recovery of soluable serum proteins from meat …infohouse.p2ric.org/ref/19/18639.pdfdenatured...

24
RECOVERY OF SOLUBLE SERUM PROTEINS FROM MEAT INDUSTRY WASTES Richard W. Greiling* INTRODUCTION Wherever animals are slaughtered, decisions must be made on how best to dispose of the blood. For most meat and poultry packers the options are few. There was a time when the blood could be discharged into any receiving body of water along with other wastes. That time is gone. As effluent limita- tions became stricter, blood wastes in most abattoirs were retained for treatment with other renderable materials. Blood is the largest single waste originating on the killing floor and, in terms of BOD, the strongest pollutant in the entire meat packing industry. Some studies suggest that 5-day biological oxygen demand (BOD ) reductions of greater than 40 percent can be achieved by shifting from a no-recovery to a recovery of all blood wastes. In 1967, 80 percent of all packing plants in the United States were recovering blood. On a live-weight-kill (LWK) basis, 96 percent of the blood from slaughtered animals was recovered and treated in some form(1). 5 Standard sizes for blood recovery equipment are 5,000 lbs/hr (2,275 kg/hr) and 10,000 lbs/hr (4,550 kg/hr). Most recovery systems operate at a blood feed rate of 10,000 pounds per hour. In the most common blood recovery system blood is pumped through a steam-jacketed heat exchanger ranging in length from 10 to 20 feet (3 to 6 meters). To o b t a i n a blood temperature of 9OoC, at which rapid coagulation occurs, requires a blood retention time of 15 to 20 seconds, and 550 pounds (250 kg) of steam per hour. The blood clots are then centrifuged out of suspension for drying (spray drying is common) and packaging; the centrate being set to evaporation facilities or discharged to the sewerage system. The biochemcial behavior of blood proteins in pure solutions has been under- stood for several years, The biochemical relationships, and influencing factors such as pH, ionic charge, temperature, and solids concentrations have been reported. What the literature fails to present is the biochemical behavior of blood proteins in a heterogeneous solution that has been sub- jected to the thermal and physical treatment mechanisms associated with blood recovery facilities. *Washington Department of Ecology, Olympia, Washington 21 1

Upload: trinhquynh

Post on 14-May-2018

219 views

Category:

Documents


0 download

TRANSCRIPT

RECOVERY OF SOLUBLE SERUM PROTEINS FROM MEAT INDUSTRY WASTES

Richard W. G r e i l i n g *

INTRODUCTION

Wherever an imals are s l a u g h t e r e d , d e c i s i o n s must be made on how b e s t t o d i s p o s e of t h e blood. For most meat and p o u l t r y packers t h e o p t i o n s are few. There w a s a t i m e when t h e blood could b e d i scha rged i n t o any r e c e i v i n g body of water a long w i t h o t h e r wastes. That t i m e is gone. A s e f f l u e n t l i m i t a - t i o n s became s t r ic te r , blood wastes i n most a b a t t o i r s w e r e r e t a i n e d f o r t r ea tmen t w i t h o t h e r r e n d e r a b l e materials.

Blood is t h e l a r g e s t s i n g l e waste o r i g i n a t i n g on t h e k i l l i n g f l o o r and, i n terms of BOD, t h e s t r o n g e s t p o l l u t a n t i n t h e e n t i r e m e a t packing i n d u s t r y . Some s t u d i e s sugges t t h a t 5-day b i o l o g i c a l oxygen demand (BOD ) r e d u c t i o n s of g r e a t e r t han 40 p e r c e n t can b e achieved by s h i f t i n g from a no-recovery t o a r ecove ry of a l l blood wastes. I n 1967, 80 p e r c e n t of a l l packing p l a n t s i n t h e United States w e r e r ecove r ing blood. On a l i v e - w e i g h t - k i l l (LWK) b a s i s , 96 p e r c e n t of t h e blood from s l a u g h t e r e d an imals w a s recovered and t r e a t e d i n some form(1) .

5

Standard s i z e s f o r blood r ecove ry equipment are 5,000 l b s / h r ( 2 , 2 7 5 kg/hr ) and 10,000 l b s / h r (4,550 k g / h r ) . Most recovery systems o p e r a t e a t a blood f eed r a t e of 10,000 pounds p e r hour . I n t h e most common blood recovery system blood i s pumped through a s team-jacketed h e a t exchanger r ang ing i n l e n g t h from 10 t o 20 f e e t (3 t o 6 m e t e r s ) . To o b t a i n a blood tempera ture of 9OoC, a t which r a p i d c o a g u l a t i o n occur s , r e q u i r e s a b lood r e t e n t i o n t i m e of 1 5 t o 20 seconds , and 550 pounds (250 kg) of steam pe r hour . The blood c l o t s are t h e n c e n t r i f u g e d o u t of suspens ion f o r d r y i n g ( sp ray d ry ing is common) and packaging; t h e c e n t r a t e be ing s e t t o e v a p o r a t i o n f a c i l i t i e s o r d i scha rged t o t h e sewerage system.

The b iochemcia l behav io r of blood p r o t e i n s i n pu re s o l u t i o n s h a s been under- s tood f o r s e v e r a l y e a r s , The b iochemica l r e l a t i o n s h i p s , and i n f l u e n c i n g f a c t o r s such as pH, i o n i c charge , t empera ture , and s o l i d s c o n c e n t r a t i o n s have been r e p o r t e d . What t h e l i t e r a t u r e f a i l s t o p r e s e n t i s t h e b iochemica l behavior of blood p r o t e i n s i n a he te rogeneous s o l u t i o n t h a t h a s been sub- j e c t e d t o t h e the rma l and p h y s i c a l t r e a t m e n t mechanisms a s s o c i a t e d w i t h blood recovery f a c i l i t i e s .

*Washington Department of Ecology, Olympia, Washington

21 1

D E S I G N CONSIDERATIONS FOR PROTEIN RECOVERY

A minimum of c o n s t r a i n t s were p laced on t h e development of a serum p r o t e i n removal p rocess . A w a r e of c a p i t a l l i m i t a t i o n s t h a t c o n f r o n t many a b a t t o i r s , c e r t a i n f a c t o r s concern ing any f i n a l recommendation f o r a pre- t rea tment and recovery f a c i l i t y were of fundamental importance and n e c e s s i t a t e d c o n s t a n t c o n s i d e r a t i o n throughout t h e i n v e s t i g a t i o n .

F i r s t , t h e i n i t i a l c o s t of f a c i l i t y c o n s t r u c t i o n must b e low. Approximately 25 p e r c e n t of t h e n a t i o n ' s s l a u g h t e r i n g i s done i n s m a l l e s t a b l i s h m e n t s ( 2 ) ( 3 ) . A t r u l y e f f e c t i v e t r e a t m e n t scheme w i l l b e one t h a t can be u t i l i z e d by a l l m e a t packers . Low c a p i t a l inves tment i s a c o n s t r a i n t on such a f a c i l i t y des ign .

Second, t h e p rocess must b e s imple and r e l a t i v e l y " foolproof" . Opera t ion should n o t r e q u i r e c a r e f u l c o n t r o l o r unp leasan t t a s k s . Good t r ea tmen t r e s u l t s should b e v i s a b l e t o encourage t h e o p e r a t o r and convince him t h a t h i s p l a n t i s r e a l l y accomplishing i ts purpose.

Th i rd , mechanical equipment should b e he ld t o a minimum t o p reven t shutdown due t o f a i l u r e and t o c u t maintenance c o s t s . D u p l i c i t y of equipment should b e avoided. P rocesses u t i l i z i n g chemical and energy i n p u t s should o p e r a t e a t t h e most optimum c o n d i t i o n s t o minimize o p e r a t i o n a l c o s t s .

