684.

21. Zhao, L.D., H.J. Wu, S.Q. Hao, C.I. Wu, X.Y. Zhou, K. Biswas, J.Q. He, T.P. Hogan, C. Uher, C. Wolverton, V.P. Dravid, and M.G. Kanatzidis, All-scale hierarchical thermoelectrics: MgTe in PbTe facilitates valence band convergence and suppresses bipolar thermal transport for high performance. Energy & Environmental Science, 2013. 6(11): p. 3346-3355.

22. Fu, C., T. Zhu, Y. Pei, H. Xie, H. Wang, G.J. Snyder, Y. Liu, Y. Liu, and X. Zhao, High Band Degeneracy Contributes to High Thermoelectric Performance in p-Type Half-Heusler Compounds. Advanced Energy Materials, 2014. 4(18).

23. Chen, S. and Z. Ren, Recent progress of half-Heusler for moderate temperature thermoelectric applications. Materials Today, 2013. 16(10): p. 387-395.

24. May, A.F. and G.J. Snyder, Introduction to Modeling Thermoelectric Transport at High Temperatures, in CRC Handbook of Thermoelectrics, D.M. Rowe, Editor. 2011, CRC Press.

25. Wang, H., Z.M. Gibbs, Y. Takagiwa, and G.J. Snyder, Tuning bands of PbSe for better thermoelectric efficiency. Energy & Environmental Science, 2014. 7: p. 804-811.

26. Liu, W., X. Tan, K. Yin, H. Liu, X. Tang, J. Shi, Q. Zhang, and C. Uher, Convergence of Conduction Bands as a Means of Enhancing Thermoelectric Performance of n-Type Mg2Si1-xSnx Solid Solutions. Physical Review Letters, 2012. 108(16): p. 166601.

27. Tauber, R.N., A.A. Machonis, and I.B. Cadoff, Thermal and Optical Energy Gaps in Pbte. Journal of Applied Physics, 1966. 37(13): p. 4855-4860.

28. LaLonde, A.D., Y.Z. Pei, and G.J. Snyder, Reevaluation of PbTe(1-x)I(x) as high performance n-type thermoelectric material. Energy & Environmental Science, 2011. 4(6): p. 2090-2096.

29. Jain, A., S.P. Ong, G. Hautier, W. Chen, W.D. Richards, S. Dacek, S. Cholia, D. Gunter, D. Skinner, G. Ceder, and K.A. Persson, Commentary: The Materials Project: A materials genome approach to accelerating materials innovation. APL Materials, 2013. 1(1): p. 011002.

30. Madsen, G.K.H. and D.J. Singh, BoltzTraP. A code for calculating band-structure dependent quantities. Computer Physics Communications, 2006. 175(1): p. 67-71.

31. Borup, K.A., E.S. Toberer, L.D. Zoltan, G. Nakatsukasa, M. Errico, J.-P. Fleurial, B.B. Iversen, and G.J. Snyder, Measurement of the electrical resistivity and Hall

Page 3: References - California Institute of Technology · thermoelectric materials: current research and future prospects.Energy ... 50. Gibbs, Z.M., H.-S. Kim, H. Wang, and G.J. Snyder,

coefficient at high temperatures. Review of Scientific Instruments, 2012. 83(12): p. 123902.

32. Iwanaga, S., E.S. Toberer, A. LaLonde, and G.J. Snyder, A high temperature apparatus for measurement of the Seebeck coefficient. Review of Scientific Instruments, 2011. 82(6).

33. Wang, H., W.D. Porter, H. Bottner, J. Konig, L. Chen, S. Bai, T.M. Tritt, A. Mayolett, C. Smith, F. Harris, J. Sharp, J. Lo, H. Keinke, and L.I. Kiss, International Round-Robin Testing of Bulk Thermoelectrics. ORNL/TM-2011/393, 2011.

34. Pei, Y., A. LaLonde, S. Iwanaga, and G.J. Snyder, High thermoelectric figure of merit in heavy hole dominated PbTe. Energy & Environmental Science, 2011. 4(6): p. 2085-2089.

35. Wendlandt, W. and H. Hecht, Reflectance Spectroscopy. Chemical Analysis, ed. P.J. Elving and I.M. Kolthoff. 1966, New York: Interscience Publishers.

36. Gibson, A.F., The Absorption Spectra of Single Crystals of Lead Sulphide, Selenide and Telluride. Proceedings of the Physical Society of London Section B, 1952. 65(389): p. 378-388.

37. Scanlon, W.W., Recent Advances in the Optical and Electronic Properties of Pbs, Pbse, Pbte and Their Alloys. Journal of Physics and Chemistry of Solids, 1959. 8: p. 423-428.

38. Riedl, H.R., Free-Carrier Absorption in P-Type Pbte. Physical Review, 1962. 127(1): p. 162-166.

39. Prakash, V., The optical absorption edge in the lead salts and its variation with temperature and pressure. Division of Engineering: Applied Physics1967, Harvard University.

40. Nikolic, P.M., Optical Energy Gaps Lattice Parameters and Solubility Limits of Solid Solutions of Snse and Gese in Pbte and Gese in Snte. British Journal of Applied Physics, 1965. 16(8): p. 1075-1079.

41. Nikolic, P.M., Solid Solution of Lead-Germanium Chalcogenide Alloys and Some of Their Optical Properties. Journal of Physics D-Applied Physics, 1969. 2(3): p. 383-&.

42. Drabkin, I.A., G.F. Zakharyugina, and I.V. Nelson, Optical Width of the Forbidden Band of Pb1-xMnxTe Solid Solutions. Soviet Physics Semiconductors-Ussr, 1971. 5(2): p. 277-278.

43. Yu, P.Y. and M. Cardona, Fundamentals of Semiconductors. 1996, Berlin: Springer.

44. Basu, P.K., Theory of Optical Processes in Semiconductors. Series on Semiconductor Science and Technology, ed. H. Kamimura, R.J. Nicholas, and R.H. Williams. 1997: Oxford University Press. 447.

45. Seeger, K., Semiconductor Physics: An Introduction. 6th ed, ed. Lotsch. 1997, Hedelberg: Springer.

46. Tauc, J., Optical properties and electronic structure of amorphous Ge and Si. Materials Research Bulletin, 1968. 3(1): p. 37-46.

47. Schmid, P.E., Optical-Absorption in Heavily Doped Silicon. Physical Review B, 1981. 23(10): p. 5531-5536.

48. Gnutzman, U. and K. Clauseck, Theory of Direct Optical-Transitions in an Optical Indirect Semiconductor with a Superlattice Structure. Applied Physics, 1974. 3(1): p. 9-14.

49. Nolas, G.S., J. Sharp, and H.J. Goldsmid, Thermoelectrics: Basic Principles and New Materials Developments. Springer Series in Materials Science, ed. R. Hull, et al. 2001, Dallas: Springer.

Page 4: References - California Institute of Technology · thermoelectric materials: current research and future prospects.Energy ... 50. Gibbs, Z.M., H.-S. Kim, H. Wang, and G.J. Snyder,

50. Gibbs, Z.M., H.-S. Kim, H. Wang, and G.J. Snyder, Band gap estimation from temperature dependent Seebeck measurement—Deviations from the 2e|S|maxTmax relation. Applied Physics Letters, 2015. 106(2): p. 022112.

51. Goldsmid, H.J. and J.W. Sharp, Estimation of the thermal band gap of a semiconductor from Seebeck measurements. Journal of Electronic Materials, 1999. 28(7): p. 869-872.

52. Schmitt, J., Z.M. Gibbs, G.J. Snyder, and C. Felser, Resolving the True Band Gap of ZrNiSn Half-Heusler Thermoelectric Materials. Materials Horizons, 2015. 2: p. 68-75.

53. May, A.F., E.S. Toberer, A. Saramat, and G.J. Snyder, Characterization and analysis of thermoelectric transport in n-type Ba8Ga16-xGe30+x. Physical Review B, 2009. 80(12): p. 125205.

54. May, A.F., High-Temperature Transport in Lanthanum Telluride and Other

Modern Thermoelectric Materials. Chemical Engineering. Doctor of Philosophy. 2010, California Institute of Technology: Pasadena, CA.

55. Dresselhaus, G., A.F. Kip, and C. Kittel, Cyclotron Resonance of Electrons and Holes in Silicon and Germanium Crystals. Physical Review, 1955. 98(2): p. 368-384.

56. Dexter, R.N., H.J. Zeiger, and B. Lax, Cyclotron Resonance Experiments in Silicon and Germanium. Physical Review, 1956. 104(3): p. 637-644.

57. Vurgaftman, I., J.R. Meyer, and L.R. Ram-Mohan, Band parameters for III–V compound semiconductors and their alloys. Journal of Applied Physics, 2001. 89(11): p. 5815-5875.

58. Ravich, Y.I., B.A. Efimova, and I.A. Smirnov, Semiconducting Lead Chalcogenides Monographs In Semiconductor Physics, ed. L.S. Stil'bans. Vol. 5. 1970, New York-London: Plenum Press. 377.

59. Chen, X., D. Parker, and D.J. Singh, Importance of non-parabolic band effects in the thermoelectric properties of semiconductors. Sci. Rep., 2013. 3: p. 3168.

60. Nimtz, G. and B. Schlicht, Narrow-Gap Lead Salts. Springer Tracts in Modern Physics, 1983. 98: p. 1-117.

61. Lerner, L.S., Shubnikov-de Haas Effect in Bismuth. Physical Review, 1962. 127(5): p. 1480-1492.

62. Putley, E.H., Galvano- and thermo-magnetic coefficients for a multi-band conductor. Journal of Physics C: Solid State Physics, 1975. 8(12): p. 1837.

63. Kane, E.O., Band Structure of Indium Antimonide. Journal of Physics and Chemistry of Solids, 1957. 1(4): p. 249-261.

64. Zawadzki, W., Electron transport phenomena in small-gap semiconductors. Advances in Physics, 1974. 23(3): p. 435-522.

65. Wang, H., Y. Pei, A.D. LaLonde, and G.J. Snyder, Weak electron–phonon coupling contributing to high thermoelectric performance in n-type PbSe. Proceedings of the National Academy of Sciences, 2012. 109(25): p. 9705-9709.

66. LaLonde, A.D., T. Ikeda, and G.J. Snyder, Rapid consolidation of powdered materials by induction hot pressing. Review of Scientific Instruments, 2011. 82(2): p. 025104.

67. Aw, S.E., H.S. Tan, and C.K. Ong, Optical-Absorption Measurements of Band-Gap Shrinkage in Moderately and Heavily Doped Silicon. Journal of Physics-Condensed Matter, 1991. 3(42): p. 8213-8223.

68. Luo, H.T., W.Z. Shen, Y.H. Zhang, and H.F. Yang, Study of band gap narrowing effect in n-GaAs for the application of far-infrared detection. Physica B-Condensed Matter, 2002. 324(1-4): p. 379-386.

Page 5: References - California Institute of Technology · thermoelectric materials: current research and future prospects.Energy ... 50. Gibbs, Z.M., H.-S. Kim, H. Wang, and G.J. Snyder,

69. Kanatzidis, M.G., K. Ahn, C.P. Li, and C. Uher, Improvement in the Thermoelectric Figure of Merit by La/Ag Cosubstitution in PbTe. Chemistry of Materials, 2009. 21(7): p. 1361-1367.

