reddy 1985

Upload: kamineni-jagath

Post on 07-Jul-2018

233 views

Category:

Documents


0 download

TRANSCRIPT

  • 8/18/2019 Reddy 1985

    1/4

    440

    AIAA

      J O U R N A L

    V O L .

     23, NO. 3

    Nonlinear Analysis  of  Laminated Shells

    Including Transverse Shear Strains

    J . N.  R eddy* and K. Chandrashekharat

    Virginia

      Polytechnic

      Institute

     a nd  State   University,

      Blacksburg,   Virginia

    Abstract

    N

    UMERICAL results obta ined us ing a doubly curved,

    shear deformable shell element are presented for

    geometr ical ly  nonlinear anlaysis of laminated composite

    shells.  The element is based on an extension of Sanders ' shell

    theory and accounts for the von Karman strains and trans-

    verse

      shear strains. The sample numerical results presented

    here

      for the

      geometr ica lly nonlinear analys is

      o f

      laminated

    composite shells should serve

      as

      references

      fo r

      fu tu re

      in -

    vestigations.

    Contents

    Laminated shells are  f inding  increased applications in

    aerospace, automobile, and petrochemical industries. This is

    due

      primarily  to the  high stiffness-to-weight

      ratio,

      high-

    strength-to-weight

      ra t io , and lower machining and main-

    tenance costs associated with composite structures. However,

    the analysis of com posite structures is more com plicated when

    compared to meta ll ic s tructures , because laminated composite

    structures

      are anisotropic and characterized

      by

      bending-

    stretching  coup ling. Fu rther, the classical shell theories, whic h

    ar e  based  on the

      K i rc h h of f -Love

      kinematic hypothesis, are

    k n o w n to y ield deflec tions and stresses in laminated shells that

    are as much as

     3 0%

     in error. This error is due to the neglect of

    t ransverse shear strains in the classical shell theories.

    T he   effects  o f

      t ransverse shear deformat ion

      an d

      thermal

    expansion through

      th e

      th ickness

      fo r

      laminated, t ransversely

    isotropic, cylindrical shells were considered by Zukas and

    Vinson.

    1

      Dong  an d

      T so

    2

      constructed  a  laminated o rthotropic

    shell

      theory that includes transverse shear deformation. Other

    shear deformation theories, specialized to anisotropic cylin-

    drical shells, were presented by Whitney and

      Sun .

    3

    '

    4

      Recent ly ,

    Reddy

    5

      extended

      Sanders '

      theory  to  account  for the  trans-

    verse

      shear strains, and presented exact solutions for simply

    supported cross-ply laminated shells. All of these studies are

    limited  to

      small displacement theories

     a nd

     static analyses.

    In  the present  paper ,  the extended Sanders ' shell theory that

    accounts for the shear deformation and the von Karman

    strains is used to develop a displacement

      finite

      element model

    fo r

      the bending analysis of laminated composite shells.

    Numer ica l

      results for cylindrical and doubly curved shells are

    presented, showing the  effect  of geometry and material or-

    thotropy

     on the

     def lect ions

     an d

      stresses.

    Consider a laminated shell constructed of a   finite  n u m b e r

    of

      uniform -thickness orthotropic layers, or iented arbit rari ly

    with

      respect

      to the

      shell coordinates  ( ?

    7

    , b * f ) .

      The o r -

    thogonal cu rviline ar coordin ate system   £ / , £ 2 > D   is  chosen

    such

      that the  £ /  and £

    2

      curves are lines of curvature on the

    midsurface   f = 0 ,  and  f  curves are straight lines perpendicular

    to the

     surface

     f = 0 .

    Received N ov.

      29 ,

      1983; revision received

      M a r c h  1 5,

      1984.

    Copyr igh t

      © Amer i can

      Inst i tute

      of Aeronaut i cs and As tronaut i cs ,

    Inc., 1984.

      All

      rights

      reserved. Ful l  paper  to be avai lable

      from

    National Technical Information

      Service,

      Springfield, Va. ,

      at the

    s tandard

     pr ice.

    *Professor ,

      D e p a r t m e n t o f

      Engineering Science

      an d

      Mechanics.

    jGraduate

      Research

     A ssistant ,

      D epar tment

      of Engineer ing Science

    an d

     M echanics.

    The principle of virtual displacements can be used to derive

    th e

     governing equat ions

    5

    '

    6

     :

    dN,

     

    i

    x

     

    dN

    2

    —l

    dx

    2

    .dx,

      d x

    2

      d

    X ]

    where

     c

    0

     =

     0.5 \/R

    2

      - 1

     / / ? / ) ,

     and

    du

    3

    dx?