OBJECTIVES OF THE INVESTIGATION

The l i t e r a t u r e s u g g e s t s t h a t i n c r e a s i n g t h e tempera ture of a p r o t e i n s o l u t i o n , p a r t i c u l a r l y a t i t s i s o e l e c t r i c p o i n t , enhances p r o t e i n p r e c i p i t a t i o n . Can t h e i n c r e a s e d y i e l d , however, j u s t i f y t h e i n c r e a s e i n thermal i n p u t s ? I n a he te rogeneous p r o t e i n s o l u t i o n i s t h e r e an optimum pH a t which p r e c i p i t a t i o n is most l i k e l y t o occur? Is t h e r e a q u a n t i t a t i v e l i m i t t o p r o t e i n recovery due t o p r o t e i n s o l u b i l i t y r e l a t i o n s h i p s ? And how c l o s e can a p r o t e i n recovery sys tem approach a l i m i t of s o l u b i l i t y and s t i l l b e j u s t i f i e d by economics?

The s t i m u l i f o r e f f e c t i v e blood r ecove ry are a need f o r p roduc t r ecove ry , and a determined need on t h e p a r t of i n d u s t r y f o r e f f l u e n t abatement . Perhaps t h e s i n g l e most m o t i v a t i n g f o r c e which w i l l induce i n d u s t r y t o cons ide r f u r t h e r improved p r o t e i n recovery i s t h e energy c o s t s a s s o c i a t e d w i t h p r e s e n t recovery f a c i l i t i e s . Most recovery systems are des igned such t h a t t h e l i q u i d f r a c t i o n of blood i s mixed w i t h o t h e r t ank waters and d r i e d by evapora t ion . Threatened u n a v a i l a b i l i t y of n a t u r a l gas and f u e l o i l and r i s i n g energy c o s t s a s s o c i a t e d w i t h e v a p o r a t o r s and d r i e r s are a l r e a d y f o r c i n g s e v e r a l a b a t t o i r s t o change t h e i r r ende r ing o p e r a t i o n s . One sys tem improves c e n t r i f u g a t i o n of blood p a r t i c u l a t e s y e t s t i l l d i s c a r d s t h e c e n t r a t e t o t h e sewer sys tem(4) .

21 2

What h i s f a c i l i t y f a i l s t o r ecove r is t h e h i g h q u a n t i t y of d i s s o l v e d serum p r o t e i n s which r e p r e s e n t a s a l a b l e p r o d u c t ,

Another o b j e c t i v e of t h i s r e s e a r c h w a s t o produce as pure and n a t u r a l as p o s s i b l e a p r o t e i n by-product which can be marketed. i n a pure s t a t e y i e l d t h e h i g h e s t market pr ice . However, f a c i l i t i e s f o r such a t r e a t m e n t p rocess are i n a c c e s s i b l e t o a l l b u t a few of t h e n a t i o n ' s meat packers . To meet t h e c o n s t r a i n t s p r e v i o u s l y d i s c u s s e d i t bzcame appa ren t t h a t s i n g u l a r l y or i n combination h e a t , chemica l , and p h y s i c a l methods may b e necessa ry f o r p r o t e i n e x t r a c t i o n . i n i t s n a t u r a l s t a t e and l o s s e s t h e q u a l i t i e s n e c e s s a r y f o r pha rmaceu t i ca l and h i g h l y s p e c i a l i z e d p r o t e i n a p p l i c a t i o n s , I t i s cau t ioned , t o o , t h a t t h e h e a t and p r e s s u r e c o n d i t i o n s found i n an a u t o c l a v e may make c e r t a i n l a b i l e amino a c i d s u n a v a i l a b l e f o r n u t r i a t i v e purposes .

F r a c t i o n a t e d p r o t e i n s

The r e s u l t a n t p r o t e i n s o l i d is no longe r

The marke ts of animal f e e d and f e r t i l i z e r could b e t h e receiver of such a c o n t r o l l e d r ecove ry p roduc t . Because of t h e p r e s s i n g need f o r p r o t e i n , i t w a s hoped t h a t a p roduc t could b e recovered which can b e marketed as an animal f e e d supplement. Th i s o b j e c t i v e is c o n s t r a i n e d because t h e F e d e r a l Food and Drug Admin i s t r a t ion does n o t a l low t h e f e e d i n g of ruminants o r o t h e r an imals any f e e d s t u f f s chemica l ly removed w i t h s y n t h e t i c p o l y e l e c t r o - l y t e s ( 5 ) . r ecove ry c a p a b i l i t i e s of t h e o r g a n i c polymer c h i t o s i n .

PRELIMINARY INVESTIGATIONS

Th i s c o n s t r a i n t l e d t o t h e i n v e s t i g a t i o n of t h e serum p r o t e i n

P r e l i m i n a r y i n v e s t i g a t i o n s were performed on a blood serum waste t o asess t h e p h y s i c a l and chemica l dependency of p r o t e i n d e n a t u r a t i o n upon pIi, t empera tu re , p r o t e i n c o n c e n t r a t i o n , and t h e p re sence of a coagu lan t a i d . The i n t e n t of t h e i n v e s t i g a t i o n s w a s t o reduce t h e number of v a r i a b l e s i n q u e s t i o n . A f i n a l d e s i g n could b e performed which would then p rov ide d a t a t h a t cou ld b e used f o r t h e development of an o p e r a t i o n a l p r o t e i n recovery f a c i l i t y ,

This b lood serum waste stream, pB 6.7 t o 6.9, h a s an o r g a n i c n i t r o g e n c o n c e n t r a t i o n of approximate ly 1,650 mg/l. T o t a l s o l i d s are about 23,000 mg/l of which 15,000 mg/l are v o l a t i l e . t h e measured n i t r o g e n a s s a y a t l ea s t 10,500 mg/l of the v o l a t i l e s o l i d s f r a c t i o n is a t t r i b u t a b l e t o serum p r o t e i n s ( 6 ) .

Assuming serum p r o t e i n is 6 . 4 t i m e s

V a r i a b l e S e l e c t i o n

The l i t e r a t u r e s u g g e s t s t h a t pH and tempera ture most s t r o n g l y i n f l u e n c e p r o t e i n d e n a t u r a t i o n . c o a g u l a t i o n , b u t no d a t a have been r e p o r t e d on t h e i r combined i n f l u e n c e on p r o t e i n d e n a t u r a t i o n i n a blood serum waste stream,

E i t h e r v a r i a b l e a l o n e can induce d e n a t u r a t i o n and

P r o t e i n d e n a t u r a t i o n occur s most r a p i d l y a t t h e i s o e l e c t r i c p o i n t of t h e s o l u t i o n . Consequently i t was l lecessary t o de t e rmine t h a t pH p o i n t and then b r a c k e t i t f o r subsequent a n a l y s e s of p r o t e i n recovery . The i s o e l e c t r i c p o i n t of t h e serum waste stream w a s t o b e de te rmined by m i c r o e l e c t r o p h o r e s i s .

21 3

Dena tu ra t ion i s a c c e l e r a t e d a t e l e v a t e d tempera tures . Several tempera ture l e v e l s were used f o r p r e l i m i n a r y i n v e s t i g a t i o n s t o de t e rmine t h e r e l a t i o n between t empera tu re , p r o t e i n s o l u b i l i t y , and p r o t e i n removal.

The l i t e r a t u r e s u g g e s t s t h a t p r o t e i n s t a b i l i z a t i o n a g a i n s t d e n a t u r a t i o n is i n v e r s e l y p r o p o r t i o n a l t o concen t r a t ion . The e f f e c t of p r o t e i n c o n c e n t r a t i o n on removal e f f i c i e n c i e s w a s s t u d i e d , I n a recovery o p e r a t i o n w i l l t h e a d d i t i o n of wash-down waters s u f f i c i e n t l y d i l u t e t h e serum was te stream t h e r e f o r e h i n d e r i n g p r o t e i n r ecove ry?