70. Li, Y.P., Q.S. Meng, Y. Deng, H. Zhou, Y.L. Gao, Y.Y. Li, J.F. Yang, and J.L. Cui, High thermoelectric performance of solid solutions CuGa1-xInxTe2 (x=0-1.0). Applied Physics Letters, 2012. 100(23): p. 231903, 1-4.

71. Lyden, H.A., Measurement of Conductivity Effective Mass in Semiconductors Using Infrared Reflection. Physical Review a-General Physics, 1964. 134(4A): p. 1106-1112.

72. Kaiser, W. and H.Y. Fan, Infrared Absorption of Indium Antimonide. Physical Review, 1955. 98(4): p. 966-968.

73. Spitzer, W.G. and H.Y. Fan, Determination of Optical Constants and Carrier Effective Mass of Semiconductors. Physical Review, 1957. 106(5): p. 882-890.

74. Stern, F., Optical Properties of Lead-Salt and Iii-V Semiconductors. Journal of Applied Physics, 1961. 32: p. 2166-2173.

75. Palik, E.D., D.L. Mitchell, and J.N. Zemel, Magneto-Optical Studies of Band Structure of Pbs. Physical Review, 1964. 135(3A): p. 763-778.

76. Drabkin, I.A., Y.Y. Eliseeva, and I.V. Nelson, Fundamental Absorption Edge of Heavily Doped n-type PbTe. soviet Physics Semiconductors-Ussr, 1975. 8(7): p. 900.

77. N. Piccoli, J.M.B., M. Balkanski Optical Constants and Band Gap of PbTe from thin film studies between 25 and 300K. Journal of physical chemistry of Solids, 1974. 35: p. 971-977.

78. Charache, G.W., D.M. DePoy, J.E. Raynolds, P.F. Baldasaro, K.E. Miyano, T. Holden, F.H. Pollak, P.R. Sharps, M.L. Timmons, C.B. Geller, W. Mannstadt, R. Asahi, A.J. Freeman, and W. Wolf, Moss-Burstein and plasma reflection characteristics of heavily doped n-type InxGa1-xAs and InPyAs1-y. Journal of Applied Physics, 1999. 86(1): p. 452-458.

79. Bugajski, M. and W. Lewandowski, Concentration-Dependent Absorption and Photoluminescence of N-Type Inp. Journal of Applied Physics, 1985. 57(2): p. 521-530.

80. Vanoverstraeten, R.J. and R.P. Mertens, Heavy Doping Effects in Silicon. Solid-State Electronics, 1987. 30(11): p. 1077-1087.

81. Lanir, M., A.H. Lockwood, and H. Levinstein, Absorption-Edge Shift in Lead-Tin Telluride. Solid State Communications, 1978. 27(3): p. 313-316.

82. Herrmann, K.H., V. Melzer, and U. Muller, Interband and Intraband Contributions to Refractive-Index and Dispersion in Narrow-Gap Semiconductors. Infrared Physics, 1993. 34(2): p. 117-136.

83. Husain, M., S. Kumar, M.A.M. Khan, and M. Zulfequar, Optical, structural and electrical investigations on PbTe1-xSx alloys. Journal of Materials Science, 2007. 42(1): p. 363-367.

84. Wei, S.H. and A. Zunger, Electronic and structural anomalies in lead chalcogenides. Physical Review B, 1997. 55(20): p. 13605-13610.

85. Hummer, K., A. Gruneis, and G. Kresse, Structural and electronic properties of lead chalcogenides from first principles. Physical Review B, 2007. 75(19): p. 195211, 1-9.

86. Lusakowski, A., P. Boguslawski, and T. Radzynski, Calculated electronic structure of Pb1-xMnxTe (0 <= x < 11%): The role of L and Sigma valence band maxima. Physical Review B, 2011. 83(11): p. 115206, 1-7.

Page 6: References - California Institute of Technology · thermoelectric materials: current research and future prospects.Energy ... 50. Gibbs, Z.M., H.-S. Kim, H. Wang, and G.J. Snyder,

87. Baleva, M., T. Georgiev, and G. Lashkarev, On the Temperature-Dependence of the Energy-Gap in Pbse and Pbte. Journal of Physics-Condensed Matter, 1990. 2(13): p. 2935-2940.

88. Delaire, O., J. Ma, K. Marty, A.F. May, M.A. McGuire, M.H. Du, D.J. Singh, A. Podlesnyak, G. Ehlers, M.D. Lumsden, and B.C. Sales, Giant anharmonic phonon scattering in PbTe. Nature Materials, 2011. 10(8): p. 614-619.

89. Dash, W.C. and R. Newman, Intrinsic Optical Absorption in Single-Crystal Germanium and Silicon at 77-Degrees-K and 300-Degrees-K. Physical Review, 1955. 99(4): p. 1151-1155.

90. Veis, A.N. and Y.I. Ukhanov, Study of Absorption-Coefficient of P-Type Pbte. Soviet Physics Semiconductors-Ussr, 1976. 10(7): p. 780-783.

91. Ekuma, C.E., D.J. Singh, J. Moreno, and M. Jarrell, Optical properties of PbTe and PbSe. Physical Review B, 2012. 85(8): p. 085205, 1-7.

92. Huang, H.C., S. Yee, and M. Soma, The Carrier Effects on the Change of Refractive-Index for N-Type Gaas at Lambda = 1.06, 1.3, and 1.55-Mu-M. Journal of Applied Physics, 1990. 67(3): p. 1497-1503.

93. Munoz, M., F.H. Pollak, M. Kahn, D. Ritter, L. Kronik, and G.M. Cohen, Burstein-Moss shift of n-doped In0.53Ga0.47As/InP. Physical Review B, 2001. 63(23): p. 233302.

94. Kudman, I. and T. Seidel, Absorption Edge in Degenerate P-Type Gaas. Journal of Applied Physics, 1962. 33(3): p. 771-773.

95. Gibbs, Z.M., A. LaLonde, and G.J. Snyder, Optical band gap and the Burstein–Moss effect in iodine doped PbTe using diffuse reflectance infrared Fourier transform spectroscopy. New Journal of Physics, 2013. 15(7): p. 075020.

96. Mahan, G.D., Energy-Gap in Si and Ge - Impurity Dependence. Journal of Applied Physics, 1980. 51(5): p. 2634-2646.

97. Berggren, K.F. and B.E. Sernelius, Band-Gap Narrowing in Heavily Doped Many-Valley Semiconductors. Physical Review B, 1981. 24(4): p. 1971-1986.

98. Pankove, J.I. and P. Aigrain, Optical Absorption of Arsenic-Doped Degenerate Germanium. Physical Review, 1962. 126(3): p. 956-962.

99. Casey, H.C. and F. Stern, Concentration-Dependent Absorption and Spontaneous Emission of Heavily Doped Gaas. Journal of Applied Physics, 1976. 47(2): p. 631-643.

100. Lu, J.G., S. Fujita, T. Kawaharamura, H. Nishinaka, Y. Kamada, T. Ohshima, Z.Z. Ye, Y.J. Zeng, Y.Z. Zhang, L.P. Zhu, H.P. He, and B.H. Zhao, Carrier concentration dependence of band gap shift in n-type ZnO : Al films. Journal of Applied Physics, 2007. 101(8): p. 083705, 1-7.

101. Mahan, G.D., Condensed Matter in a Nutshell. 2010: Princeton University Press. 102. Kalt, H. and M. Rinker, Band-Gap Renormalization in Semiconductors with Multiple

Inequivalent Valleys. Physical Review B, 1992. 45(3): p. 1139-1154. 103. Khoklov, D. and Y.I. Ravich, Lead Chalcogenides: Physics Applications.

Optoelectronic Properties of Semiconductors and Superlattices, ed. M.O. Manasreh. Vol. 18. 2003, New York: Taylor & Francis.

104. Lee, M.S. and S.D. Mahanti, Validity of the rigid band approximation in the study of the thermopower of narrow band gap semiconductors. Physical Review B, 2012. 85(16): p. 165149, 1-8.

105. Takagiwa, Y., Y.Z. Pei, G. Pomrehn, and G.J. Snyder, Validity of rigid band approximation of PbTe thermoelectric materials. Apl Materials, 2013. 1(1): p. 011101.

Page 7: References - California Institute of Technology · thermoelectric materials: current research and future prospects.Energy ... 50. Gibbs, Z.M., H.-S. Kim, H. Wang, and G.J. Snyder,

106. Pei, Y., A.D. LaLonde, H. Wang, and G.J. Snyder, Low effective mass leading to high thermoelectric performance. Energy & Environmental Science, 2012. 5(7): p. 7963-7969.

107. White, D.R. and R.L. White, Isoconversion Effective Activation Energy Profiles by Variable Temperature Diffuse Reflection Infrared Spectroscopy. Applied Spectroscopy, 2008. 62(1): p. 116-120.

108. White, R.L., Variable Temperature Infrared Study of Copper Sulfate Pentahydrate Dehydration. Thermochimica Acta, 2012. 528: p. 58-62.

109. Boldish, S.I. and W.B. White, Optical Band Gaps of Selected Ternary Sulfide Minerals. American Mineralogist, 1998. 83: p. 865-871.

110. LaLonde, A.D., Y. Pei, H. Wang, and G. Jeffrey Snyder, Lead telluride alloy thermoelectrics. Materials Today, 2011. 14(11): p. 526-532.

111. Pei, Y., A.D. LaLonde, N.A. Heinz, and G.J. Snyder, High Thermoelectric Figure of Merit in PbTe Alloys Demonstrated in PbTe-CdTe. Advanced Energy Materials, 2012. 2(6): p. 670-675.

112. Biswas, K., J. He, I.D. Blum, C.-I. Wu, T.P. Hogan, D.N. Seidman, V.P. Dravid, and M.G. Kanatzidis, High-performance bulk thermoelectrics with all-scale hierarchical architectures. Nature, 2012. 489(7416): p. 414-418.

113. Kanatzidis, M.G., Nanostructured Thermoelectrics: The New Paradigm?†. Chemistry of Materials, 2010. 22(3): p. 648-659.

114. Snyder, G.J. and E.S. Toberer, Complex thermoelectric materials. Nature Materials, 2008. 7(2): p. 105-114.

115. Crocker, A.J. and L.M. Rogers, Valence Band Structure Of PbTe. Journal De Physique, 1968. 11-12(29): p. C4 - 129.

116. Veis, A.N., M.N. Vinogradova, N.L. Ivanchukova, and Y.I. Ukhanov, Investigation of Infrared Reflection from P-Type Pbte. Soviet Physics Semiconductors-Ussr, 1975. 8(11): p. 1461-1462.

117. Singh, D.J., Doping-dependent thermopower of PbTe from Boltzmann transport calculations. Physical Review B, 2010. 81(19): p. 195217, 1-6.

118. Ahmad, S., S.D. Mahanti, K. Hoang, and M.G. Kanatzidis, Ab initio studies of the electronic structure of defects in PbTe. Physical Review B, 2006. 74(15): p. 155205.