    (1 )

     

    T—

    dx

    2

    du

    3

    du

    3

    —t

    dx

    2

    (2)

    The rel ationship between the stress resultants   T V / , M /,  Q ,)  are

    generalized displacements  (u ,   v,

      w ,

      < / > / ,   4 >

    2

    )  can be  found  in

    R e f .

      6.

    The   finite elem ent model of the equation s is of the form

    where  [A) =  ( \ u

    l

    ) , \u

    2

      } ,

      (u

    3

     J ,

      { < / > / ,

      4 >

    2

      } )

    7

    ,  [A]  is the

    element

      stiffness

      matrix, and

      ( F )

      is the force vector. The

    coefficients

      of the  stiffness  matr ices  ar e  included  in  R e f .  6.

    Note that  th e  stiffness  matr ix  [K ]   is a

      funct ion

      of the

    u n k n o w n  solution vector  ( A ) ; therefore,  an  iterative solution

    procedure is required for each

      load

      step. In the present study,

    the authors have used the direct (i.e., Picard-type) iteration

    technique. Sample numerical results for laminated shell

    problems are presented in Figs. 1-3. A discussion of these

    results

     i s

     presented

      in the

      fo llowing paragraphs.

    The following types of boundary conditions for a quarter-

    panel were used (along the symmetry lines, normal in-plane

    displacement ,  an d  normal rotation  are set to zero):

    =  w=(f>

    J

    =0  at  y   —

    = w  =   l >

    2

    = 0   at x=a

     4)

    Here

      u,  v,

      an d

      w

      denote  th e  displacements along  th e  three

    coordinate axes,  an d

      < >

    7

      an d  < />

    2

      denote  the  rotations  of the

    transverse  normals

     abou t

     the x

    2

      an d x

    I

      axes, respectively.  T he

    fol lowing  material properties

      ar e

     used:

    Material  1:

    E, =25 x

      10

    6

      psi, E

    2

     = 10

    6

      psi,

      G

    ]2

     =

     G

    ]3

     =0.5 x

      10

    6

     psi

    G

    23

     =

     0.2x

     10

    6

      psi,  v,

    2

    = 0.25 (5a)

    Materia l

      2:

    Ej   =

     40 x

      10

    6

      psi,

     E

    2

      =

     10

    6

      psi,

      G

    ]2

     = G

    }3

     =

     0.6 x

      10

    6

      psi

    G

    23

     =0.5 x  10

    6

      psi,

      V] 2

      =0 .25  (5b)

  • 8/18/2019 Reddy 1985

    2/4

    MARCH  1985

    NONLINEAR

      A N A L Y S I S

     OF LAMINATED SHELLS

    441

    Load

    P

      =  F

    3  .

    0.0 0.2 0.4 0.6 0.

    Deflection,  -w/h)

    Fig.

      1  Bending  of a  nine layer  cross ply  [0°/90°/0 ..]  s imply

    supported

     spherical shell

     subjected t o a uniformly distributed  load.

    cross-ply

    I

    Deflection, -w

      10

      in)

      • — angle-ply

    0.0 0.1 0.2 0.3 0.4 0.5

    3.0 i———i———i———i———i———i———i———i———i———i———|

      angle-oly

     

    Load, 2.0

    q

    n

     psi)

    0.4

    Load ,

      ci

      nsi)

    0.1 0. 2 0.3 0.4

    Deflection, w

      in  in.)

    0.0

    .5  -»-cross-ply

    Fig. 2

      Bending

      of a  two layer  cross ply and  angle ply s imply sup

    ported spherical shells  under uniform

      loading.

    T he

      first

      problem is concerned  with  the bending of a  nine-

    layer  [0

    0

    /90°/0°/90%..]  cross-ply spherical

      panel

      under

    external  pressure  load.  T he  following  geometrical  data  ar e

    used

      in the

      analysis:  RI

     =R

    2

     =R=  1000  in.,  a  = b =5 Q   in.,

    h  =

     1 in.  Individual layers are assumed to b e of equal thickness

      h j  =  h/9).  Results using

      tw o

      sets

      of

      orthotropic-material

    constants, typical

      of

      high-modulus graphite-epoxy material

    (the

      ratios are more pertinent here) for  in d iv idua l  layers, are

    presented

     i n Fig .  1.