C h i t o s i n , a n o r g a n i c polymer composed of glucosamine r e s i d u e s , w a s used t o h e l p remove t h e suspended p r o t e i n aggrega te s from s o l u t i o n . C h i t o s i n h a s been shown t o b e an e f f e c t i v e coagulant a i d w i t h p ro te in -con ta in ing w a s t e s ( 7 ) . Approval f o r i t s use as a polymer f o r i n d u s t r i a l a p p l i c a t i o n s and subsequent marke t ing i n f e e d s t u f f s i s pending b e f o r e t h e Food and Drug h d m i n i s t r a t i o n ( 5 ) .

Determina t ion of t h e Blood Serum I s o e l e c t r i c P o i n t

P r o t e i n m o b i l i t y w i t h i n an e l ec t r i c f i e l d was determined by measuring t h e t i m e r e q u i r e d f o r t h e a g g r e g a t e t o t r a v e l a c r o s s a howard coun te r microscope g r i d . P r o t e i n m o b i l i t y i s dependent upon t h e ph of t h e s o l u t i o n f o r t h e n e t i o n i c cha rge of t h e p r o t e i n molecule changes w i t n pJi.

M i c r o e l e c t r o p h o r e s i s w a s used t o de te rmine t h e i s o e l e c t r i c p o i n t of t h i s he te rogeneous s o l u t i o n . The sample was d i l u t e d w i t h d i s t i l l e d w a t e r t o make a 2.5 p e r c e n t s o l u t i o n . S a m p l e s of t h e serum d i l u t i o n w e r e drawn and the pH randomly a d j u s t e d by us ing e i t h e r 0 . 1 N KOH o r 0 . 1 N HC1. w a s t hen p laced i n t h e Br iggs c e l l and a p o r t i o n drawn t h r u t h e ce l l . Vol tage was a p p l i e d t o t h e c e l l e l e c t r o d e s and t h e t h e of travel For a p r o t e i n a g g r e g a t e was r eco rded , A f t e r each s e t of o b s e r v a t i o n s , pH and s p e c i f i c r e s i s t a n c e of t h e sample, and l i n e c u r r e n t w e r e recorded . For each pH t h e e l e c t r o p h o r e t i c m o b i l i t y w a s c a l c u l a t e d .

The sample

The observed e l e c t r o p h o r e t i c m o b i l i t i e s f o r a 2.5 p e r c e n t serum s o l u t i o n are p l o t t e d a g a i n s t ph ( f i g . 1). The i s o e l e c t r i c p o i n t i s where p r o t e i n m o b i l i t y is ze ro . For t h i s 2 .5 p e r c e n t s o l u t i o n i t occur s n e a r pH 4.6 t o pH 4.7.

Denatured P r o t e i n S e t t l i n g Tests

Three s e t t l i n g tests were conducted t o de te rmine i f dena tured p r o t e i n s would s e t t l e o u t of suspens ion . A s t o c k s o l u t i o n of t h e serum waste and d i s t i l l e d water ( f o r d i l u t i o n ) were hea ted t o 60 C . P r o t e i n s o l u t i o n s were made up i n serum : d i s t i l l e d water r a t i o s of 1:0.25, 1:0.5, and 1:l. Each s o l u t i o n w a s a d j u s t e d t o pH 4.6 and poured i n t o a graduated c y l i n d e r .

0

Organic n i t r o g e n and v o l a t i l e s o l i d s tests w e r e conducted on t h e s u p e r n a t a n t i n each column ove r a 24 hour pe r iod . A l l r e p o r t e d c o n c e n t r a t i o n s are a d j u s t e d f o r d i l u t i o n . S o l i d s c o n c e n t r a t i o n s were a l s o determined on t h e s e t t l e d s o l i d s a t 24 hour s .

A p l o t of r e s i d u a l o r g a n i c n i t r o g e n ( f i g . 2) s u g g e s t s t h a t b lood serum p r o t e i n removal by pH d e n a t u r a t i o n is independent of t h e c o n c e n t r a t i o n t o a t l ea s t a

21 4

f

rl

N

4

4

4

I)

0

m

m

(0

f

f

4

4

m

N

0

4

I

In

I

0

+ 0

4

+

21 5

1800

1600

1400

A I-I

M E

c 1200 W

aJ M 0 h +I *rl z U -4 c

$4 0

4 (d 9 TJ .I4 v)

y&lOOC)

d" 800

100

0

Serum D i l u t i o n Tes ts :

A A = (1:0.25) @ B = (1:0.50) * c = (1:l.OO)

* d

8

'F 1- I I 1 1 1 I 1 1 \ \ I I

1 2 3 4 5 6 7 8 "22 24 S e t t l i n g T i m e ( h r s .)

F i g u r e 2 , Organic Ni t rogen R e s i d u a l s f o r Three Serum D i l u t i o n R a t i o s a t pH 4.6.

21 6

d i l u t i o n of one. Within one hour a l l s e t t l e a b l e s o l i d s have been removed from suspens ion .

A t t h e end of 24 hours , a sample of t h e s u p e r n a t a n t w a s c e n t r i f u g e d f o r f i v e minutes a t abou t 1,500-g. No a d d i t i o n a l removal of r e s i d u a l n i t r o g e n c o n c e n t r a t i o n w a s observed. I t w a s concluded t h a t g r a v i t y s e t t l i n g f o r one hour w i l l remove n e a r l y a l l of t h e dena tu red p r o t e i n aggrega te s . C e n t r i f u g a t i o n of t h e chemica l ly t r e a t e d serum was te stream would n o t be necessa ry t o remove t h e dena tu red p r o t e i n s .

A t 24 hours , t h e s e t t l e d s o l i d s are approximate ly 7 p e r c e n t s o l i d s by weight and are 9 3 p e r c e n t v o l a t i l e . would s u g g e s t t h e s e t t l e d s o l i d s t o approximate 10 p e r c e n t of t h e i n i t i a l blood serum waste stream volume. The s o l i d s d a t a i n d i c a t e t h a t few of t h e i n o r g a n i c d i s s o l v e d s o l i d s are be ing removed by e i t h e r chemical complexat ion o r en t r a inmen t i n t h e p r o t e i n aggrega te . This s u g g e s t s t h a t dewa te r ing of t h e s e t t l e d s o l i d s could l e a d t o a h i g h l y pure product w i t h ve ry l i t t l e a s h c o n t e n t .

V i s u a l examinat ion of t h e graduated c y l i n d e r s

P r o t e i n Recovery i n a 2-Level F a c t o r i a l Design

I n an a t t e m p t t o r educe t h e number of v a r i a b l e s a n i n v e s t i g a t i o n w a s conducted t o de te rmine t h e e f f e c t of pli, t empera ture , and p r o t e i n c o n c e n t r a t i o n on r ecove ry e f f i c i e n c y , The s e t t l i n g tests sugges ted t h a t r ecove ry w a s independent of c o n c e n t r a t i o n a t low d i l u t i o n . It w a s f e l t a f a c t o r i a l d e s i g n would s t a t i s t i c a l l y v a r i f y t h a t f a c t .

A 2 f a c t o r i a l d e s i g n w a s developed. The lower tempera ture w a s s e l e c t e d f o r convenience and t h e h i g h e r tempera ture approximated t h e tempera ture of t h e serum waste stream of t h e c e n t r i f u g e from which t h e samples w e r e ob ta ined . pH 4 . 6 w a s chosen f o r i t s p rox imi ty t o t h e i s o e l e c t r i c p o i n t and pH 5 . 1 as a p o i n t i n t h e range of h i g h a n i o n i c m o b i l i t y . P r o t e i n c o n c e n t r a t i o n l e v e l s s e l e c t e d w e r e r a w serum ( d i l u t i o n 1:O) and a 50 p e r c e n t c o n c e n t r a t i o n (1:l).

