recent syntheses published in nature

50
Organic Syntheses Published in Nature and Why (2005-2010) MacMillan Group Meeting 17 March 2011 Jeff Garber N H Me N C Me Me Me Me H H Me Cl Cl O Cl Cl Cl HO 3 S Cl 6 O O O O OPiv MeO 2 C Me Me O CO 2 Me Me Me OH Me OH HO Me Me Me Me Me O H H Me Me OH HO HO Me OH

Upload: voquynh

Post on 11-Jan-2017

223 views

Category:

Documents


2 download

TRANSCRIPT

Organic Syntheses Published in Nature

and Why

(2005-2010)

MacMillan Group Meeting17 March 2011

Jeff Garber

NH

Me

NC

Me

MeMe

Me

H

H

Me

Cl

Cl

O

Cl

Cl

Cl

HO3S

Cl6O O

O

O

OPivMeO2C

MeMe O

CO2Me

MeMe

OHMe

OH

HO

Me

MeMe

Me

Me

O

H

HMe

MeOH

HOHO Me

OH

Nature

! First published November 4, 1869

! Published by Alexander Macmillan

! Started by Joseph Norman Lockyer

! 2009 Impact factor: 34.48

! Comparable to Science in all statistics

! Far fewer chemistry articles not related to chemical biology or biochemistry

Nature

! First published November 4, 1869

! Published by Alexander Macmillan

! Started by Joseph Norman Lockyer

! 2009 Impact factor: 34.48

! Comparable to Science in all statistics

! Far fewer chemistry articles not related to chemical biology or biochemistry

Nature

Report original scientific research

Are of outstanding scientific importance

Reach a conclusion of interest to an interdisciplinary readership

Criteria for publication (Articles and Letters)

About 10,000 articles submitted/year

Only about 800 are accepted (8%)

Decision about broad interest made solely by Nature editors, not referees

www.nature.com

Why Nature?

Biological Activity

Methodology

Concepts

Family

First Synthesis

BroadInterest

Nature

"Synthesis and structural analysis of 2-quinuclidonium tetrafluoroborate"

Papers not covered in this talk

Tani, K., Stoltz, B. M. Nature, 2006, 441, 731-734.

"Synthesis of activated pyrimidine ribonucleotides in prebiotically plausible conditions"Sutherland et al. Nature, 2009, 459, 239-242.

"Umpolung reactivity in amide and peptide synthesis"

Johnston et al. Nature, 2010, 465, 1027-1033.

"Highly efficient molybdenum-based catalysts for enantioselective alkene metathesis"Hoveyda et al. Nature, 2008, 456, 933-937.

"Scaleable catalytic asymmetric Strecker syntheses of unnatural a-amino acids"Jacobsen et al. Nature, 2009, 461, 968-971.

Total synthesis of marine natural products without using protecting groups

Baran, P.S., Maimone, T. J., Richter, J. M. Nature, 2007, 446, 404-408.

NH

Cl

NC O

Me

MeMeH

H

(+)-welwitindolinone

NH

Me

NC

Me

Me

H

H

NH

Me

NC

Me

MeMe

Me

H

H

(!)-hapalindole U

(+)-ambiguine H

MeCl

H H Me

Me NH

NC

(!)-fischerindole I

Protecting Group Free Syntheses:General Concept

NH

Me

NC

Me

MeMe

Me

H

H

NH

NC

Me

Me Me

Me

Me OP2O63-

N

OH

PG

OPG

Me

NR

PG

NH

Me

Me X

Me

OMe

! "Caged reactivity"

! Protecting groups needed

"Standard" Biological

Baran

! No protecting groups

! Enzymes necessary

! No protecting groups! No enzymes

Ambiguine H

(!)-Hapalindole U

Me

MeOH

Me

OMe

39%, 4 steps

NH

Br

50%

NH

Br O

MeMe

NH

MeMe

Me

H

O

Pd(II), NaO2CH

65%TBAB, Et4N

60%, two steps

then HCO2H, CDMT

2) COCl2, Et3N

1) NaBH3CN, NH4OAc, µ";

NH

Me

NC

Me

Me

H

H

! 8 steps, 7.61% yield (from commercially available materials)

LiHMDS, Cu(II)

! Previous: 20 steps, racemic (Natsume, 1990)