119. Hoang, K. and S.D. Mahanti, Electronic structure of Ga-, In-, and Tl-doped PbTe: A supercell study of the impurity bands. Physical Review B, 2008. 78(8): p. 085111, 1-8.

120. Biswas, K., J.Q. He, Q.C. Zhang, G.Y. Wang, C. Uher, V.P. Dravid, and M.G. Kanatzidis, Strained endotaxial nanostructures with high thermoelectric figure of merit. Nature Chemistry, 2011. 3(2): p. 160-166.

121. Jaworski, C.M., M.D. Nielsen, H. Wang, S.N. Girard, W. Cai, W.D. Porter, M.G. Kanatzidis, and J.P. Heremans, Valence-band structure of highly efficient p-type thermoelectric PbTe-PbS alloys. Physical Review B, 2013. 87(4): p. 045203, 1-10.

122. Androulakis, J., I. Todorov, D.Y. Chung, S. Ballikaya, G.Y. Wang, C. Uher, and M. Kanatzidis, Thermoelectric enhancement in PbTe with K or Na codoping from tuning the interaction of the light- and heavy-hole valence bands. Physical Review B, 2010. 82(11): p. 115209, 1-8.

123. Allgaier, R.S., Valence Bands in Lead Telluride. Journal of Applied Physics, 1961. 32: p. 2185-2189.

124. Allgaier, R.S. and B.B. Houston, Hall Coefficient Behavior and 2nd Valence Band in Lead Telluride. Journal of Applied Physics, 1966. 37(1): p. 302-309.

125. Kolomoets, N.V., M.N. Vinogradova, and L.M. Sysoeva, Valence Band of PbTe. Soviet Physics Semiconductors-Ussr, 1968. 1(8): p. 1020-1024.

Page 8: References - California Institute of Technology · thermoelectric materials: current research and future prospects.Energy ... 50. Gibbs, Z.M., H.-S. Kim, H. Wang, and G.J. Snyder,

126. Gibbs, Z.M., H. Kim, H. Wang, R.L. White, F. Drymiotis, M. Kaviany, and G. Jeffrey Snyder, Temperature dependent band gap in PbX (X = S, Se, Te). Applied Physics Letters, 2013. 103(26): p. 262109.

127. Veis, A.N., V.I. Kaidanov, R.F. Kuteinikov, S.A. Nemov, S.A. Rudenko, and Y.I. Ukhanov, Investigation of Structure of Valence Band of Lead Selenide. Soviet Physics Semiconductors-Ussr, 1978. 12(2): p. 161-163.

128. Zhou, M., Z.M. Gibbs, H. Wang, Y. Han, C. Xin, L. Li, and G.J. Snyder, Optimization of thermoelectric efficiency in SnTe: the case for the light band. Physical Chemistry Chemical Physics, 2014. 16(38): p. 20741-20748.

129. Brebrick, R.F. and A.J. Strauss, Anomalous Thermoelectric Power as Evidence for Two-Valence Bands in SnTe. Physical Review, 1963. 131(1): p. 104-110.

130. Rogers, L.M., Valence band structure of SnTe. Journal of Physics D: Applied Physics, 1968. 1(7): p. 845.

131. Zhao, L.D., S.Q. Hao, S.H. Lo, C.I. Wu, X.Y. Zhou, Y. Lee, H. Li, K. Biswas, T.P. Hogan, C. Uher, C. Wolverton, V.P. Dravid, and M.G. Kanatzidis, High Thermoelectric Performance via Hierarchical Compositionally Alloyed Nanostructures. Journal of the American Chemical Society, 2013. 135(19): p. 7364-7370.

132. Zhao, L.D., V.P. Dravid, and M.G. Kanatzidis, The panoscopic approach to high performance thermoelectrics. Energy & Environmental Science, 2014. 7(1): p. 251-268.

133. Rogers, L.M., Drift Mobility of Light-Mass Holes in Pbte Heavily Doped with Na. Journal of Physics D-Applied Physics, 1968. 1(8): p. 1067-1070.

134. Airapetyants, S.V., M.N. Vinogradova, I.N. Dubrovskaya, N.V. Kolomoets, and I.M. Rudnik, Structure of Valence Band of Heavily Doped Lead Telluride. Soviet Physics Solid State,Ussr, 1966. 8(5): p. 1069-1072.

135. Andreev, A.A. and V.N. Radionov, Determination of Band Structure of Lead Telluride from Measurements of Hall Effect at High Temperatures. Soviet Physics Semiconductors-Ussr, 1967. 1(2): p. 145-148.

136. Devyatkova, E.D. and V.A. Saakyan, Forbidden Band Width of PbSe at High Temperatures. Soviet Physics Solid State,Ussr, 1968. 9(9): p. 2163-2164.

137. Vinogradova, M.N., N.V. Kolomoets, I.M. Rudnik, and L.M. Sysoeva, Valence Band of PbSe. Soviet Physics Semiconductors-Ussr, 1969. 3(2): p. 231-232.

138. Gibson, A.F., The Absorption Spectra of Solid Lead Sulphide, Selenide and Telluride. Proceedings of the Physical Society of London Section B, 1950. 63(370): p. 756-767.

139. Paul, W., D.A. Jones, and R.V. Jones, Infra-Red Transmission of Galena. Proceedings of the Physical Society of London Section B, 1951. 64(378): p. 528-529.

140. Avery, D.G., The optical constants of Lead Sulphide, Lead Selenide and Lead Telluride in the 0.5-3 micron region of the spectrum. Proceedings of the Physical Society of London Section B, 1952. 64.

141. Clark, M.A. and R.J. Cashman, Transmission and Spectral Response of Lead Sulfide and Lead Telluride. Physical Review, 1952. 85(6): p. 1043-1044.

142. Moss, T.S., Photoelectromagnetic and Photoconductive Effects in Lead Sulphide Single Crystals. Proceedings of the Physical Society of London Section B, 1953. 66(408): p. 993-1002.

143. Paul, W. and R.V. Jones, Absorption Spectra of Lead Sulphide at Different Temperatures. Proceedings of the Physical Society of London Section B, 1953. 66(399): p. 194-200.

Page 9: References - California Institute of Technology · thermoelectric materials: current research and future prospects.Energy ... 50. Gibbs, Z.M., H.-S. Kim, H. Wang, and G.J. Snyder,

144. Lasser, M.E. and H. Levinstein, Optical Properties of Lead Telluride. Physical Review, 1954. 96(1): p. 47-52.

145. Smith, R.A., The electronic and optical properties of the lead sulphide group of semi-conductors. Physica, 1954. 20(7-12): p. 910-929.

146. Cardona, M. and D.L. Greenaway, Optical Properties and Band Structure of Group 4-6 and Group 5 Materials. Physical Review, 1964. 133(6A): p. 1685-1697.

147. Dixon, J.R. and H.R. Riedl, Optical Dispersion of Lead Sulfide in Infrared. Physical Review, 1965. 140(4A): p. 1283-&.

148. Nikolic, P.M., Solid Solutions of Cdse and Cdte in Pbte and Their Optical Properties. British Journal of Applied Physics, 1966. 17(3): p. 341-&.

149. Aspnes, D.E. and M. Cardona, Electro-Optic Measurements of Pbs Pbse and Pbte. Physical Review, 1968. 173(3): p. 714-728.

150. Massimo, M. and I.B. Cadoff, Pb1-Xgexte Solubilities, Electrical and Optical-Properties. Journal of Electronic Materials, 1976. 5(6): p. 601-620.

151. Anderson, W.W., Absorption Constant of Pb1-xSnxTe and Hg1-xCdxTe Alloys. Infrared Physics, 1980. 20: p. 363-373.

152. Faradzhev, F.E., Optical-Properties of Pbse1-Xtex Solid-Solutions. Soviet Physics Semiconductors-Ussr, 1984. 18(11): p. 1311-1312.

153. Nikolić, P.M., Some optical Properties of lead-tin-chalcogenide alloys. Publications de la Faculte Delectrotechnique De L'Universite A Belgrade, 1971. 354-356: p. 51-121.

154. Toulouse, B., F. Morales, and S. Rolland, TEMPERATURE-DEPENDENCE OF THE ENERGY-GAP IN PBTE. Journal De Physique, 1985. 46(6): p. 959-964.

155. Veis, A.N., V.I. Kaidanov, Y.I. Ravich, I.A. Ryabtseva, and Y.I. Ukhanov, Investigation of the Absorption Coefficient of Indium-doped PbTe. Soviet Physics Semiconductors-Ussr, 1976. 10(1): p. 62-65.

156. Bocharova, T.V., A.N. Veis, Z. Dashevsky, V.A. Kotelnikov, and R.Y. Krupitskaya, Investigation of the Absorption Coefficient of Thin Indium-Doped PbTe Films. Soviet Physics Semiconductors-Ussr, 1981. 15(1): p. 103-105.

157. Kaidanov, V.I. and Y.I. Ravich, Deep and Resonance States in a(Iv)B(Vi) Semiconductors. Soviet Physics Uspekhi, 1985. 28(1): p. 31-53.

158. Nemov, S.A. and Y.I. Ravich, Thallium Dopant in Lead Chalcogenides: Investigation Methods and Peculiarities. Physics - Uspekhi, 1998. 41(8): p. 735-759.

159. Suzuki, N. and S. Adachi, Optical constants of Pb1-xSnxTe alloys. Journal of Applied Physics, 1996. 79(4): p. 2065-2069.

160. Wang, J.F., J.J. Hu, X.C. Sun, A.M. Agarwal, L.C. Kimerling, D.R. Lim, and R.A. Synowicki, Structural, electrical, and optical properties of thermally evaporated nanocrystalline PbTe films. Journal of Applied Physics, 2008. 104(5): p. 053707, 1-5.

161. Miller, E., I. Cadoff, and K. Komarek, Interrelation of Electronic Properties and Defect Equilibria in Pbte. Journal of Applied Physics, 1961. 32(11): p. 2457-2465.

162. Kim, H. and M. Kaviany, Effect of Thermal Disorder on High Figure of Merit in PbTe. Physical Review B, 2012. 86(4): p. 045213, 1-10.

163. Xu, L.Q., Y.P. Zheng, and J.C. Zheng, Thermoelectric transport properties of PbTe under pressure. Physical Review B, 2010. 82(19): p. 195102:1-16.

164. Zemel, J.N., J.D. Jensen, and R.B. Schoolar, Electrical and Optical Properties of Epitaxial Films of Pbs Pbse Pbte and Snte. Physical Review, 1965. 140(1A): p. A330-A342.

165. Laff, R.A., Photoeffects in Lead Telluride P-N Junctions. Journal of Applied Physics, 1965. 36(10): p. 3324-3329.

Page 10: References - California Institute of Technology · thermoelectric materials: current research and future prospects.Energy ... 50. Gibbs, Z.M., H.-S. Kim, H. Wang, and G.J. Snyder,

166. Saakyan, V.A., E.D. Devyatkova, and I.A. Smirnov, Determining Forbidden Gap Width of PbTe at HIgh Temperatures. Soviet Physics Solid State,Ussr, 1966. 7(10): p. 2541-2542.