3 Temperature levels were 2OoC and 6OoC.

Tab le 1 p r e s e n t s n i t r o g e n and v o l a t i l e s o l i d s c o n c e n t r a t i o n s and t h e observed s t a n d a r d e r r o r s f o r t h e d e s i g n c o r n e r p o i n t s . S tandard e r r o r s f o r bo th n i t r o g e n and s o l i d s c o n c e n t r a t i o n s are w i t h i n t h e accuracy of t h e a n a l y t i c a l p rocedures . To de termine t h e s i g n i f i c a n c e of t h e main e f f e c t s , an F - t e s t w i t h a 95 p e r c e n t conf idence l e v e l w a s conducted ( t a b l e 2 ) . A t t h a t l e v e l ,

= 4.41. (1,181

F

Both o rgan ic n i t r o g e n and v o l a t i l e s o l i d s d a t a s u g g e s t t h a t t h e main e f f e c t s of pH and tempera ture are s t a t i s t i c a l l y s i g n i f i c a n t . The thir .d l eve l i n t e r - a c t i o n i s s i g n i f i c a n t i n n i t r o g e n a s s a y s . The ph and tempera ture second l eve l i n t e r a c t i o n and t h e t h i r d l e v e l i n t e r a c t i o n a r e s i g n i f i c a n t i n v o l a t i l e s o l i d s d a t a . Ne i the r t h e main e f f e c t no r t h e second l eve l i n t e r a c t i o n s of p r o t e i n c o n c e n t r a t i o n i s s i g n i f i c a n t . T h i s l a c k of s i g n i f i c a n c e s u g g e s t s t h e v a r i a b l e may b e d i smis sed from subsequent i n v e s t i g a t i o n s .

Both n i t r o g e n and v o l a t i l e s o l i d s r e s u l t s sugges t t h a t f o r t h e levels under i n v e s t i g a t i o n p r o t e i n recovery is much g r e a t e r n e a r t h e i s o e l e c t r i c p o i n t

21 7

-TABLE 1. ORGANIC NITROGEN AND VOLATILE SOLIDS CONCENTRATIONS FOR 23 FACTORIAL DESIGN

T e s t

Raw 1 2 3 4 5 6 7 8

NITROGEN RESIDUAL

No. A v e r a g e S t . E r r o r % S t . E . Obsv. mg/l

1,570 1,070

907 1,200

985 1,210

777 1,280 1,200

40 46 52 1 2 54 53 29 26 60

2.5 4 .3 5 .7 1 .0 5 .5 4 . 4 3.7 2 .0 5.0

S t . E r r o r = 4 4 . 1 2 S = 1,950 P

~

VOLATILE SOLIDS RESIDUAL

No. A v e r a g e S t . E r r o r %St. E. Obsv. mg/l

12,500 9,560 8,390

10,400 9,050

10,700 7,200

10,500 10,900

350 510 510 120 250 170 3 10 110 330

2.8 5 .3 6 .1 1.1 2.8 1 .6 4 . 3 1 .0 3 . 1

S = 103,960 S t . E r r o r = 322 P

A n a l y s i s of E f f e c t s A n a l y s i s of E f f e c t s

pH -223 - T +175 - D + 76

pHxT + 75 pHxD - 34

ph.xTxD +lo 1 TxD + 7 1 --

-1,610 +1,250 + 475 + 730 - 345 + 500 + 820

0 t han a t h ighe r pH. Both tests s u g g e s t t h a t a tempera ture of 60 C d e c r e a s e s t h e amount of p r o t e i n recovered compared t o t h a t a t 20 C . Th i s r e s u l t i s o p p o s i t e t h a t expec ted . It may be hypothes ized t h a t p r o t e i n s o l u b i l i t y has i n c r e a s e d w i t h tempera ture and t h a t t h e tempera ture s e l e c t e d w a s n o t h i g h enough t o induce thermal d e n a t u r a t i o n . F a c t o r i a l d e s i g n a n a l y s i s sugges ted t h a t thermal d e n a t u r a t i o n must occur above 60 C . Th i s hypo thes i s i s suppor ted by la ter i n v e s t i g a t i o n s .

0

0

The recovery of s o l u b l e p r o t e i n s h a s a g a i n been shown t o b e independent of c o n c e n t r a t i o n up t o a d i l u t i o n of 50 p e r c e n t . For t h i s r eason , t h e p r o t e i n c o n c e n t r a t i o n was d ismissed as a n expe r imen ta l v a r i a b l e . Th i s conc lus ion s u g g e s t s t h a t s m a l l volumes of wash waters can b e added t o blood r ecove ry o p e r a t i o n s w i t h o u t adve r se e f f e c t s t o any subsequent p r o t e i n r ecove ry . From a n o p e r a t i o n a l v iewpoin t , volumes should b e h e l d t o a minimum. Subsequent i n v e s t i g a t i o n s w e r e conducted u s i n g u n d i l u t e d blood serum wastes.

TABLE 2. sm OF SQUARES AND F-TEST FOR z3 FACTORIAL DESIGN d

ORGANIC NITROGEN VOLATILE SOLIDS

E f f e c t Sum of Squares D.F. F Sum of Squares D.F. F

pH 49,729 1 25.50 2,576,025 1 24.78

- T 30,625 1 15.70 1,562,500 1 15.03

- D 5,776 1 2.96 225,625 1 2.17

pEixT 5,625 1 2.88 532,900 1 5.13

pHxD 1,156 1 0.59 119,025 1 1 .14

- - T XD 5 ,041 1 2.59 250,000 1 2.40

pJ3xTxD 10,201 1 5.23 672,400 1 6.46

S 1 ,950 P

S 103,960 P

0.025 = 4.41 (1,18)

F

Es tab l i shment of t h e Polymer Dose

I n v e s t i g a t i o n s were conducted t o de te rmine t h e e f f e c t i v e n e s s of c h i t o s i n as a coagulant a i d f o r t h e removal of suspended dena tu red p r o t e i n s . g a t i o n s were conducted a t 75OC and pH 4.65 and pH 5.4 v o l a t i l e s o l i d s a n a l y s e s w e r e performed on a l l samples . A subsequent i n v e s t i - g a t i o n w a s conducted a t 80°C and pH 4.65 t o look a t c h i t o s i n dosage levels and t o de te rmine any change i n p r o t e i n recovery due t o a s l i g h t l y h i g h e r tempera- t u r e .

Two i n v e s t i - Organic n i t r o g e n and

Only o rgan ic n i t r o g e n c o n c e n t r a t i o n s were measured.

R e s u l t s f o r n i t r o g e n c o n c e n t r a t i o n s p l o t t e d a g a i n s t c h i t o s i n dose ( f i g . 3) sugges t t h a t p r o t e i n removal i s enhanced w i t h i n c r e a s i n g polymer dosage up t o

21 9

1600

1400

e

\ d

M E

W

1200 4 rd 3 -0 .r-l VI

1000 c a, b3 0 &I u *d 2 800 U

-I4

00 &I 0

8

600

40 0

Temp T r i a l 1 75OC T r i a l 2 75OC Tr ia l 3 8OoC

. 5

PH 5 . 4 4.65 4.65

1 I I I I I 1 1 a a I I

0 50 100 150 200 250 Chi tos in Dose (mg/l)

Figure 3 . Organic Nitrogen Residual vs . Chitosin Dose.

220

a c h i t o s i n c o n c e n t r a t i o n of about 100 mg/l . l e v e l i n g o f f of t h e y i e l d of p r o t e i n recovered . s o l u t i o n appea r no longe r in f luenced by t h e presence of t h e c h i t o s i n .

Beyond t h a t dosage t h e r e i s a The p r o t e i n s remaining i n

I n o r d e r t o e s t a b l i s h t h e range of pH v a l u e s over which any f i n a l ana lyses should be performed, a series of i n v e s t i g a t i o n s w a s conducted a t 90 C . ph ranged from 5 .8 t o 3.8 a t i n t e r v a l s of 0 . 4 pH u n i t s .