Nature starting material

(+)-Ambiguine H

h!, Et3N

! 10 steps, 2.88% yield by RSM (from commercially available materials)

! No previous syntheses

NH

Me

NC

Me

Me

H

H

N

MeMe

Me

H

HN

Cl

BMe

Me

N

MeMe

Me

H

HN

Cl

B

R

Hprenyl-9-BBN

t-BuOCl 60%

R = t-prenyl

N

MeMe

Me

H

H

N

B

R

H ClN

MeMe

Me

H

HN

B

RCl HN

H

Me

NC

Me

MeMe

Me

H

H

43%63% by RSM

(")-Hapalindole U

H2N

(!)-Fischerindole I

(R)-carvone oxide

O

O

Me

Me

O

MeMe

Cl

H H

then vinyl-MgBr

2) NCS, PPh3

1) LHMDS

16.5%, two stepsNature starting material

LHMDS, indole

Cu(II)62 %

OMe

Cl

H H

Me57% by RSM

2) NaBH3CN, NH4OAc

1) H+, µ"

42%

MeCl

H H Me

Me NH

H

NH

H2N

(!)-Fischerindole I

! 7 steps, 2.14% yield by RSM! Previous: Baran, JACS 2005, 1.14%, 7 steps

DDQ, H2O

MeCl

H H Me

Me NH

HHCO2H, CDMT;

then COCl2, Et3N95%

NMe

Cl

H H Me

Me NH

H

C

NMe

Cl

H H Me

Me NH

C

HMe

Cl

H H Me

Me NH

NC

92%

! 13% without first two steps

(+)-Welwitindolinone

! 8 steps, 0.94% yield by RSM

! Baran, JACS 2005: 0.28% overall

(!)-fischerindole I

44%! 5.7% without first two steps (listed in Nature)

MeCl

H H Me

Me NH

NC

MeCl

H H Me

Me N

NC

F

MeCl

H H Me

Me

NC

H

NH

FOH

MeCl

H H Me

Me

NC

NH

OH

NH

Cl

NC O

Me

MeMeH

H

XeF2, H2O

H2O

!F-[1,5]

sigmatropic

Marine natural products overview

First Synthesis

Family

Concepts

MethodologyBroadInterest

! (!)-hapalindole U

! Shorter route = faster optimization

! ambiguine H

! Members of four families

! Protecting group free syntheses ! Rules for effective synthesis

! "Gram-scale"

! welwitindolinone A, (!)-fischerindole I

! Direct indole coupling

! XeF2 initiated cyclization

Biological Activity

! Anti-fungal, -bacterial -mycotic, -cancer

! Norrish-like fragmentation cascade

! Stigonemataceae family of cyanobacteria

! Activities of some comparable to streptomycin, puramycin, amphotericin

Total synthesis of bryostatin 16 usingatom-economical and chemoselective approaches

O O

O

O

OPivMeO2C

MeMe O

CO2Me

MeMe

OHMe

OH

HO

Trost, B. M., Dong, G. Nature, 2008, 456, 485-488.

bryostatin 16

Bryostatin 16:Retrosynthetic Analysis

O O

O

O

OPivMeO2C

MeMe O

CO2Me

MeMe

OHMe

OH

HO

O O

O

O

OPivMeO2C

MeMe

MeMe

OTBS

OH

MeO

HO

MeO2C

Cationic Au

Pd-catalyzedalkyne macrocylization

O O

CO2H

OHOPMB

MeO2C

MeMe

MeMe

OTBSMe

MeOPMBO

MeO2C

OTES

O OTMS

MeMe

MeMe

OTBS

OPMB O

OTBDPS

O

Carbonylation

Bryostatin 16:Retrosynthetic Analysis

O OTMS

MeMe

MeMe

OTBS

OPMB

OTBDPS

O

TMS

MeMe

MeMe

OTBS

OPMB O

OTBDPS

O

Me MeTBSO

OH

Me MeHO

! Convergent and "atom economical"

! Incorporates new methodologies

! Adaptable to analogue syntheses

Tandem alkene-alkyne coupling/ Michael addition

commercially available

O

H

OH

Bryostatin 16

! Previous route 16 steps from

67%, 94% ee

2) NaH, PMB-Br

1) (Ipc)2B(allyl)