    Figure  2  contains the pertinent  data  an d  results (with

    different

      scales)

      fo r

      two-layer cross-ply

      an d

      angle-ply

      simply

    supported spherical panels (of material 2). It is interesting to

    note that  the

     type

     o f

      nonlinearity

     exhibited by the two

     shells

     i s

    quite  different;

      th e

      cross-ply

      shell

      gets

      softer,

      whereas

      th e

    arigle-ply

     shell gets stiffer  with an increase in the applied load.

    While both

     shells  have bending-stretching coupling due to the

    laminat ion

      scheme  (B

    22

      =

     — B

    11

      nonzero for the cross-ply

    shell  an d

      B

    } 6

      an d  B

    2

    6  ar e  nonzero  for the angle-ply  shell),  the

    Fig.

      3

      Bending

      of a

      c lamped

      cross ply

      [ 0 ° / 9 0 ° ]  cylindrical  shell

    under

     a

     uniform  loading.

    angle-ply

     experiences shear coupling that  stiffens  the spherical

    shell

      relatively  more  than  the normal coupling (note that,  in

    general, shells  get

      softer

      under

      externally  applied  pressure

    loads).

    Lastly,

      Fig.

      3 contains

     results  (i.e.,

      w ,

     o

    y

    ,  o

    xz

      vs

     load)

      for a

    cross-ply  [0°/90°]  clamped cylindrica l

      panel

      under  un i form

    load.  Clearly, the

      load

      deflection curve  indicates

      that

      th e

    nonlinearity exhibited   by the  cross-ply  shell is of the  har-

    dening

     type.

    The shear-flexible  finite

      element

      presented  here is  com-

    putat ional ly more  efficient  than  those based  on  fully  o r

    degenerated three-dimensional elasticity theory.  Since  only

    the von Karman-type nonlinearity is accounted for here, the

    element is not suitable for

      applicat ions  involving

      severe

    dis tort ions  (i.e.,  large strains).  F rom  the numerica l com-

    putat ions  it is

      observed

      that

      boundary condi t ions

      on the in-

    plane  d isplacements

      have

      a  significant  effect  on the  shell

    deflections and stresses. It is

      also

      observed

      that

      the

      form

      of

    nonlinearities exhibited by laminated   shells  depends on the

    lamination schemes

     (i.e., cross-ply

     a nd

      angle-ply).

      It

     wou ld

     be

    of  considerable  interest

      to

      verify  these

      f indings  by ex-

    periments .

    Acknowledgments

    T he

      results  reported

      here  were  obtained  dur ing  in -

    ves t igations supported   by  Structura l Mechanics  Divisions of

    AFOSR  and NASA

      Lewis .

      The authors are

      grateful

      to Dr.

    Anthony A mo s and Dr. Chris Chamis for the support .

    References

     

    Zukas , J . A. and   Vinson,  J. R., "Laminated

      Transversely

    Isotropic

      Cylindrical

     Shells, Journa l

      of

      Applied Mechanics,  Vol .

      38 ,

    J u n e

      1971,

     pp .

     400-407.

    2

    D o n g ,  S. B. and  Tso,

      F .K .W . ,

      On  a  Laminated

      Or tho t rop ic

    Shell  Theory  Including

      Transverse Shear Deformation,"

      Journal

      o f

    Applied Mechanics, Vol .

     39, Dec.

      1972,

      pp. 1091-1097.

    *Whitney,

      J. M. and  Sun,  C. T.,  A

      Higher Order Theory

      for

    Extensional

      Mot ion

      of Laminated

      Composi tes , "

      Journal

      o f   Sound

    a n d   Vibrat ion, Vol .

     3 0,

     Sept.

      1973,  p. 85.

    4

    W h i t n e y ,

      J . M. and

      Sun,

      C.  T.,  A  Refined  Theory  fo r

    Laminated

      Anisotropic,

      Cyl indr ical  Shells,

    Journal

      o f   Applied

    Mechanics,  Vol .

      41, June 1974, pp.

     471-476.

    5

    R e d d y ,

      J . N.,

      'Exact

      Solut ions of

      Moderate ly Th ick Laminated

    Shells,

    Journal of Engineering Mechanics,

      ASCE,

      Vol.

      110,

      M ay

    1984,  pp. 794-809.

    6

    R e d d y ,

      J.