0

Figure 4 s u g g e s t s t h a t p r o t e i n recovery i s s t r o n g l y in f luenced by bo th pH and c h i t o s i n dose. Two s i g n i f i c a n t obse rva t ions may be noted . F i r s t , a t low c h i t o s i n c o n c e n t r a t i o n s , t h e maximum recovery of p r o t e i n s occurs w e l l below t h e i s o e l e c t r i c p o i n t of t h e p r o t e i n s o l u t i o n ; p r o t e i n y i e l d is g r e a t e s t a t pH 3 .8 . Second, a t a c h i t o s i n c o n c e n t r a t i o n of 100 mg/l p r o t e i n recovery is maximized over a range of pH 5.0 t o pH 3 . 8 . The recovery has been maximized f o r t h e g iven v a r i a b l e s and t h a t t h e r e s i d u a l p r o t e i n c o n c e n t r a t i o n i s most l i k e l y l i m i t e d by p r o t e i n s o l u b i l i t y .

EXPERIMENTAL DESIGN AND CONCLUDING INVESTIGATIONS

S e l e c t i o n of Design V a r i a b l e Levels

I t has been determined t h a t a minimum tempera ture of about 60 C is r e q u i r e d f o r thermal d e n a t u r a t i o n of p r o t e i n s . T h e o r e t i c a l l y , thermal d e n a t u r a t i o n of a l l p r o t e i n s occurs a t 100°C. The v a r i a b l e l e v e l s f o r tempera ture were thus l i m i t e d by t h e s e two tempera tures . Complicat ions arise w i t h o p e r a t i n g tempera tures nea r t h e b o i l i n g p o i n t of t he serum s o l u t i o n . Excess ive steam would c r e a t e o p e r a t i n g problems. heat i n p u t s would b e n e a r l y as g r e a t as p r e s e n t evapora t ion f a c i l i t i e s . A s such , a maximum o p e r a t i n g tempera ture of 90 C w a s hypothes ized . Temperature l e v e l s t o be i n v e s t i g a t e d w e r e 60 C y 75 C y and 90°C.

0

0 0 0

Pre l imina ry i n v e s t i g a t i o n s s u g g e s t t h a t p r o t e i n recovery is g r e a t l y improved w i t h polymer doses of 20 t o 100 mg/l . C h i t o s i n doses of 20, 60, and 100 mg/l w e r e used i n t h e f i n a l des ign .

A s t r o n g i n t e r a c t i o n between pH and c h i t o s i n dose s u g g e s t t h a t a wide pH range can y i e l d maximum p r o t e i n recovery. P re l imina ry i n v e s t i g a t i o n s sugges t t h i s pti range t o be from pH 5 .0 t o a t l eas t pH 3.8. I n an a t t e m p t t o f u l l y b r a c k e t t h e pH range , f i n a l i n v e s t i g a t i o n s were conducted from pH 5 . 4 t o pH 3 . 4 . S i x l e v e l s 0.4 pH u n i t s a p a r t were s e l e c t e d f o r obse rva t ion .

Procedure

The f i n a l d e s i g n is a m a t r i x w i t h v a r i a b l e l e v e l s of 3 x 3 x 6 . The des ign w a s t o be run i n d u p l i c a t e , w i t h any remaining serum samples be ing used t o t r i p l i c a t e t h e experiment . The o r d e r i n which samples were run w a s only p a r t i a l l y randomized. Because of equipment r e s t r a i n t s , on ly one tempera ture l e v e l could be conducted a t a t i m e . Both pH and polymer dose levels were randomized f o r a p a r t i c u l a r tempera ture l e v e l .

A l a r g e serum s a m p l e w a s hea t ed t o t h e d e s i r e d tempera ture . A 300 m l sample w a s withdrawn and pH a d j u s t e d a t random. A 100 m l sample w a s then added t o

221

3

3 .8 4.2 4 .6

Organic Nitrogen Residuals

Raw Serum 0rg.N. = 1,580 mg/l

Volatile Solids Residuals

0 3 I I t 1 I 1

3 . 8 4 .2 4 .6 5 .0 5 .4 5.8

FIGURE 4 . Residual Organic Nitrogen and Volatile Solids Concentrations as a Function of pH and Chitosin Dose at 90 0 C.

222

each of t h r e e b o t t l e s c o n t a i n i n g t h e amount of c h i t o s i n t o y i e l d t h e d e s i r e d polymer concen t r a t ion . The b o t t l e w a s s toppe red and p laced i n t h e w a r m a i r oven f o r a r e a c t i o n and s e t t l i n g t i m e of one h o u r , A f t e r c l a r i f i c a t i o n t h e s u p e r n a t a n t w a s t e s t e d f o r o r g a n i c n i t r o g e n and v o l a t i l e s o l i d s .

A t o t a l of 134 tests w a s conducted. Th i s p rov ides f o r t r i p l i c a t i o n of about one h a l f of t h e d e s i g n m a t r i x . A l l o t h e r t es t c o n d i t i o n s were d u p l i c a t e d .

R e s u l t s

P r o t e i n recovery w a s determined as p e r c e n t of n i t r o g e n o r v o l a t i l e s o l i d s removed from s o l u t i o n and suspens ion . P r o t e i n recovery e f f i c i e n c y varies from 31 t o 62 p e r c e n t . E f f i c i e n c i e s are s l i g h t l y h i g h e r f o r o r g a n i c n i t r o g e n a s s a y s than f o r v o l a t i l e s o l i d s . Earlier mass b a l a n c e approximat ions sugges ted t h a t p r o t e i n s accounted f o r about 70 p e r c e n t of measured v o l a t i l e s o l i d s . The s o l u b i l i t y of d i s s o l v e d s a l t s w i l l l i m i t t h e e f f i c i e n c y of v o l a t i l e s o l i d s removal. Th i s l i m i t a t i o n w i l l tend t o dep res s t h e p e r c e n t r e d u c t i o n of v o l a t i l e s o l i d s independent of t h e r e d u c t i o n of d i s s o l v e d o rgan ic n i t r o g e n .

Regress ion Ana lys i s of P r o t e i n Recovery E f f i c i e n c i e s

I s o m e t r i c p r o j e c t i o n s of p r o t e i n recovery e f f i c i e n c i e s ( a s measured by o r g a n i c n i t r o g e n ) were drawn t o assist d a t a i n t e r p r e t a t i o n ( f i g s . 5-7) . The p r o j e c t i o n s s u g g e s t recovery i s h i g h l y dependent upon pH and polymer dose and n e a r l y independent of tempera ture .

Recovery i s most e f f e c t i v e i n t h e range of pH 3 . 8 t o pH 4.6. Within t h a t range recovery i s n e a r l y independent of t h e c h i t o s i n dose . A t pH v a l u e s above 4.6 t h e recovery i s h i g h l y dependent upon polymer dose . Both of t h e s e o b s e r v a t i o n s conf i rm ea r l i e r i n v e s t i g a t i o n s i n t o t h e e f f e c t i v e n e s s of pH as a d e n a t u r a n t and c h i t o s i n as a coagulant a i d . That recovery e f f i c i e n c i e s do n o t s i g n i f i c a n t l y improve w i t h i n c r e a s i n g tempera tures is c o n t r a r y t o e a r l i e r hypotheses . P r o t e i n s o l u b i l i t y i n t h e h i g h d i s s o l v e d s a l t s o l u t i o n must b e l i m i t i n g p r o t e i n recovery e f f i c i e n c i e s .

To f a c i l i t a t e ease i n u s i n g expe r imen ta l r e s u l t s an a t t e m p t w a s made t o deve lop a model which would p r e d i c t p r o t e i n recovery e f f i c i e n c y as a f u n c t i o n of pH, tempera ture , and c h i t o s i n dose. I s o m e t r i c p r o j e c t i o n s of o r g a n i c n i t r o g e n removal e f f i c i e n c i e s sugges t a second o r d e r r e sponse t o b o t h pH and dose . A l i n e a r r e sponse t o tempera ture i s sugges ted by t h e t h r e e p r o j e c t i o n s .