167. Veis, A.N., Investigation of the Fundamental Absorption-Coefficient of N-Type PbTe at High Temperatures. Soviet Physics Semiconductors-Ussr, 1982. 16(6): p. 724-725.

168. Vesnin, Y.I. and Y.V. Shubin, On the Constancy of the Average Crystal-Lattice Parameter in the Decay of the Solid-Solutions Pbs - Pbte. Materials Research Bulletin, 1984. 19(10): p. 1355-1359.

169. Tan, G., F. Shi, J.W. Doak, H. Sun, L.-D. Zhao, P. Wang, C. Uher, C. Wolverton, V.P. Dravid, and M.G. Kanatzidis, Extraordinary role of Hg in enhancing the thermoelectric performance of p-type SnTe. Energy & Environmental Science, 2015. 8(1): p. 267-277.

170. Tan, G., L.-D. Zhao, F. Shi, J.W. Doak, S.-H. Lo, H. Sun, C. Wolverton, V.P. Dravid, C. Uher, and M.G. Kanatzidis, High Thermoelectric Performance of p-Type SnTe via a Synergistic Band Engineering and Nanostructuring Approach. Journal of the American Chemical Society, 2014.

171. Globus, T.R. and A.O. Olesk, OPTICAL-ABSORPTION SPECTRA AND ENERGY-BAND STRUCTURE OF PBSE. Soviet Physics Semiconductors-Ussr, 1985. 19(4): p. 385-388.

172. Smirnov, I.A., B.Y. Moizhes, and E.D. Nensberg, THE EFFECTIVE CARRIER MASS IN LEAD SELENIDE. Soviet Physics-Solid State, 1961. 2(8): p. 1793-1804.

173. Veis, A.N., R.F. Kuteinikov, S.A. Kumzerov, and Y.I. Ukhanov, Investigation of Valence Band-Structure of Lead Selenide by Optical Methods. Soviet Physics Semiconductors-Ussr, 1976. 10(11): p. 1320-1321.

174. Shen, W.Z., H.F. Yang, L.F. Jiang, K. Wang, G. Yu, H.Z. Wu, and P.J. McCann, Band gaps, effective masses and refractive indices of PbSrSe thin films: Key properties for mid-infrared optoelectronic device applications. Journal of Applied Physics, 2002. 91(1): p. 192-198.

175. Lambrecht, A., N. Herres, B. Spanger, S. Kuhn, H. Bottner, M. Tacke, and J. Evers, MOLECULAR-BEAM EPITAXY OF PB1-XSRXSE FOR THE USE IN IR DEVICES. Journal of Crystal Growth, 1991. 108(1-2): p. 301-308.

176. Majumdar, A., H.Z. Xu, F. Zhao, J.C. Keay, L. Jayasinghe, S. Khosravani, X. Lu, V. Kelkar, and Z. Shi, Bandgap energies and refractive indices of Pb1-xSrxSe. Journal of Applied Physics, 2004. 95(3): p. 939-942.

177. Vinogradova, M.N., I.M. Rudnik, L.M. Sysoeva, and N.V. Kolomoets, Investigation of Thermoelectric Power and Carrier Mobility in p-type PbSe. Soviet Physics Semiconductors-Ussr, 1969. 2(7): p. 892-893.

178. Wang, H., A.D. LaLonde, Y. Pei, and G.J. Snyder, The Criteria for Beneficial Disorder in Thermoelectric Solid Solutions. Advanced Functional Materials, 2013. 23(12): p. 1586-1596.

179. Akai, H., Electronic-structure of Ni-Pd Alloys Calculated by the Self-consistent KKR-CPA Method. Journal of the Physical Society of Japan, 1982. 51(2): p. 468-474.

180. Akai, H., Fast Korringa-Kohn-Rostoker coherent potential approximation and its application to FCC Ni-Fe systems. Journal of Physics: Condensed Matter, 1989. 1(43): p. 8045.

181. Schröter, M., H. Ebert, H. Akai, P. Entel, E. Hoffmann, and G.G. Reddy, First-principles investigations of atomic disorder effects on magnetic and structural instabilities in transition-metal alloys. Physical Review B, 1995. 52(1): p. 188-209.

Page 11: References - California Institute of Technology · thermoelectric materials: current research and future prospects.Energy ... 50. Gibbs, Z.M., H.-S. Kim, H. Wang, and G.J. Snyder,

182. Heremans, J.P., B. Wiendlocha, and A.M. Chamoire, Resonant levels in bulk thermoelectric semiconductors. Energy & Environmental Science, 2012. 5: p. 5510-5530.

183. Jaworski, C.M., B. Wiendlocha, V. Jovovic, and J.P. Heremans, Combining alloy scattering of phonons and resonant electronic levels to reach a high thermoelectric figure of merit in PbTeSe and PbTeS alloys. Energy & Environmental Science, 2011. 4(10): p. 4155-4162.

184. Jaworski, C.M., J. Tobola, E.M. Levin, K. Schmidt-Rohr, and J.P. Heremans, Antimony as an amphoteric dopant in lead telluride. Physical Review B, 2009. 80(12): p. -.

185. HERMAN, F., R. KORTUM, L., I. ORTENBURGER, B., and J.P. VAN DYKE, RELATIVISTIC BAND STRUCTURE OF GeTe, SnTe, PbTe, PbSe, AND PbS. J. Phys. Colloques, 1968. 29(C4): p. C4-62-C4-77.

186. Vedeneev, V.P., S.P. Krivoruchko, and E.P. Sabo, Tin telluride based thermoelectrical alloys. Semiconductors, 1998. 32(3): p. 241-244.

187. Bernick, R.L. and L. Kleinman, ENERGY BANDS, EFFECTIVE MASSES AND G-FACTORS OF LEAD SALTS AND SNTE. Solid State Communications, 1970. 8(7): p. 569-&.

188. Santhanam, S. and A. Chaudhuri, Transport properties of SnTe interpreted by means of a two valence band model. Materials Research Bulletin, 1981. 16(8): p. 911-917.

189. Gonzalez, P., J. Agapito, and D. Pardo, Two-band model parameters deduced from Hall coefficient measurements in polycrystalline films of SnTe. Journal of Physics C: Solid State Physics, 1986. 19(6): p. 899.

190. Singh, D.J., Thermopower OF SnTe From Boltzmann Transport Calculation. Functional Materials Letters, 2010. 3(4): p. 223-226.

191. Hsieh, T.H., H. Lin, J.W. Liu, W.H. Duan, A. Bansil, and L. Fu, Topological crystalline insulators in the SnTe material class. Nature Communications, 2012. 3.

192. Rabe, K.M. and J.D. Joannopoulos, Abinitio Relativistic Pseudopotential Study of the Zero-Temperature Structural-Properties of Snte and Pbte. Physical Review B, 1985. 32(4): p. 2302-2314.

193. Zhu, H., W. Sun, R. Armiento, P. Lazic, and G. Ceder, Band structure engineering through orbital interaction for enhanced thermoelectric power factor. Applied Physics Letters, 2014. 104(8): p. 082107.

194. Khokhlov, D., L. Ryabova, A. Nicorici, V. Shklover, S. Ganichev, S. Danilov, and V. Bel’kov, Terahertz photoconductivity of Pb1−xSnxTe(In). Applied Physics Letters, 2008. 93(26): p. -.

195. Khokhlov, D.R., I.I. Ivanchik, S.N. Raines, D.M. Watson, and J.L. Pipher, Performance and spectral response of Pb1−xSnxTe(In) far-infrared photodetectors. Applied Physics Letters, 2000. 76(20): p. 2835-2837.

196. Gumenjuk-Sichevskaya, J.V. and F.F. Sizov, Currents in narrow-gap photodiodes. Semiconductor Science and Technology, 1999. 14(12): p. 1124-1131.

197. Xu, S.Y., C. Liu, N. Alidoust, M. Neupane, D. Qian, I. Belopolski, J.D. Denlinger, Y.J. Wang, H. Lin, L.A. Wray, G. Landolt, B. Slomski, J.H. Dil, A. Marcinkova, E. Morosan, Q. Gibson, R. Sankar, F.C. Chou, R.J. Cava, A. Bansil, and M.Z. Hasan, Observation of a topological crystalline insulator phase and topological phase transition in Pb1-xSnxTe. Nature Communications, 2012. 3.

198. Safdar, M., Q.S. Wang, M. Mirza, Z.X. Wang, K. Xu, and J. He, Topological Surface Transport Properties of Single-Crystalline SnTe Nanowire. Nano Letters, 2013. 13(11): p. 5344-5349.

Page 12: References - California Institute of Technology · thermoelectric materials: current research and future prospects.Energy ... 50. Gibbs, Z.M., H.-S. Kim, H. Wang, and G.J. Snyder,

199. Zhang, Q., B. Liao, Y. Lan, K. Lukas, W. Liu, K. Esfarjani, C. Opeil, D. Broido, G. Chen, and Z. Ren, High thermoelectric performance by resonant dopant indium in nanostructured SnTe. Proceedings of the National Academy of Sciences, 2013. 110(33): p. 13261-13266.

200. Brebrick, R.F., Deviations from Stoichiometry and Electrical Properties in Snte. Journal of Physics and Chemistry of Solids, 1963. 24(1): p. 27-&.

201. Rogacheva, E. and O. Nashchekina, Non‐stoichiometry and properties of SnTe〈 Cd〉 semiconducting phase of variable composition. physica status solidi (a), 2006. 203(11): p. 2856-2860.

202. Story, T., M. Gorska, A. Lusakowski, M. Arciszewska, W. Dobrowolski, E. Grodzicka, Z. Golacki, and R. Galazka, New Mechanism of f-f Exchange Interactions Controlled by Fermi Level Position. Physical review letters, 1996. 77: p. 3447-3450.

203. Trifonova, E. and L. Karagiozov, On iodine behaviour in bulk crystals of PbTe and SnTe synthesized by the iodide method. Crystal Research and Technology, 1983. 18(3): p. 315-320.

204. Moldovanova, M., E.P. Trifonova, R. Assenov, and L. Karagiozov, On Some Paramaters of Annealed Tin Telluride Prepared by the Iodide Method. Physica Status Solidi-Rapid Research Letters, 1980. 58: p. K47-50.

205. Assenov, R., V.A. Moshinikov, and D.A. Yaskov, On the Behaviour of Iodine in PbTe and SnTe. Physica status solidi (a), 1985. 88: p. K27-30.

206. Wang, H., E. Schechtel, Y. Pei, and G.J. Snyder, High Thermoelectric Efficiency of n-type PbS. Advanced Energy Materials, 2013. 3(4): p. 488-495.

207. Chen, Y., M.D. Nielsen, Y.-B. Gao, T.-J. Zhu, X. Zhao, and J.P. Heremans, SnTe-AgSbTe2 Thermoelectric Alloys. Advanced Energy Materials, 2012. 2(1): p. 58-62.

208. Han, M.K., J. Androulakis, S.J. Kim, and M.G. Kanatzidis, Lead‐Free Thermoelectrics: High Figure of Merit in p‐type AgSnmSbTem+ 2. Advanced Energy Materials, 2012. 2(1): p. 157-161.