      N. , "Nonl inear  Analysis

      o f

      Layered

      Composite Plates

    an d  Shells, Virginia  Poytechnic Inst i tute and

      State

      Univers i ty,

    Blacksburg,  Va.,

      Final Report to

      A F O S R ,  Rept. VPI-E-84-5,

      Jan.

    1984.

  • 8/18/2019 Reddy 1985

    3/4

    This article has been cited by:

    1. Achchhe Lal, B.N. Singh, Soham Anand. 2011. Nonlinear bending response of laminated composite spherical shell

    panel with system randomness subjected to hygro-thermo-mechanical loading. International Journal of Mechanical

    Sciences 53:10, 855-866. [CrossRef ]

    2. Ireneusz Kreja. 2011. A literature review on computational models for laminated composite and sandwich panels.

    Central European Journal of Engineering 1:1, 59-80. [CrossRef ]

    3. M.X. Shi, Q.M. Li. 2011. Instability in the transformation between extensional and flexural modes in thin-walled

    cylindrical shells. European Journal of Mechanics - A/Solids 30:1, 33-45. [CrossRef ]

    4. Surendra Kumar. 2008. Analysis of impact response and damage in laminated composite shell involving large

    deformation and material degradation. Journal of Mechanics of Materials and Structures 3:9, 1741-1756. [CrossRef ]

    5. Chih-Ping Wu, Yen-Wei Chi. 2005. Three-dimensional nonlinear analysis of laminated cylindrical shells under

    cylindrical bending. European Journal of Mechanics - A/Solids 24:5, 837-856. [CrossRef ]

    6. M.H. Toorani. 2003. Dynamics of the geometrically non-linear analysis of anisotropic laminated cylindrical shells.

     International Journal of Non-Linear Mechanics 38:9, 1315-1335. [CrossRef ]

    7. Jianwu Zhang, Yanhai Xu, Jinsong Wu. 2003. Buckling and Postbuckling of Antisymmetrically Laminated Cross-ply

    Shear-Deformable Cylindrical Shells under Axial Compression. Journal of Engineering Mechanics 129:1, 107-116.

    [CrossRef ]8. K. Y. Sze, W. K. Chan, T. H. H. Pian. 2002. An eight-node hybrid-stress solid-shell element for geometric non-linear

    analysis of elastic shells. International Journal for Numerical Methods in Engineering 55:7, 853-878. [CrossRef ]

    9. A.M. Zenkour, M.E. Fares. 2001. Bending, buckling and free vibration of non-homogeneous composite laminated

    cylindrical shells using a refined first-order theory. Composites Part B: Engineering 32:3, 237-247. [CrossRef ]

    10. C.-P. Wu, C.-C. Liu. 2001. An Asymptotic Theory for the Nonlinear Analysis of Laminated Cylindrical Shells.

     International Journal of Nonlinear Sciences and Numerical Simulation 2:4, 329-342. [CrossRef ]

    11. Il-Kwon Oh, In Lee. 2001. Thermal snapping and vibration characteristics of cylindrical composite panels using

    layerwise theory. Composite Structures 51:1, 49-61. [CrossRef ]

    12. M.H. TOORANI, A.A. LAKIS. 2000. GENERAL EQUATIONS OF ANISOTROPIC PLATES  AND SHELLS

    INCLUDING TRANSVERSE SHEAR DEFORMATIONS, ROTARY INERTIA AND INITIAL CURVATURE

    EFFECTS. Journal of Sound and Vibration 237:4, 561-615. [CrossRef ]13. K. Sandeep, Y. Nath. 2000. Nonlinear Dynamic Response of Axisymmetric Thick Laminated Shallow Spherical

    Shells. International Journal of Nonlinear Sciences and Numerical Simulation 1:3. . [CrossRef ]

    14. C.W.S. To, B. Wang. 1999. Hybrid strain based geometrically nonlinear laminated composite triangular shell finite

    elements. Finite Elements in Analysis and Design 33:2, 83-124. [CrossRef ]

    15. S. Ganapathy, K.P. Rao. 1998. Failure analysis of laminated composite cylindrical/spherical shell panels sub jected

    to low-velocity impact. Computers & Structures 68:6, 627-641. [CrossRef ]

    16. Vijaya Kumar, Anand V. Singh. 1997. Geometrically non-linear dynamic analysis of laminated shells using Bézier

    functions. International Journal of Non-Linear Mechanics 32:3, 425-442. [CrossRef ]

    17. C.P. Chaplin, A.N. Palazotto. 1996. The collapse of composite cylindrical panels with various thickness using finite

    element analysis. Computers & Structures 60:5, 797-815. [CrossRef ]