S e v e r a l models w e r e used i n a m u l t i p l e r e g r e s s i o n a n a l y s i s . The model w a s t o f i t an e q u a t i o n through t h e 54 d a t a p o i n t s c o l l e c t e d i n t h e test ma t r ix . The parameters (T)2 and (T x Dose) w e r e i n s i g n i f i c a n t . ( l i n e a r i n t h e parameters ) f o r p r e d i c t i n g t h e removal e f f i c i e n c y f o r o r g a n i c n i t r o g e n is:

A s ix-parameter model

F = 0.54(T) + 5 2 , 0 ( ~ H ) ~ - 6 . 5 6 ( ~ H ) ~ - 0.44(Dose) - 0.09(pH x T)

+ 0.12(pH x Dose) - 59.87

where F i s o r g a n i c n i t r o g e n removal e f f i c i e n c y a s p e r c e n t ( s e e t a b l e 3 ) .

223

I

60

a a, 5 50 a, c4 C a, bo 0 b 4.J -rJ z 40 tJ C a, L) L! a, PI

30

Figure 5. Organic Nitrogen Removal Efficiencies as a 0 Function of pH and Chitosin Dose at 60 C,

224

3*4

/

/

Figure 6. Organic Ni t rogen Removal E f f i c i e n c i e s as a Funct ion of pIi and C h i t o s i n Dose a t 75 0 C.

225

.

.

. \QQ

Figure 7. Organic Nitrogen Removal Efficiencies as a Function of pH and Chitosin Dose at 90°C.

226

V a r i a b l e Mean No.

2 7.5000EMl 3 4.4000EM0 4 1.9827Ei-01 5 6.G000Ei-01 6 3.3000EM2 7 2.6400EM2

1 5.4172E+01 Depend en t

Standard Dev ia t ion

C o r r e l a t i o n x v s Y

Regress ion C o e f f i c i e n t

1.2363E+01 6.8954E-01 6.0814E+OO 3.2967Ef01 7.5529E+Ol 1.5251E-l-02

6.6312Ei-00

2.5 340E-0 1 -5.6012E-01 -5.8526E-01

4.1808E;-01 -2.1404E-01

3.0550E-C1

I n t e r c e p t -5.98778EM1

5.3847E-01 5.1984Ei.01

-6.5528E-01 -4.4068E-01 -9.1489E-02

1.1927E-01

S t d . E r r o r of Reg.Coef.

1.7002E-01 7.6656EHO 8.0027E-01 6.3758E-02 3.8184E-02 1.4319E-02

Computed T Value

3.16 70EMO 6,7815E+00

-_

-8.1883Ei-00 -6.9117E+00 -2.39 60E+00

8.3293EMO

M u l t i p l e C o r r e l a t i o n 9,427963-01

S td . E r r o r of E s t i m a t e 2.34752E-tr00

Ana lys i s of Var iance f o r t h e Regression

Source of V a r i a t i o n Oegrees of Sum of Mean F V a l u e

A t t r i b u t a b l e t o Regress ion 6 2.07156E+03 3.45260EM2 6.26510EMl Dev ia t ion from Regress ion 47 2.59010EM2 5.51085EM0

Freedom Squares Squares

T o t a l 53 2.3305 7Ei .03 7

TABLE 3. REGRESSION ANALYSIS FOR ORGANIC NITROGEN REMOVAL EFFICIENCY

The c o r r e l a t i o n between t h e v a r i a b l e s and t h e removal estimates are i n t u i t i v e l y s a t i s f y i n g . There is a s m a l l , b u t s i g n i f i c a n t , p o s i t i v e c o r r e l a t i o n w i t h tempera ture . The g r e a t e s t c o r r e l a t i o n s f o r t h e model r e l a t e d e s t ima ted p r o t e i n recovery w i t h ph. For t h e pH range under s t u d y , t h e lower t h e pH t h e g r e a t e r t h e recovery . There i s a f a i r l y l a r g e p o s i t i v e c o r r e l a t i o n between c h i t o s i n dose and product recovery f o r bo th c h i t o s i n i n t h e f i r s t o rde r and i ts i n t e r a c t i o n w i t h pH.

Dissolved P r o t e i n Removal by Carbon Adsorpt ion

A l a b o r a t o r y i n v e s t i g a t i o n w a s conducted t o de te rmine i f d i s s o l v e d p r o t e i n removal, beyond t h a t recovered by d e n a t u r a t i o n and polymer coagu la t ion , could b e achieved w i t h a c t i v a t e d carbon. The ex tens ion of carbon c a p a c i t y may b e very s i g n i f i c a n t under c e r t a i n c o n d i t i o n s . Decreasing pH and i n c r e a s i n g tempera tures i n c r e a s e s t h e a d s o r p t i v e c h a r a c t e r i s t i c s of a c t i v a t e d carbon. These two c o n d i t i o n s are a t t a i n e d i n t h e chemica l ly t r e a t e d blood serum waste, and t h e h igh d i s s o l v e d o rgan ic c o n t e n t should enhance s u r f a c e adso rp t ion .

A preserved serum waste w a s hea ted t o 60 C , pH a d j u s t e d t o 4 . 6 , and mixed w i t h c h i t o s i n a t a dose of 100 mg/l . A f t e r one hour of s e t t l i n g t h e s u p e r n a t a n t w a s withdrawn and 300 m l samples w e r e added t o s i x tes t v e s s e l s c o n t a i n i n g measured amounts of powdered carbon. The s t i r rer and carbon suspens ions were maintained a t 60 C i n a hea ted roon. Carbon suspens ions were s t i r r e d a t 40 rpm f o r a two hour a c t i v a t e d carbon residence- t i m e . A f i v e minute c e n t r i f u g a t i o n a t about 3,600-g provided e x c e l l a n t s o l i d / l i q u i d s e p a r a t i o n .

0

0

Organic n i t r o g e n , chemical oxygen demand (COD), and v o l a t i l e s o l i d s ana lyses w e r e conducted on t h e r a w serum w a s t e , t h e waste chemica l ly t r e a t e d f o r p r o t e i n recovery , and on t h e s i x carbon a d s o r p t i o n c e n t r a t e s ( t a b l e 4 ) . Analyses were conducted t o de te rmine carbon a d s o r p t i o n capaci t ies f o r p r o t e i n removal.

The a d s o r p t i v e c a p a c i t y f o r t h e powdered carbon was determined by comparing t h e amount of COD removed per u n i t of carbon v e r s u s t h e COD load ing ra te . The t o t a l COD used i n t h e a d s o r p t i v e c a p a c i t y tes t w a s determined by measuring carbonaceous COD and adding t o t h a t t h e t h e o r e t i c a l oxygen demand of t h e o r g a n i c n i t r o g e n concen t r a t ion .

When t h e a d s o r p t i v e c a p a c i t y of t h e a c t i v a t e d carbon is p l o t t e d a g a i n s t r e s i d u a l COD ( f i g . 8), t h e curve shows t h a t carbon a d s o r p t i o n removal improves w i t h i n c r e a s i n g c o n c e n t r a t i o n of d i s s o l v e d o r g a n i c s . It is noted h e r e , too, t h a t as t h e c o n c e n t r a t i o n s of d i s s o l v e d o rgan ic s i n c r e a s e , t h e ra te of u n i t i n c r e a s e i n a d s o r p t i v e c a p a c i t i e s i s less t h a t u n i t y .

That p r o t e i n removal by a c t i v a t e d carbon is s i g n i f i c a n t l e a d s t o t h e development of u n i t p rocesses beyond p r o t e i n recovery . carbon from removal o p e r a t i o n s invo lv ing low o r g a n i c c o n c e n t r a t i o n s may y e t have s u f f i c i e n t a d s o r p t i v e c a p a c i t y t o p o l i s h t h e o rgan ic - r i ch s u p e r n a t a n t .