209. Wagner, M., Simulation of thermoelectric devices. These de doctorat, Universität Wien, 2007.

210. Rowe, D.M., CRC Handbook of Thermoelectrics. 2010: Taylor & Francis. 211. Rogers, L.M., HALL MOBILITY AND THERMOELECTRIC POWER OF P-TYPE

LEAD TELLURIDE. British Journal of Applied Physics, 1967. 18(9): p. 1227-&. 212. Uher, C., J. Yang, S. Hu, D.T. Morelli, and G.P. Meisner, Transport properties of

pure and doped MNiSn (M =Zr, Hf). Physical Review B, 1999. 59(13): p. 8615-8621.

213. Culp, S.R., J.W. Simonson, S.J. Poon, V. Ponnambalam, J. Edwards, and T.M. Tritt, (Zr,Hf)Co(Sb,Sn) half-Heusler phases as high-temperature (>700°C)p-type thermoelectric materials. Applied Physics Letters, 2008. 93(2): p. 022105.

214. Lee, P.-J. and L.-S. Chao, High-temperature thermoelectric properties of Ti0.5(ZrHf)0.5−xNbxNi0.9Pd0.1Sn0.98Sb0.02 half-Heusler alloys. Journal of Alloys and Compounds, 2010. 504(1): p. 192-196.

215. Shen, Q., L. Chen, T. Goto, T. Hirai, J. Yang, G.P. Meisner, and C. Uher, Effects of partial substitution of Ni by Pd on the thermoelectric properties of ZrNiSn-based half-Heusler compounds. Applied Physics Letters, 2001. 79(25): p. 4165-4167.

216. Koehne, M., T. Graf, H.J. Elmers, and C. Felser, Semi-heusler/heusler alloys having tailored phase separation, 2011, Google Patents.

217. Sakurada, S., N. Shutoh, and S. Hirono, thermoelectric material having a higher ZT value, ZT value is "dimensionless figure of merit" and therefore has higher

Page 13: References - California Institute of Technology · thermoelectric materials: current research and future prospects.Energy ... 50. Gibbs, Z.M., H.-S. Kim, H. Wang, and G.J. Snyder,

thermoelectric conversion efficiency; specified metallic compound with little or no toxic metals such as lead, 2010, Google Patents.

218. Shutoh, N., S. Sakurada, N. Kondo, and N. Takezawa, Thermoelectric material and thermoelectric element, 2012, Google Patents.

219. Krez, J., J. Schmitt, G. Jeffrey Snyder, C. Felser, W. Hermes, and M. Schwind, Optimization of the carrier concentration in phase-separated half-Heusler compounds. Journal of Materials Chemistry A, 2014. 2(33): p. 13513-13518.

220. Xie, W., A. Weidenkaff, X. Tang, Q. Zhang, J. Poon, and T. Tritt, Recent Advances in Nanostructured Thermoelectric Half-Heusler Compounds. Nanomaterials, 2012. 2(4): p. 379-412.

221. Tritt, T.M. and M.A. Subramanian, Thermoelectric Materials, Phenomena, and Applications: A Bird's Eye View. MRS Bulletin, 2006. 31(03): p. 188-198.

222. Tritt, T.M., Recent Trends in Thermoelectric Materials Research II. 2001, San Diego, CA, USA: Academic Press.

223. Graf, T., C. Felser, and S.S.P. Parkin, Simple rules for the understanding of Heusler compounds. Progress in Solid State Chemistry, 2011. 39(1): p. 1-50.

224. Xie, H., H. Wang, Y. Pei, C. Fu, X. Liu, G.J. Snyder, X. Zhao, and T. Zhu, Beneficial Contribution of Alloy Disorder to Electron and Phonon Transport in Half-Heusler Thermoelectric Materials. Advanced Functional Materials, 2013. 23(41): p. 5123-5130.

225. Liu, Y., A. Page, P. Sahoo, H. Chi, C. Uher, and P.F.P. Poudeu, Electronic and phonon transport in Sb-doped Ti0.1Zr0.9Ni1+xSn0.975Sb0.025 nanocomposites. Dalton Transactions, 2014. 43(21): p. 8094-8101.

226. Yan, X., G. Joshi, W. Liu, Y. Lan, H. Wang, S. Lee, J.W. Simonson, S.J. Poon, T.M. Tritt, G. Chen, and Z.F. Ren, Enhanced Thermoelectric Figure of Merit of p-Type Half-Heuslers. Nano Letters, 2011. 11(2): p. 556-560.

227. Takas, N., P. Sahoo, D. Misra, H. Zhao, N. Henderson, K. Stokes, and P.P. Poudeu, Effects of Ir Substitution and Processing Conditions on Thermoelectric Performance of p-Type Zr0.5Hf0.5Co1−x Ir x Sb0.99Sn0.01 Half-Heusler Alloys. Journal of Electronic Materials, 2011. 40(5): p. 662-669.

228. Lee, M.-S., F.P. Poudeu, and S.D. Mahanti, Electronic structure and thermoelectric properties of Sb-based semiconducting half-Heusler compounds. Physical Review B, 2011. 83(8): p. 085204.

229. Populoh, S., O. Brunko, K. Gałązka, W. Xie, and A. Weidenkaff, Half-Heusler (TiZrHf)NiSn Unileg Module with High Powder Density. Materials, 2013. 6(4): p. 1326-1332.

230. Xie, H.-H., C. Yu, B. He, T.-J. Zhu, and X.-B. Zhao, Thermoelectric Properties and n- to p-Type Conversion of Co-Doped ZrNiSn-Based Half-Heusler Alloys. Journal of Electronic Materials, 2012. 41(6): p. 1826-1830.

231. Horyn, A., O. Bodak, L. Romaka, Y. Gorelenko, A. Tkachuk, V. Davydov, and Y. Stadnyk, Crystal structure and physical properties of (Ti,Sc)NiSn and (Zr,Sc)NiSn solid solutions. Journal of Alloys and Compounds, 2004. 363(1): p. 10-14.

232. Ouardi, S., G.H. Fecher, B. Balke, X. Kozina, G. Stryganyuk, C. Felser, S. Lowitzer, D. Ködderitzsch, H. Ebert, and E. Ikenaga, Electronic transport properties of electron- and hole-doped semiconducting C1_b Heusler compounds: NiTi1-xMxSn (M=Sc, V). Physical Review B, 2010. 82(8): p. 085108.

233. Jeitschko, W., Transition metal stannides with MgAgAs and MnCu2Al type structure. Metallurgical Transactions, 1970. 1(11): p. 3159-3162.

234. Yu, C., T.-J. Zhu, R.-Z. Shi, Y. Zhang, X.-B. Zhao, and J. He, High-performance half-Heusler thermoelectric materials Hf1−x ZrxNiSn1−ySby prepared by levitation melting and spark plasma sintering. Acta Materialia, 2009. 57(9): p. 2757-2764.

Page 14: References - California Institute of Technology · thermoelectric materials: current research and future prospects.Energy ... 50. Gibbs, Z.M., H.-S. Kim, H. Wang, and G.J. Snyder,

235. Kimura, Y., T. Tanoguchi, and T. Kita, Vacancy site occupation by Co and Ir in half-Heusler ZrNiSn and conversion of the thermoelectric properties from n-type to p-type. Acta Materialia, 2010. 58(13): p. 4354-4361.

236. Wang, J.L., H. Wang, G.J. Snyder, X. Zhang, Z.H. Ni, and Y.F. Chen, Characteristics of lattice thermal conductivity and carrier mobility of undoped PbSe-PbS solid solutions. Journal of Physics D: Applied Physics, 2013. 46(40): p. 405301.

237. Aliev, F.G., N.B. Brandt, V.V. Moshchalkov, V.V. Kozyrkov, R.V. Skolozdra, and A.I. Belogorokhov, Gap at the Fermi Level in the Intermetallic Vacancy System Tinisn, Zrnisn, Hfnisn. Zeitschrift Fur Physik B-Condensed Matter, 1989. 75(2): p. 167-171.

238. Xie, H., H. Wang, C. Fu, Y. Liu, G.J. Snyder, X. Zhao, and T. Zhu, The intrinsic disorder related alloy scattering in ZrNiSn half-Heusler thermoelectric materials. Sci. Rep., 2014. 4.

239. Miyazaki, H., T. Nakano, M. Inukai, K. Soda, Y. Izumi, T. Muro, J. Kim, M. Takata, M. Matsunami, S.-i. Kimura, and Y. Nishino, Electronic and Local Crystal Structures of the ZrNiSn Half-Heusler Thermoelectric Material. MATERIALS TRANSACTIONS, 2014. 55(8): p. 1209-1214.

240. Yu, C., H. Xie, C. Fu, T. Zhu, and X. Zhao, High performance half-Heusler thermoelectric materials with refined grains and nanoscale precipitates. Journal of Materials Research, 2012. 27(19): p. 2457-2465.

241. Kim, S.W., Y. Kimura, and Y. Mishima, High temperature thermoelectric properties of TiNiSn-based half-Heusler compounds. Intermetallics, 2007. 15(3): p. 349-356.

242. Joshi, G., T. Dahal, S. Chen, H. Wang, J. Shiomi, G. Chen, and Z. Ren, Enhancement of thermoelectric figure-of-merit at low temperatures by titanium substitution for hafnium in n-type half-Heuslers Hf0.75−xTixZr0.25NiSn0.99Sb0.01. Nano Energy, 2013. 2(1): p. 82-87.

243. Ogut, S. and K.M. Rabe, Band-Gap and Stability in the Ternary Intermetallic Compounds Nisnm (M=Ti,Zr,Hf) - a First-Principles Study. Physical Review B, 1995. 51(16): p. 10443-10453.

244. Koji, M., K. Akio, S. Kazuaki, Y. Mao, C. Yitao, S. Kenya, N. Hirofumi, T. Masaki, F. Shin-ichi, S. Yuji, I. Eiji, K. Keisuke, T. Junichi, and K. Takeshi, In-gap Electronic States Responsible for the Excellent Thermoelectric Properties of Ni-based Half-Heusler Alloys. Applied Physics Express, 2008. 1(8): p. 081901.

245. Xie, H.H., J.L. Mi, L.P. Hu, N. Lock, M. Chirstensen, C.G. Fu, B.B. Iversen, X.B. Zhao, and T.J. Zhu, Interrelation between atomic switching disorder and thermoelectric properties of ZrNiSn half-Heusler compounds. Crystengcomm, 2012. 14(13): p. 4467-4471.

246. Larson, P., S.D. Mahanti, and M.G. Kanatzidis, Structural stability of Ni-containing half-Heusler compounds. Physical Review B, 2000. 62(19): p. 12754-12762.

247. Qiu, P.F., J. Yang, X.Y. Huang, X.H. Chen, and L.D. Chen, Effect of antisite defects on band structure and thermoelectric performance of ZrNiSn half-Heusler alloys. Applied Physics Letters, 2010. 96(15).

248. Simonson, J.W. and S.J. Poon, Electronic structure of transition metal-doped XNiSn and XCoSb (X = Hf,Zr) phases in the vicinity of the band gap. Journal of Physics: Condensed Matter, 2008. 20(25): p. 255220.