    18. C.S. Xu, Z.Q. Xia, C.Y. Chia. 1996. Non-linear theory and vibration analysis of laminated truncated, thick, conical

    shells. International Journal of Non-Linear Mechanics 31:2, 139-154. [CrossRef ]

    19. F. Gruttmann, W. Wagner. 1996. Coupling of two- and three-dimensional composite shell elements in linear and non-

    linear applications. Computer Methods in Applied Mechanics and Engineering 129:3, 271-287. [CrossRef ]

    20. Deokjoo KimReaz A. Chaudhuri. 1995. Full and von Karman geometrically nonlinear analyses of laminated

    cylindrical panels. AIAA Journal 33:11, 2173-2181. [Citation] [PDF] [PDF Plus]

    21. J.R. Kommineni, T. Kant. 1995. Pseudo-transient large deflection analysis of composite and sandwich shells with a

    refined theory. Computer Methods in Applied Mechanics and Engineering 123:1-4, 1-13. [CrossRef ]

    22. F. Gruttmann, W. Wagner. 1994. On the numerical analysis of local effects in composite structures. Composite

    Structures 29:1, 1-12. [CrossRef ]

    23. Mohamad S. Qatu. 1994. On the validity of nonlinear shear deformation theories for laminated plates and shells.

    Composite Structures 27:4, 395-401. [CrossRef ]

    http://dx.doi.org/10.1016/0263-8223(94)90266-6http://dx.doi.org/10.1016/0263-8223(94)90266-6http://dx.doi.org/10.1016/0263-8223(94)90032-9http://dx.doi.org/10.1016/0045-7825(94)00771-Ehttp://dx.doi.org/10.1016/0045-7825(94)00771-Ehttp://dx.doi.org/10.2514/3.12963http://arc.aiaa.org/doi/pdf/10.2514/3.12963http://arc.aiaa.org/doi/pdf/10.2514/3.12963http://arc.aiaa.org/doi/pdfplus/10.2514/3.12963http://arc.aiaa.org/doi/pdfplus/10.2514/3.12963http://dx.doi.org/10.1016/0020-7462(95)00051-8http://dx.doi.org/10.1016/0045-7949(95)00344-4http://dx.doi.org/10.1016/S0020-7462(96)00068-6http://dx.doi.org/10.1016/S0045-7949(98)00080-7http://dx.doi.org/10.1016/S0168-874X(99)00028-1http://dx.doi.org/10.1515/IJNSNS.2000.1.3.225http://dx.doi.org/10.1016/S0263-8223(00)00123-9http://dx.doi.org/10.1515/IJNSNS.2001.2.4.329http://dx.doi.org/10.1016/S1359-8368(00)00060-3http://dx.doi.org/10.1061/(ASCE)0733-9399(2003)129:1(107)http://dx.doi.org/10.1016/S0020-7462(02)00073-2http://dx.doi.org/10.1016/S0020-7462(02)00073-2http://dx.doi.org/10.1016/0263-8223(94)90266-6http://dx.doi.org/10.1016/0263-8223(94)90032-9http://dx.doi.org/10.1016/0045-7825(94)00771-Ehttp://arc.aiaa.org/doi/pdfplus/10.2514/3.12963http://arc.aiaa.org/doi/pdf/10.2514/3.12963http://dx.doi.org/10.2514/3.12963http://dx.doi.org/10.1016/0045-7825(95)00897-7http://dx.doi.org/10.1016/0020-7462(95)00051-8http://dx.doi.org/10.1016/0045-7949(95)00344-4http://dx.doi.org/10.1016/S0020-7462(96)00068-6http://dx.doi.org/10.1016/S0045-7949(98)00080-7http://dx.doi.org/10.1016/S0168-874X(99)00028-1http://dx.doi.org/10.1515/IJNSNS.2000.1.3.225http://dx.doi.org/10.1006/jsvi.2000.3073http://dx.doi.org/10.1016/S0263-8223(00)00123-9http://dx.doi.org/10.1515/IJNSNS.2001.2.4.329http://dx.doi.org/10.1016/S1359-8368(00)00060-3http://dx.doi.org/10.1002/nme.535http://dx.doi.org/10.1061/(ASCE)0733-9399(2003)129:1(107)http://dx.doi.org/10.1016/S0020-7462(02)00073-2http://dx.doi.org/10.1016/j.euromechsol.2005.04.006http://dx.doi.org/10.2140/jomms.2008.3.1741http://dx.doi.org/10.1016/j.euromechsol.2010.09.002http://dx.doi.org/10.2478/s13531-011-0005-xhttp://dx.doi.org/10.1016/j.ijmecsci.2011.07.008