2 Following p r o t e i n recovery by d e n a t u r a t i o n and coagu la t ion , t h e s u p e r n a t a n t

Spent g ranu la t ed

228

mg COD C T . S . V.S . mg CODl b

Sample Carbon COD Org. N T o t a l COD r Dose mg Carbon mg Carbon 811 mg/l mg/l mg/l mg/l mg/l

Raw Serum

Trea teda Serum

1

2

3

4

5

6

--- 12,400 1,760

--- 7,780 680

4 7,080 40 7

8 5,860 274

20 3,150 209

40 2,300 149

80 1,090 7 1

160 804 52

20,400

10 , 900

8,940

7,720

4,110

2,980

1,410

1 , 040

23,800 16,200

8,420 3,990

8,630 3,560

7,770 2,680

7,160 2,040

6,670 1 ,530

6,570 1,150

7,130 1,080

2.73 0.49

1.36 0.40

0.55 0.34

0.27 0.20

0.14 0.12

0.07 0.06

a. pH = 4 . 6 ; b. T o t a l COD = Carbonaceous COD + 4.57(0rg. N c o n c e n t r a t i o n ) c. mg COD

T = 6OoC; C h i t o s i n = 100 mg/l

/mg Carbon = 10,900 mg COD/(X mg Carbon) load ing

TABLE 4. CARBON ADSORPTION COD REMOVAL

0.6

0.5

0 . 3

M E

0 0 1 2 3 4 5 6 7 8 10

Res idua l COD (mg/l x 1000)

A l l COD i s T o t a l COD

F igu re 8. Adsorp t ion Capac i ty vs . Res idua l COD.

would p a s s through a g ranu la t ed carbon a d s o r p t i o n u n i t p r i o r t o d i s p o s a l . Sorbed p r o t e i n s would be was ted ,

Once t h e optimum load ing ra te h a s been de termined , powdered a c t i v a t e d carbon may b e added t o t h e t r e a t e d serum s u p e r n a t a n t , When s l a u g h t e r i n g has ceased t h e s l u r r y could be r e tu rned t o t h e c e n t r i f u g e a t t h e head of t h e blood r ecove ry ope ra t ion . T n e c e n t r a t e would b e d i scha rged t o t h e sewerage system. Depending on t h e market f o r recovered p r o t e i n s and t h e a s h c o n t e n t of t h e a c t i v a t e d carbon s o l i d s , t h e s o l i d s removed d u r i n g c e n t r i f u g a t i o n would e i t h e r b e mixed w i t h t h e b lood c e l l and recovered p r o t e i n s o l i d s o r wasted . Est imated Cos t s f o r Recovery of So lub le Serum P r o t e i n s

A recovery sys tem f o r which c o s t s are es t ima ted chemica l ly treats t h e serum waste stream from a blood c e n t r i f u g e . Fol lowing pH and thermal d e n a t u r a t i o n and p r o t e i n c o a g u l a t i o n , t h e s e t t l e d s o l i d s are evapora ted and marketed and t h e s u p e r n a t a n t i s wasted.

Chemical a d d i t i o n can b e e i t h e r cont inuous f eed or ba tch feed . Concent ra ted a c i d should n o t b e added d i r e c t l y t o t h e serum due t o l o c a l i z e d severe

230

I

p r o t e i n s t r u c t u r a l deformat ion and a l s o because of t h e haza rds a s s o c i a t e d w i t h working w i t h s t r o n g a c i d s . Thus bo th pH and polymer mixing t anks and feed systems w i l l b e r e q u i r e d . Some h e a t exchange u n i t ( s team j a c k e t around t h e tank) w i l l b e necessa ry t o ma in ta in e l e v a t e d tempera tures s u f f i c i e n t t o induce thermal d e n a t u r a t i o n . The t ank can b e covered t o minimize t h e release of odors and l o s s of h e a t .

Cost estimates assume a l a r g e s l augh te rhouse k i l l s 5,000 hogs p e r day and each hog l o s e s one g a l l o n (3 .7 l i t e r s ) of whole b l o o d ( 8 ) . Fol lowing c e n t r i f u g a t i o n of coagu la t ed blood c e l l s , t h e serum is s e n t t o a 1,000 c u b i c f o o t (29 cub ic meter) ho ld ing tank . Temperature i s main ta ined between 60 C and 7 g o C . t o 70 C , pH a d j u s t e d t o 4.2, and c h i t o s i n added t o enhance c o a g u l a t i o n . A f t e r a r e a c t i o n and s e t t l i n g t i m e of f o u r hour s ( a s determined by p a r t i c l e s e t t l i n g v e l o c i t y ) s e t t l e d p r o t e i n s are withdrawn f o r e v a p o r a t i o n and t h e s u p e r n a t a n t i s wasted. The tank and l i n e s are c l eaned , wash waters be ing s e n t t o t h e sewer.

0

A f t e r s l a u g h t e r i n g i s complete , t h e serum tempera ture i s r a i s e d

Because of c o r r o s i v e a c i d i c c o n d i t i o n s , t h e e n t i r e sys tem is made of s t a i n l e s s s tee l . Both pH and c h i t o s i n s o l u t i o n s are made once a week. The s m a l l d a i l y requi rements make t h i s p o s s i b l e . Chemical t r ea tmen t is done on a ba tch b a s i s a t t h e end of t h e work day. The o p e r a t o r r e a d s t h e l eve l of serum i n t h e s e t t l i n g tank and manually a d j u s t t h e polymer f eed f o r t h e d e s i r e d dosage , pfi i s monitored and is e i t h e r manually o r a u t o m a t i c a l l y a d j u s t e d . Valves are l o c a t e d i n several l i n e s t o d i r e c t waste and product stream f lows .

A c o s t estimate f o r t h e c a p i t a l inves tment s u g g e s t s t h i s des ign t o c o s t approximate ly $17,000. Opera t ion c o s t s ( exc lud ing l a b o r ) f o r t h e h e a t exchange u n i t , evapora t ion u n i t , and chemical p r e c i p i t a t i o n have been genera ted f o r c o s t comparison purposes . Convent iona l evapora t ion c o s t s were computed on a d a i l y load ing ra te of 5,000 g a l l o n s (18,700 l i t e r s ) of serum. C a p i t a l inves tment w a s amor t ized over t e n y e a r s ( a t 10 pe rcen t ) and d a i l y c o s t s e s t a b l i s h e d on t h e b a s i s of 250 work days pe r y e a r .

Table 5 shows o p e r a t i o n a l c o s t s and b e n e f i t s a s s o c i a t e d w i t h t h e p r o t e i n recovery system. T o t a l o p e r a t i n g expenses ( exc lud ing l a b o r and carbon a d s o r p t i o n ) are about $41 per day. Recoverd p r o t e i n s have a v a l u e of $34 pe r day. When c o s t s a v i n g s a s s o c i a t e d w i t h p r e s e n t evapora t ion sys tems ($140/day) are added t o t h e v a l u e of t h e p r o t e i n by-product , a n e t s a v i n g s i n t r ea tmen t c o s t s r e s u l t s w i t h t h e p r o t e i n recovery system. These s a v i n g s cou ld b e used t o p o l i s h t h e chemica l ly t r e a t e d serum s u p e r n a t a n t i n an a c t i v a t e d carbon u n i t . Th i s would reduce t h e o r g a n i c load t o t h e sewer sys tem,

S i m p l i c i t y of des ign a f f o r d s t h e use of t h i s sys tem i n a l l i n d u s t r i e s t h a t r e q u i r e t r e a t m e n t of blood wastes. Energy needed t o e v a p o r a t e blood water is t h e g r e a t e s t c o s t a s s o c i a t e d w i t h p r e s e n t b lood recovery o p e r a t i o n s . By p r e c i p i t a t i n g d i s s o l v e d p r o t e i n s and reducing blood waste volume by 90 pe rcen t , c o s t s of evapora t ion are g r e a t l y reduced. That s a v i n g s , p l u s t h e marke t ing of a p r o t e i n by-product, can most probably cover t h e c o s t s of t h e recovery system f o r bo th a s m a l l and l a r g e s l a u g h t e r i n g o p e r a t i o n .