249. Do, D.T., S.D. Mahanti, and J.J. Pulikkoti, Electronic structure of Zr-Ni-Sn systems: role of clustering and nanostructures in half-Heusler and Heusler limits. Journal of Physics-Condensed Matter, 2014. 26(27): p. 275501.

Page 15: References - California Institute of Technology · thermoelectric materials: current research and future prospects.Energy ... 50. Gibbs, Z.M., H.-S. Kim, H. Wang, and G.J. Snyder,

250. Aliev, F.G., V.V. Kozyrkov, V.V. Moshchalkov, R.V. Scolozdra, and K. Durczewski, Narrow band in the intermetallic compounds MNiSn (M=Ti, Zr, Hf). Zeitschrift für Physik B Condensed Matter, 1990. 80(3): p. 353-357.

251. Johnson, C.A., K.R. Kittilstved, T.C. Kaspar, T.C. Droubay, S.A. Chambers, G.M. Salley, and D.R. Gamelin, Mid-gap electronic states in Zn1-xMnxO. Physical Review B, 2010. 82(11): p. 115202.

252. Qiu, P., X. Huang, X. Chen, and L. Chen, Enhanced thermoelectric performance by the combination of alloying and doping in TiCoSb-based half-Heusler compounds. Journal of Applied Physics, 2009. 106(10): p. 103703.

253. Madelung, O., Semiconductors: Data Handbook. 2004: Springer Science & Business Media.

254. Nolas G. S., S.J., Goldsmid H. J., Thermoelectrics: Basic Principles and New Materials Developments. 2001: Springer Science & Business Media.

255. M, S., Nichtparabolizitat des Valenzbandes von Bi2Te3 gegolgert adu Transporteigenschaften. Phys. stat. sol. (b), 1975. 69.

256. Testardi, L.R., J.N. Bierly Jr, and F.J. Donahoe, Transport properties of p-type Bi2Te3Sb2Te3 alloys in the temperature range 80–370°K. Journal of Physics and Chemistry of Solids, 1962. 23(9): p. 1209-1217.

257. Jeon, H.-W., H.-P. Ha, D.-B. Hyun, and J.-D. Shim, Electrical and thermoelectrical properties of undoped Bi2Te3-Sb2Te3 and Bi2Te3-Sb2Te3-Sb2Se3 single crystals. Journal of Physics and Chemistry of Solids, 1991. 52(4): p. 579-585.

258. Plecháček, T., J. Navrátil, J. Horák, and P. Lošt’ák, Defect structure of Pb-doped Bi2Te3 single crystals. Philosophical Magazine, 2004. 84(21): p. 2217-2228.

259. Austin, I.G., The Optical Properties of Bismuth Telluride. Proceedings of the Physical Society, 1958. 72(4): p. 545.

260. Wang, S., G. Tan, W. Xie, G. Zheng, H. Li, J. Yang, and X. Tang, Enhanced thermoelectric properties of Bi2(Te1-xSex)3-based compounds as n-type legs for low-temperature power generation. Journal of Materials Chemistry, 2012. 22(39): p. 20943-20951.

261. Wang, H., Y.Z. Pei, A.D. LaLonde, and G.J. Snyder, Heavily Doped p-Type PbSe with High Thermoelectric Performance: An Alternative for PbTe. Advanced Materials, 2011. 23(11): p. 1366-1370.

262. Madelung, O., Semiconductors: Data Handbook. 2004, Berlin: Springer-Verlag. p. 630.

263. Nolas, G.S., J. Sharp, and H.J. Goldsmid, Thermoelectrics: Basic Principles and New Materials Developments. 2001, Berlin: Springer-Verlag. p. 115, 118.

264. Mandrus, D., A. Migliori, T.W. Darling, M.F. Hundley, E.J. Peterson, and J.D. Thompson, Electronic transport in lightly doped CoSb3. Physical Review B, 1995. 52(7): p. 4926-4931.

265. Hohl, H., A.P. Ramirez, C. Goldmann, G. Ernst, B. Wölfing, and E. Bucher, Efficient dopants for ZrNiSn-based thermoelectric materials. Journal of Physics: Condensed Matter, 1999. 11(7): p. 1697.

266. Liu, W., K.C. Lukas, K. McEnaney, S. Lee, Q. Zhang, C.P. Opeil, G. Chen, and Z. Ren, Studies on the Bi2Te3-Bi2Se3-Bi2S3 system for mid-temperature thermoelectric energy conversion. Energy & Environmental Science, 2013. 6(2): p. 552-560.

267. Poudel, B., Q. Hao, Y. Ma, Y. Lan, A. Minnich, B. Yu, X. Yan, D. Wang, A. Muto, D. Vashaee, X. Chen, J. Liu, M.S. Dresselhaus, G. Chen, and Z. Ren, High-Thermoelectric Performance of Nanostructured Bismuth Antimony Telluride Bulk Alloys. Science, 2008. 320(5876): p. 634-638.

Page 16: References - California Institute of Technology · thermoelectric materials: current research and future prospects.Energy ... 50. Gibbs, Z.M., H.-S. Kim, H. Wang, and G.J. Snyder,

268. Yu, F., J. Zhang, D. Yu, J. He, Z. Liu, B. Xu, and Y. Tian, Enhanced thermoelectric figure of merit in nanocrystalline Bi2Te3 bulk. Journal of Applied Physics, 2009. 105(9): p. 094303.

269. Bahk, J.-H. and A. Shakouri, Enhancing the thermoelectric figure of merit through the reduction of bipolar thermal conductivity with heterostructure barriers. Applied Physics Letters, 2014. 105(5): p. 052106.

270. Sales, B.C., D. Mandrus, and R.K. Williams, Filled Skutterudites Antimonides: A New Class of Thermoelectric Materials. Science, 1996. 272: p. 1325-1328.

271. Caillat, T., A. Borshchevsky, and J.P. Fleurial, Properties of single crystalline semiconducting CoSb3. Journal of Applied Physics, 1996. 80(8): p. 4442-4449.

272. Nolas, G.S., G.A. Slack, D.T. Morelli, T.M. Tritt, and A.C. Ehrlich, The effect of rare-earth filling on the lattice thermal conductivity of skutterudites. Journal of Applied Physics, 1996. 79(8): p. 4002.

273. Uher, C., Skutterudites: Prospective Novel Thermoelectrics, in Semiconductors and Semimetals. 2001. p. 139-253.

274. Nolas, G.S., J.L. Cohn, and G.A. Slack, Effect of partial void filling on the lattice thermal conductivity of skutterudites. Physical Review B, 1998. 58(1): p. 164-170.

275. Pei, Y.Z., J. Yang, L.D. Chen, W. Zhang, J.R. Salvador, and J. Yang, Improving thermoelectric performance of caged compounds through light-element filling. Applied Physics Letters, 2009. 95(4): p. 042101.

276. Tang, Y.L., Y.T. Qiu, L.L. Xi, X. Shi, W.Q. Zhang, L.D. Chen, S.M. Tseng, S.W. Chen, and G.J. Snyder, Phase diagram of In-Co-Sb system and thermoelectric properties of In-containing skutterudites. Energy & Environmental Science, 2014. 7(2): p. 812-819.

277. Leszczynski, J., V. Da Ros, B. Lenoir, A. Dauscher, C. Candolfi, P. Masschelein, J. Hejtmanek, K. Kutorasinski, J. Tobola, R.I. Smith, C. Stiewe, and E. Muller, Electronic band structure, magnetic, transport and thermodynamic properties of In-filled skutterudites InxCo4Sb12. Journal of Physics D-Applied Physics, 2013. 46(49).

278. Qin, Z., K.F. Cai, S. Chen, and Y. Du, Preparation and electrical transport properties of In filled and Te-doped CoSb3 skutterudite. Journal of Materials Science-Materials in Electronics, 2013. 24(10): p. 4142-4147.

279. Tang, Y., S.W. Chen, and G.J. Snyder, Temperature Dependent Solubility of Yb in Yb-CoSb3 Skutterudite and its Effect on Preparation, Optimization and Lifetime of Thermoelectrics. Journal of Materiomics, 2014. 1(1).

280. Park, K.-H., I.-H. Kim, S.-M. Choi, W.-S. Seo, D.-I. Cheong, and H. Kang, Preparation and Thermoelectric Properties of p-Type Yb-Filled Skutterudites. Journal of Electronic Materials, 2013. 42(7): p. 1377-1381.

281. Kuznetsov, V.L., L.A. Kuznetsova, and D.M. Rowe, Effect of partial void filling on the transport properties of Nd x Co 4 Sb 12 skutterudites. Journal of Physics: Condensed Matter, 2003. 15(29): p. 5035.

282. Yu, J., W.Y. Zhao, B. Lei, D.G. Tang, and Q.J. Zhang, Effects of Ge Dopant on Thermoelectric Properties of Barium and Indium Double-Filled p-Type Skutterudites. Journal of Electronic Materials, 2013. 42(7): p. 1400-1405.

283. Tang, G.D., W.C. Yang, F. Xu, and Y. He, Synthesis and Thermoelectric Properties of In and Pr Double-Filled Skutterudites In (x) Pr (y) Co4Sb12. Journal of Electronic Materials, 2014. 43(2): p. 435-438.

284. Tang, G.D., D.W. Zhang, G. Chen, F. Xu, and Z.H. Wang, Thermoelectric: properties in double-filled skutterudites InxNdyCo4Sb12. Solid State Communications, 2012. 152(24): p. 2193-2196.

Page 17: References - California Institute of Technology · thermoelectric materials: current research and future prospects.Energy ... 50. Gibbs, Z.M., H.-S. Kim, H. Wang, and G.J. Snyder,

285. Ballikaya, S. and C. Uher, Enhanced thermoelectric performance of optimized Ba, Yb filled and Fe substituted skutterudite compounds. Journal of Alloys and Compounds, 2014. 585: p. 168-172.

286. Shi, X., J. Yang, J.R. Salvador, M. Chi, J.Y. Cho, H. Wang, S. Bai, J. Yang, W. Zhang, and L. Chen, Multiple-filled skutterudites: high thermoelectric figure of merit through separately optimizing electrical and thermal transports. J Am Chem Soc, 2011. 133(20): p. 7837-46.

287. Rogl, G., A. Grytsiv, P. Rogl, E. Bauer, M. Hochenhofer, R. Anbalagan, R.C. Mallik, and E. Schafler, Nanostructuring of p- and n-type skutterudites reaching figures of merit of approximately 1.3 and 1.6, respectively. Acta Materialia, 2014. 76: p. 434-448.

288. Yang, X.-q., P.-c. Zhai, L.-s. Liu, and Q.-j. Zhang, Thermodynamic and mechanical properties of crystalline CoSb3: A molecular dynamics simulation study. Journal of Applied Physics, 2011. 109(12): p. 123517.

289. Ravi, V., S. Firdosy, T. Caillat, B. Lerch, A. Calamino, R. Pawlik, M. Nathal, A. Sechrist, J. Buchhalter, and S. Nutt, Mechanical Properties of Thermoelectric Skutterudites. AIP Conference Proceedings, 2008. 969(1): p. 656-662.

290. Yang, J. and F.R. Stabler, Automotive Applications of Thermoelectric Materials. Journal of Electronic Materials, 2009. 38(7): p. 1245-1251.