  • 8/18/2019 Reddy 1985

    4/4

    24. T Kant, J.R Kommineni. 1994. Geometrically non-linear analysis of symmetrically laminated composite and sandwich

    shells with a higher-order theory and C0 finite elements. Composite Structures 27:4, 403-418. [CrossRef ]

    25. R.S. Alwar, M.C. Narasimhan. 1993. Nonlinear analysis of laminated axisymmetric spherical shells. International

     Journal of Solids and Structures 30:6, 857-872. [CrossRef ]

    26. Y. Basar, U. Montag, Y. Ding. 1993. On an isoparametric finite-element for composite laminates with finite rotations.

    Computational Mechanics 12:6, 329-348. [CrossRef ]

    27. K. Chandrashekhara, Kiran M. Bangera. 1993. Linear and geometrically non-linear analysis of composite beamsunder transverse loading. Composites Science and Technology 47:4, 339-347. [CrossRef ]

    28. R.S. Alwar, M.C. Narasimhan. 1992. Axisymmetric non-linear analysis of laminated orthotropic annular spherical

    shells. International Journal of Non-Linear Mechanics 27:4, 611-622. [CrossRef ]

    29. Changshi Xu. 1992. Multi-mode nonlinear vibration and large deflection of symmetrically laminated imperfect

    spherical caps on elastic foundations. International Journal of Mechanical Sciences 34:6, 459-474. [CrossRef ]

    30. Wojciech Gilewski, Maria Radwa#ska. 1991. A survey of finite element models for the analysis of moderately thick 

    shells. Finite Elements in Analysis and Design 9:1, 1-21. [CrossRef ]

    31. E. Graff, G.S. Springer. 1991. Stress analysis of thick, curved composite laminates. Computers & Structures 38:1,

    41-55. [CrossRef ]

    32. S.T. Dennis, A.N. Palazotto. 1990. Large displacement and rotational formulation for laminated shells including

    parabolic transverse shear. International Journal of Non-Linear Mechanics 25:1, 67-85. [CrossRef ]

    33. H.T.Y. Yang, S. Saigal, D.G. Liaw. 1990. Advances of thin shell finite elements and some applications—version I.

    Computers & Structures 35:4, 481-504. [CrossRef ]

    34. Y.H. Kim, S.W. Lee. 1988. A solid element formulation for large deflection analysis of composite shell structures.

    Computers & Structures 30:1-2, 269-274. [CrossRef ]

    35. V.P. Iu, C.Y. Chia. 1988. Effect of transverse shear on nonlinear vibration and postbuckling of anti-symmetric cross-

    ply imperfect cylindrical shells. International Journal of Mechanical Sciences 30:10, 705-718. [CrossRef ]

    36. RAKESH K. KAPANIAT. Y. YANG. 1987. Buckling, postbuckling, and nonlinear vibrations of imperfect plates.

     AIAA Journal 25:10, 1338-1346. [Citation] [PDF] [PDF Plus]

    37. Paul Seide, Reaz A. Chaudhuri. 1987. Triangular finite element for analysis of thick laminated shells. International

     Journal for Numerical Methods in Engineering 24:8, 1563-1579. [CrossRef ]

    http://dx.doi.org/10.1002/nme.1620240812http://arc.aiaa.org/doi/pdfplus/10.2514/3.9788http://arc.aiaa.org/doi/pdf/10.2514/3.9788http://dx.doi.org/10.2514/3.9788http://dx.doi.org/10.1016/0020-7403(88)90036-7http://dx.doi.org/10.1016/0045-7949(88)90232-5http://dx.doi.org/10.1016/0045-7949(90)90071-9http://dx.doi.org/10.1016/0020-7462(90)90039-Chttp://dx.doi.org/10.1016/0045-7949(91)90122-3http://dx.doi.org/10.1016/0168-874X(91)90016-Rhttp://dx.doi.org/10.1016/0020-7403(92)90012-6http://dx.doi.org/10.1016/0020-7462(92)90066-Ghttp://dx.doi.org/10.1016/0266-3538(93)90003-Yhttp://dx.doi.org/10.1007/BF00364242http://dx.doi.org/10.1016/0020-7683(93)90044-8http://dx.doi.org/10.1016/0263-8223(94)90267-4