231

TABL.E 5. PROTEIN RECOVERY OPERATION COSTS AND SAVINGS (5 ,000 gpd Raw Serum)

Chemical Supp l i e s

C h i t o s i n (0 .8 l b s / d a y @ $5 / lb ) Acid (6 .54 conc. H2S04 @ 9 0 ~ / ! )

S t e a m

h e a t Exchanger (3 ,200 lb s /day @ S3.50/1000 l b s ) Evapora t ion (3,400 lb s /day )

C a p i t a l Recovery (10 y e a r s , 10 pe rcen t )

$16,670 x 0.06275 = $1,05O/yr $1,050/250 work days

N e u t r a l i z a t i o n and Treatment of Supe rna tan t ($1/1000 g a l s )

T o t a l Da i ly Cost

S a l a b l e P r o t e i n F e e d s t u f f s

340 l b s j d a y @ 10C/lb

S t e a m Savings from p r e s e n t Evapora t ion F a c i l i t i e s

(39,050 l b s / d a y @ $3.50/1000 l b s )

T o t a l Da i ly Savings

= $ 4.00 = 5.80

= 11.20 = 11.90

= 4.20

= 4.50

= $ 41.60

= $ 34.00

= 136.70

= $170.70

T o t a l Savings - T o t a l Cos t s = $ 130.00 p e r day

CONCLUSIONS

Labora tory i n v e s t i g a t i o n s reveal t h a t d i s s o l v e d serum p r o t e i n s may b e recovered economical ly by ph and tempera ture d e n a t u r a t i o n . The o r g a n i c polymer c h i t o s i n i s a n e f f e c t i v e coagu lan t a i d . Labora tory i n v e s t i g a t i o n s sugges t :

1. Disso lved serum p r o t e i n s can b e removed most e f f e c t i v e l y when t h e pH

2 . P r o t e i n recovery is enhanced by thermal d e n a t u r a t i o n . A minimum

of t h e s o l u t i o n is a t o r below t h e i s o e l e c t r i c p o i n t of t h e s o l u t i o n .

o p e r a t i n g tempera ture of 60 C should b e main ta ined f o r maximum recovery .

I n t h e pH range of 3 . 4 t o 5 .4 and i n t h e presence of t h e polymer c h i t o s i n , p r o t e i n removal e f f i c i e n c y is n e a r l y independent of tempera tures above 60 C .

0

3.

0

232

4 .

5.

6.

7 .

8.

9 .

10.

11.

1 2 *

Both o r g a n i c n i t r o g e n and v o l a t i l e s o l i d s tests s u g g e s t p r o t e i n removal t o b e approximate ly 60 p e r c e n t e f f i c i e n f . Both a n a l y t i c a l p rocedures y i e l d s imilar e f f i c i e n c i e s f o r g iven v a r i a b l e l e v e l s .

P r o t e i n removal e f f i c i e n c y a s measured by o rgan ic n i t r o g e n can b e p r e d i c t e d w i t h a s i x parameter model. Removal e f f i c i e n c y is more dependent upon pH and polymer dose than on tempera ture .

Denatured p r o t e i n aggrega te s are s u f f i c i e n t l y l a r g e t o s e t t l e o u t of suspens ion b e g r a v i t y , The volume of s e t t l e d s o l i d s i s about 10 p e r c e n t of t h e volume of t h e o r i g i n a l w a s t e stream.

S e t t l e d p r o t e i n s o l i d s approximate 7 p e r c e n t s o l i d s by weight . Over 90 p e r c e n t v o l a t i l e , t h e s o l i d s can b e withdrawn, d r i e d , and marketed a s a p r o t e i n - r i c h feed supplement.

The s u p e r n a t a n t from chemical t r e a t m e n t of t h e serum w a s t e stream can b e po l i shed f u r t h e r by us ing a c t i v a t e d carbon t o adsorb d i s s o l v e d o rgan ic s . COD r e d u c t i o n s of 90 p e r c e n t can b e accomplished when t h e serum waste stream is t r e a t e d t o recovery d i s s o l v e d p r o t e i n s and then t r e a t e d w i t h a c t i v a t e d carbon.

Disso lved s a l t s i n t h e serum waste stream are n o t s i g n i f i c a n t l y reduced by e i t h e r chemical p r o t e i n c o a g u l a t i o n o r a c t i v a t e d carbon.

The h igh d i s s o l v e d s a l t c o n c e n t r a t i o n s may tend t o l i m i t p r o t e i n recovery because of p r o t e i n s o l u b i l i t y i n s a l i n e s o l u t i o n s .

Because d a i l y o p e r a t i n g c o s t s are low, p r o t e i n recovery from blood wastes should b e an a t t r ac t ive a l t e r n a t i v e t o p r e s e n t blood recovery techniques . The e s t ima ted n e t worth of t h e d r i e d p r o t e i n p roduc t p l u s c o s t s a v i n g s from p r e s e n t t r ea tmen t systems should b e more than s u f f i c i e n t t o amor t i ze t h e r e q u i r e d c a p i t a l inves tment and a l s o cover p r e l i m i n a r y c o s t estimates.

Chemical t r ea tmen t f o r t h e r ecove ry of serum p r o t e i n s appea r s even more a t t r a c t i v e i n l i g h t of t h e f a c t t h a t r i s i n g energy c o s t s are making evapora t ion o p e r a t i o n s p r o h i b i t i v e l y expens ive .

REFERENCES

1. Jones , H.R. P o l l u t i o n C o n t r o l i n Meat, P o u l t r y , and Seafood P rocess ing . Noyes Data Corpora t ion , Park Ridge, New J e r s e y (1974) .

2 . S t e f f e n , A . J . "Waste Disposa l i n t h e Meat I n d u s t r y : A Comprehensive Review". Proc. of t h e Meat I n d u s t r y Research Conference, American Meat I n s t i t u t e Foundat ion, Chicago, I l l i n o i s , pp 115-144 (March, 1969) .

3 . Stiemke, R.E. "Disposal of Wastes from Small Abat to i r s" . . Proc. of t h e 4 t h I n d u s t r i a l Waste Conference, Purdue U n i v e r s i t y , West L a f e y e t t e , Ind iana , pp 178-202 (1948).

233

4 . Anonymous, "Blood System Solves P rocess ing Problem". R e p r i n t from Meat P rocess ing , A p r i l (1971) .

5 . Bough, W . , Landes, D . , Miller, J . , Young, C . , and McWhorter, T . " U t i l i z a t i o n of C h i t o s i n f o r Recovery of Coagulated By-products from Food P rocess ing Wastes and Treatment Systems". R e p r i n t from t h e Department of Food Sc iences , Univ. of Georgia Co l l ege of A g r i c u l t u r e Experiment S t a t i o n , Experiment, Georgia (1975) .

6. Watson, D. "Fac tors f o r C a l c u l a t i n g Serum Albumin and T o t a l P r o t e i n from t h e Ni t rogen Conten". C l i n i c a Chimica ACTA, 16:322-333 (1967).

7. Bough, W . Pe r sona l Communication (1975, 1977)

8. Ullmann, J . E . , e d i t o r . Waste Disposa l Problems i n S e l e c t e d I n d u s t r i e s . H o f s t r a U n i v e r s i t y Yearbook of Bus iness , Series 6 , Vol. 1. t i o f s t r a U n i v e r s i t y (1969).

2 34