291. Geng, H., X. Meng, H. Zhang, and J. Zhang, Lattice thermal conductivity of filled skutterudites: An anharmonicity perspective. Journal of Applied Physics, 2014. 116(16): p. 163503.

292. Li, W. and N. Mingo, Thermal conductivity of fully filled skutterudites: Role of the filler. Physical Review B, 2014. 89(18).

293. Nolas, G.S., G. Fowler, and J. Yang, Assessing the role of filler atoms on the thermal conductivity of filled skutterudites. Journal of Applied Physics, 2006. 100(4): p. 043705.

294. Svane, A., N.E. Christensen, M. Cardona, A.N. Chantis, M. van Schilfgaarde, and T. Kotani, Quasiparticle self-consistent GW calculations for PbS, PbSe, and PbTe: Band structure and pressure coefficients. Physical Review B, 2010. 81(24): p. 245120:1-10.

295. Parker, D., X. Chen, and D.J. Singh, High Three-Dimensional Thermoelectric Performance from Low-Dimensional Bands. Physical Review Letters, 2013. 110(14): p. 146601.

296. Caillat, T., A. Borshchevsky, and J.P. Fleurial, Preparation and thermoelectric properties of p‐ and n‐type CoSb3. AIP Conference Proceedings, 1994. 316(1): p. 58-61.

297. Morelli, D.T., G.P. Meisner, B. Chen, S. Hu, and C. Uher, Cerium Filling and Doping of Cobalt Triantimonide. Physical Review B, 1997. 56: p. 7376-7383.

298. Pei, Y.Z., S.Q. Bai, X.Y. Zhao, W. Zhang, and L.D. Chen, Thermoelectric properties of EuyCo4Sb12 filled skutterudites. Solid State Sciences, 2008. 10(10): p. 1422-1428.

299. Salvador, J.R., J. Yang, H. Wang, and X. Shi, Double-filled skutterudites of the type Yb[sub x]Ca[sub y]Co[sub 4]Sb[sub 12]: Synthesis and properties. Journal of Applied Physics, 2010. 107(4): p. 043705.

300. Puyet, M., B. Lenoir, A. Dauscher, P. Pécheur, C. Bellouard, J. Tobola, and J. Hejtmanek, Electronic, transport, and magnetic properties of CaxCo4Sb12 partially filled skutterudites. Physical Review B, 2006. 73(3).

301. Young, D.L., T.J. Coutts, and V.I. Kaydanov, Density-of-states effective mass and scattering parameter measurements by transport phenomena in thin films. Review of Scientific Instruments, 2000. 71(2): p. 462-466.

Page 18: References - California Institute of Technology · thermoelectric materials: current research and future prospects.Energy ... 50. Gibbs, Z.M., H.-S. Kim, H. Wang, and G.J. Snyder,

302. Kajikawa, Y., Analysis of high-temperature thermoelectric properties of p-type CoSb3 within a two-valence-band and two-conduction-band model. Journal of Applied Physics, 2014. 115(20): p. -.

303. Kajikawa, Y., Refined analysis of the transport properties of Co1−xNixSb3 according to a model including a deep donor level and the second lowest valleys of the conduction band. Journal of Alloys and Compounds, 2015. 621(0): p. 170-178.

304. Liu, W.-S., L.-D. Zhao, B.-P. Zhang, H.-L. Zhang, and J.-F. Li, Enhanced thermoelectric property originating from additional carrier pocket in skutterudite compounds. Applied Physics Letters, 2008. 93(4): p. -.

305. Puyet, M., A. Dauscher, B. Lenoir, M. Dehmas, C. Stiewe, E. Müller, and J. Hejtmanek, Beneficial effect of Ni substitution on the thermoelectric properties in partially filled CayCo4−xNixSb12 skutterudites. Journal of Applied Physics, 2005. 97(8): p. -.

306. Puyet, M., A. Dauscher, B. Lenoir, C. Bellouard, C. Stiewe, E. Müller, J. Hejtmanek, and J. Tobola, Influence of Ni on the thermoelectric properties of the partially filled calcium skutterudites CayCo4−xNixSb12. Physical Review B, 2007. 75(24): p. 245110.

307. Nagamoto, Y., K. Tanaka, and T. Koyanagi. Transport properties of heavily doped n-type CoSb3. in Thermoelectrics, 1998. Proceedings ICT 98. XVII International Conference on. 1998.

308. Chaput, L., P. Pecheur, J. Tobola, and H. Scherrer, Transport in doped skutterudites: Ab initio electronic structure calculations. Physical Review B, 2005. 72(8).

309. Ackermann, J. and A. Wold, The preparation and characterization of the cobalt skutterudites CoP3, CoAs3 and CoSb3. Journal of Physics and Chemistry of Solids, 1977. 38(9): p. 1013-1016.

310. Kliche, G. and H.D. Lutz, Temperature dependence of the FIR reflection spectra of the skutterudites CoAs3 and CoSb3. Infrared Physics, 1984. 24(2–3): p. 171-177.

311. Lutz, H.D. and G. Kliche, Far-Infrared Reflection Spectra, Optical and Dielectric Constants, Effective Charges, and Lattice Dynamics of the Skutterudites CoP3, CoAs3, and CoSb3. physica status solidi (b), 1982. 112(2): p. 549-557.

312. Ni, G., Photoacoustic measurements of bandgaps of thermoelectric materials. Mechanical Engineering. Master of Science. 2014, Massachusetts Institute of Technology

Massachusetts Institute of Technology. 313. Slack, G.A. and V.G. Tsoukala, Some Properties of Semiconducting Irsb3. Journal

of Applied Physics, 1994. 76(3): p. 1665-1671. 314. Matsunami, M., H. Okamura, K. Senoo, S. Nagano, C. Sekine, I. Shirotani, H.

Sugawara, H. Sato, and T. Nanba, Optical Conductivity and Electronic Structures in Ce-Filled Skutterudites. Journal of the Physical Society of Japan, 2008. 77(Suppl.A): p. 315-317.

315. Anno, H., K. Matsubara, Y. Notohara, T. Sakakibara, and H. Tashiro, Effects of doping on the transport properties of CoSb3. Journal of Applied Physics, 1999. 86(7): p. 3780-3786.

316. Dyck, J.S., W. Chen, C. Uher, L. Chen, X. Tang, and T. Hirai, Thermoelectric properties of the n-type filled skutterudite Ba0.3Co4Sb12 doped with Ni. Journal of Applied Physics, 2002. 91(6): p. 3698-3705.

Page 19: References - California Institute of Technology · thermoelectric materials: current research and future prospects.Energy ... 50. Gibbs, Z.M., H.-S. Kim, H. Wang, and G.J. Snyder,

317. Smith, S.D., T.S. Moss, and K.W. Taylor, The energy-dependence of electron mass in indium antimonide determined from measurements of the infrared Faraday effect. Journal of Physics and Chemistry of Solids, 1959. 11(1–2): p. 131-139.

318. Cardona, M., Electron Effective Masses of InAs and GaAs as a Function of Temperature and Doping. Physical Review, 1961. 121(3): p. 752-758.

319. Raymond, A., J.L. Robert, and C. Bernard, The electron effective mass in heavily doped GaAs. Journal of Physics C: Solid State Physics, 1979. 12(12): p. 2289.

320. Dixon, J.R. and H.R. Riedl, Electric-Susceptibility Hole Mass of Lead Telluride. Physical Review, 1965. 138(3A): p. A873-A881.

321. Dionne, G. and J.C. Woolley, Optical Properties of Some Pb1-Xsnxte Alloys Determined from Infrared Plasma Reflectivity Measurements. Physical Review B, 1972. 6(10): p. 3898-3913.

322. Seiler, D.G., R.R. Galazka, and W.M. Becker, Band Structure of HgSe: Band Parameter Determinations from Effective-Mass Data, and Concentration Dependence and Anisotropy of Beating Effects in the Shubnikov-de Haas Oscillations. Physical Review B, 1971. 3(12): p. 4274-4285.

323. Harman, T.C., Galvano-thermomagnetic effects in semiconductors and semimetals—IV. mercury selenide. Journal of Physics and Chemistry of Solids, 1964. 25(9): p. 931-940.

324. Arushanov, E., M. Respaud, H. Rakoto, J.M. Broto, and T. Caillat, Shubnikov-de Haas oscillations in CoSb3 single crystals. Physical Review B, 2000. 61(7): p. 4672-4676.

325. Young, D.L., T.J. Coutts, V.I. Kaydanov, A.S. Gilmore, and W.P. Mulligan, Direct measurement of density-of-states effective mass and scattering parameter in transparent conducting oxides using second-order transport phenomena. Journal of Vacuum Science & Technology A, 2000. 18(6): p. 2978-2985.

326. Orlov, V.G. and G.S. Sergeev, The key role of charge carriers scattering on polar optical phonons in semiconductors for thermoelectric energy conversion. Solid State Communications, 2013. 174(0): p. 34-37.

327. Pshenaĭ-Severin, D.A. and M.I. Fedorov, Effect of the band structure on the thermoelectric properties of a semiconductor. Physics of the Solid State, 2007. 49(9): p. 1633-1637.

328. Dumke, W.P., M.R. Lorenz, and G.D. Pettit, Intraband and Interband Free-Carrier Absorption and Fundamental Absorption Edge in N-Type Inp. Physical Review B, 1970. 1(12): p. 4668-&.

329. Spitzer, W. and H.Y. Fan, Infrared Absorption in $n$-Type Silicon. Physical Review, 1957. 108(2): p. 268-271.

330. Haga, E. and H. Kimura, Free-Carrier Infrared Absorption in III-V Semiconductors IV. Inter-Conduction Band Transitions. Journal of the Physical Society of Japan, 1964. 19(9): p. 1596-1606.

331. Tang, Y., S.-w. Chen, and G.J. Snyder, Temperature dependent solubility of Yb in Yb–CoSb3 skutterudite and its effect on preparation, optimization and lifetime of thermoelectrics. Journal of Materiomics, 2015. 1(1): p. 75-84.

332. Zhou, A., L.S. Liu, P.C. Zhai, W.Y. Zhao, and Q.J. Zhang, Electronic Structures and Transport Properties of Single-Filled CoSb3. Journal of Electronic Materials, 2010. 39(9): p. 1832-1836.

333. Alleno, E., E. Zehani, and O. Rouleau, Metallurgical and thermoelectric properties in Co1-xPdxSb3 and Co(1-x)Ni(x)Sb3 revisited. Journal of Alloys and Compounds, 2013. 572: p. 43-48.

334. Shi, X., W. Zhang, L. Chen, J. Yang, and C. Uher, Theoretical study of the filling fraction limits for impurities in CoSb3. Physical Review B, 2007. 75(23).

Page 20: References - California Institute of Technology · thermoelectric materials: current research and future prospects.Energy ... 50. Gibbs, Z.M., H.-S. Kim, H. Wang, and G.J. Snyder,

335. Yang, J., L. Xi, W. Zhang, L.D. Chen, and J.H. Yang, Electrical Transport Properties of Filled CoSb3 Skutterudites: A Theoretical Study. Journal of Electronic Materials, 2009. 38(7): p. 1397-1401.

336. Perdew, J.P., K. Burke, and M. Ernzerhof, Generalized Gradient Approximation Made Simple. Physical Review Letters, 1996. 77(18): p. 3865-3868.

337. Giannozzi, P., S. Baroni, N. Bonini, M. Calandra, R. Car, C. Cavazzoni, D. Ceresoli, G.L. Chiarotti, M. Cococcioni, I. Dabo, A. Dal Corso, S. De Gironcoli, S. Fabris, G. Fratesi, R. Gebauer, U. Gerstmann, C. Gougoussis, A. Kokalj, M. Lazzeri, L. Martin-Samos, N. Marzari, F. Mauri, R. Mazzarello, S. Paolini, A. Pasquarello, L. Paulatto, C. Sbraccia, S. Scandolo, G. Sclauzero, A. Seitsonen, P., A. Smogunov, P. Umari, and R.M. Wentzcovitch, QUANTUM ESPRESSO: a modular and open-source software project for quantum simulations of materials. Journal of Physics: Condensed Matter, 2009. 21(39): p. 395502.

338. Agapito, L.A., A. Ferretti, A. Calzolari, S. Curtarolo, and M. Buongiorno Nardelli, Effective and accurate representation of extended Bloch states on finite Hilbert spaces. Physical Review B, 2013. 88(16): p. 165127.

339. Agapito, L.A., S. Ismail-Beigi, S. Curtarolo, and M. Buongiorno Nardelli, Accurate tight-binding Hamiltonian matrices from ab-initio calculations. In preparation, 2015.

340. WanT code by A. Ferretti, B. Bonferroni, A. Calzolari, and M. Buongiorno Nardelli, (http://www.wannier-transport.org)

341. Kokalj, A., Computer graphics and graphical user interfaces as tools in simulations of matter at the atomic scale. Computational Materials Science, 2003. 28(2): p. 155-168.

342. Wang, J., X.C. Liu, S.Q. Xia, and X.T. Tao, Ca1-xRExAg1-ySb (RE = La, Ce, Pr, Nd, Sm; 0 <= x <= 1; 0 <= y <= 1): Interesting Structural Transformation and Enhanced High-Temperature Thermoelectric Performance. Journal of the American Chemical Society, 2013. 135(32): p. 11840-11848.

343. Guo, K., Q.G. Cao, and J.T. Zhao, Zintl phase compounds AM(2)Sb(2) (A=Ca, Sr, Ba, Eu, Yb; M=Zn, Cd) and their substitution variants: a class of potential thermoelectric materials. Journal of Rare Earths, 2013. 31(11): p. 1029-1038.

344. Bhardwaj, A. and D.K. Misra, Enhancing thermoelectric properties of a p-type Mg3Sb2- based Zintl phase compound by Pb substitution in the anionic framework. Rsc Advances, 2014. 4(65): p. 34552-34560.

345. Zevalkink, A., J. Swallow, and G.J. Snyder, Thermoelectric properties of Zn-doped Ca5In2Sb6. Dalton Trans., 2013. 42: p. 9713-9719.

346. Zevalkink, A., W.G. Zeier, G. Pomrehn, E. Schechtel, W. Tremelb, and G.J. Snydera, Thermoelectric properties of Sr3GaSb3 – a chain-forming Zintl compound. Energy Environ. Sci., 2012. 5: p. 9121-9128.

347. Brown, S.R., S.M. Kauzlarich, F. Gascoin, and G.J. Snyder, Yb14MnSb11:  New High Efficiency Thermoelectric Material for Power Generation. Chemistry of Materials, 2006. 18(7): p. 1873-1877.

348. Ohno, S., A. Zevalkink, Y. Takagiwa, S.K. Bux, and G.J. Snyder, Thermoelectric properties of the Yb9Mn4.2−xZnxSb9 solid solutions. Journal of Materials Chemistry A, 2014. 2(20): p. 7478.

349. Snyder, G.J. and E.S. Toberer, Complex Thermoelectric Materials. Nature Mater, 2008. 7: p. 105-114.

350. Toberer, E.S., A.F. May, and G.J. Snyder, Zintl Chemistry for Designing High Efficiency Thermoelectric Materials. Chemistry of Materials, 2010. 22(3): p. 624-634.

351. Zevalkink, A., S. Chanakian, U. Aydemir, A. Ormeci, G. Pomrehn, S. Bux, J.-P. Fleurial, and J. Snyder, Thermoelectric properties and electronic structure of the

Page 21: References - California Institute of Technology · thermoelectric materials: current research and future prospects.Energy ... 50. Gibbs, Z.M., H.-S. Kim, H. Wang, and G.J. Snyder,

Zintl phase Sr5In2Sb6 and solid solution Ca5-xSrxIn2Sb6. Journal of Physics: Condensed Matter, 2015. 27(1).

352. Gnutzmann, U. and K. Clausecker, Theory of direct optical transitions in an optical indirect semiconductor with a superlattice structure. Applied Physics 1974. 3(1): p. 9-14.

353. Schmitt, J., Z.M. Gibbs, G.J. Snyder, and C. Felser, Resolving the true band gap of ZrNiSn half-Heusler thermoelectric materials. Mater. Horiz., 2014. 2(1): p. 68-75.

354. Pei, Y., X. Shi, A. LaLonde, H. Wang, L. Chen, and G.J. Snyder, Convergence of electronic bands for high performance bulk thermoelectrics. Nature, 2011. 473(7345): p. 66-9.

355. Kubelka, P. and F. Munk, Reflection characteristics of paints. Z. Technische Physik, 1932. 12: p. 593-601.

356. Zevalkink, A., G.S. Pomrehn, S. Johnson, J. Swallow, Z.M. Gibbs, and G.J. Snyder, Influence of the Triel Elements (M = Al, Ga, In) on the Transport Properties of Ca5M2Sb6 Zintl Compounds. Chemistry of Materials, 2012. 24(11): p. 2091-2098.

357. Park, S.-M., E.S. Choi, W. Kang, and S.-J. Kim, Eu5In2Sb6, Eu5In2-xZnxSb6: rare earth zintl phases with narrow band gaps. Journal of Materials Chemistry, 2002. 12(6): p. 1839-1843.

358. Johnson, S.I., A. Zevalkink, and G.J. Snyder, Improved thermoelectric properties in Zn-doped Ca5Ga2Sb6. Journal of Materials Chemistry A, 2013. 1(13): p. 4244-4249.

359. Chanakian, S., A. Zevalkink, U. Aydemir, Z.M. Gibbs, G. Pomrehn, S. Bux, J.P. Fleurial, and G.J. Snyder, Enhanced Thermoelectric Properties of Sr5In2Sb6 via Zn-doping. Journal of Materials Chemistry A, 2015.

360. Allgaier, R.S., Magnetoresistance in PbS, PbSe, and PbTe at 295, 77.4, and 4.2K. Physical Review, 1958. 112(3): p. 828-836.

361. Mecholsky, N.A., L. Resca, I.L. Pegg, and M. Fornari, Theory of band warping and its effects on thermoelectronic transport properties. Physical Review B, 2014. 89(15): p. 155131.

362. Wang, H., J.L. Wang, X.L. Cao, and G.J. Snyder, Thermoelectric alloys between PbSe and PbS with effective thermal conductivity reduction and high figure of merit. Journal of Materials Chemistry A, 2014. 2(9): p. 3169-3174.

363. Korkosz, R.J., T.C. Chasapis, S.-h. Lo, J.W. Doak, Y.J. Kim, C.-I. Wu, E. Hatzikraniotis, T.P. Hogan, D.N. Seidman, C. Wolverton, V.P. Dravid, and M.G. Kanatzidis, High ZT in p-Type (PbTe)1–2x(PbSe)x(PbS)x Thermoelectric Materials. Journal of the American Chemical Society, 2014.

364. Lee, Y., S.-H. Lo, J. Androulakis, C.-I. Wu, L.-D. Zhao, D.-Y. Chung, T.P. Hogan, V.P. Dravid, and M.G. Kanatzidis, High-Performance Tellurium-Free Thermoelectrics: All-Scale Hierarchical Structuring of p-Type PbSe–MSe Systems (M = Ca, Sr, Ba). Journal of the American Chemical Society, 2013.

365. Zhang, Q., F. Cao, W. Liu, K. Lukas, B. Yu, S. Chen, C. Opeil, D. Broido, G. Chen, and Z. Ren, Heavy Doping and Band Engineering by Potassium to Improve the Thermoelectric Figure of Merit in p-Type PbTe, PbSe, and PbTe1–ySey. Journal of the American Chemical Society, 2012. 134(24): p. 10031-10038.

366. Kanatzidis, M., J. Androulakis, I. Todorov, J.Q. He, D.Y. Chung, and V. Dravid, Thermoelectrics from Abundant Chemical Elements: High-Performance Nanostructured PbSe-PbS. Journal of the American Chemical Society, 2011. 133(28): p. 10920-10927.

Page 22: References - California Institute of Technology · thermoelectric materials: current research and future prospects.Energy ... 50. Gibbs, Z.M., H.-S. Kim, H. Wang, and G.J. Snyder,

367. Chasapis, T.C., Y. Lee, E. Hatzikraniotis, K.M. Paraskevopoulos, H. Chi, C. Uher, and M.G. Kanatzidis, Understanding the role and interplay of heavy-hole and light-hole valence bands in the thermoelectric properties of PbSe. Physical Review B, 2015. 91(8): p. 085207.

368. Jain, A., G. Hautier, C.J. Moore, S. Ping Ong, C.C. Fischer, T. Mueller, K.A. Persson, and G. Ceder, A high-throughput infrastructure for density functional theory calculations. Computational Materials Science, 2011. 50(8): p. 2295-2310.

369. Kresse, G. and J. Furthmüller, Efficiency of ab-initio total energy calculations for metals and semiconductors using a plane-wave basis set. Computational Materials Science, 1996. 6(1): p. 15-50.

370. Ong, S.P., W.D. Richards, A. Jain, G. Hautier, M. Kocher, S. Cholia, D. Gunter, V.L. Chevrier, K.A. Persson, and G. Ceder, Python Materials Genomics (pymatgen): A robust, open-source python library for materials analysis. Computational Materials Science, 2013. 68(0): p. 314-319.

371. Fan, W.J., M.F. Li, T.C. Chong, and J.B. Xia, Electronic properties of zinc‐blende GaN, AlN, and their alloys Ga1−xAlxN. Journal of Applied Physics, 1996. 79(1): p. 188-194.

372. Adachi, S., Optical dispersion relations for GaP, GaAs, GaSb, InP, InAs, InSb, AlxGa1−xAs, and In1−xGaxAsyP1−y. Journal of Applied Physics, 1989. 66(12): p. 6030-6040.

373. Wang, Y., H. Yin, R. Cao, F. Zahid, Y. Zhu, L. Liu, J. Wang, and H. Guo, Electronic structure of III-V zinc-blende semiconductors from first principles. Physical Review B, 2013. 87(23): p. 235203.

374. Tran, F. and P. Blaha, Accurate Band Gaps of Semiconductors and Insulators with a Semilocal Exchange-Correlation Potential. Physical Review Letters, 2009. 102(22): p. 226401.