90%

H2O, dioxane

87 %

OsO4, NaIO4

O

Me MeTBSO

OPMB

Me MeTBSO

TMS

MeMe

OTBS

8 steps

OO

Me Me

HO

O

Me

Me

PMBO

O

OTBDPS

O

Br OEtt-BuLi, ZnMe2

97%

Me MeTBSO O

H

H

2) Dess-Martin

1) In, InF3 (10 mol %)Br

TMS

OH

3) (S)-CBS (5%)61%, 90 % ee, three steps

Bryostatin 16

34%, 80% by RSM1) CpRu(MeCN)3PF6, 13%

TMS

MeMe

OTBS

O

MeMe

OPMB O

OTBDPS

O

OH

2) NBS98%

O OBr

MeMe

MeMe

OTBS

OPMB O

OTBDPS

93%

2) PdCl2(MeCN)2, dppf

1) CSA, MeOH

CO (1 atm), MeOH

O O

CO2Me

OPMBMeO2C

MeMe

MeMeMeO

OTBDPS

OH83%, 93% by RSM

O

Bryostatin 16

49%, 55% by RSM5 steps, PG/FG switching

O O

CO2Me

OPMBMeO2C

MeMe

MeMeMeO

OTBDPS

OH

POMe

O

OMeMe

O

N2

O O

CO2H

OPMBMeO2C

MeMe

MeMeMeO

OTES

OH

OTBSMe

PMBO

MeO2C

O

OMe

HO

MeO2C

MeMe53%

7 stepsO OOH

OHOHOH

67%3 steps

D-glactonic acid 1,4-lactone

Naturestarting material

Bryostatin 16

O O

CO2H

OPMBMeO2C

MeMe

MeMeMeO

OTES

OH

OTBSMe

PMBO

MeO2C

then acid, DMAP

O O

O

O

OPMBMeO2C

MeMe

MeMe

OTBS

OTES

MeO

PMBO

MeO2C

92%

46% diol, 58% mono-PMB

Resubject mono-PMB

DDQ, pH 7.0 buffer

75% overall

O O

O

O

OHMeO2C

MeMe

MeMe

OTBS

OTES

MeO

HO

MeO2C

(2,4,6-Cl3Ph)CH2Cl, Et3N;

Bryostatin 16

O O

O

O

OHMeO2C

MeMe

MeMe

OTBS

OTES

MeO

HO

MeO2C

O O

OHMeO2C

MeMe

CO2Me

MeMe

OTES

MeO

HO

O

O

OTBS

(2,6-(OMe)2Ph)3P (15 mol%)

56%

Pd(OAc)2 (12 mol%)

O O

O

O

OPivMeO2C

MeMe O

CO2Me

MeMe

OHMe

OH

HO

73%

2) Piv2O, DMAP

AgSbF6 (20 mol%)1) AuCl(PPh3) (20 mol%)

3) TBAF32%, last two steps

! Longest linear: 26 steps, 0.09%

! By RSM: 0.27%

! 35 total steps

! From commercial: 45 steps

Bryostatin 16 overview

First Synthesis

Family

Concepts

MethodologyBroadInterest

! First bryostatin 16 synthesis

! Failed metathesis attempts

! Only one synthesized

! Chemoselectivity ! Adaptability to analogues

! Fourth bryostatin synthesis

! Pd-catalyzed alkyne-alkyne macrocylization

! Au-catalyzed dihydropyran formation Biological Activity

! Significant anticancer potential during in vivo trials

! Analogues and other bryostatins accessible

! Suggested potential for cognitive impairments

! Atom economy ! Testing of methodologies

! Tandem Ru coupling/Michael

The total synthesis of (!)-cyanthiwigin F bymeans of catalytic enantioselective alkylation

Me

MeMe

Me

Me

O

H

H

(!)-Cyanthiwigin F

Enquist, J. A., Stoltz, B. M. Nature, 2008, 453, 1228-1231.

(!)-Cyanthiwigin F:Retrosynthetic Analysis

Radical acylationMe

MeMe

Me

Me

O

H

H

Me

O

Me

Me

O

H

H

Pd-cuprateenol triflate

coupling

Me

Me

Me

O

O

H

Me

Me

O

Vinyl borate CM,[O] RCM

Me

Me

O

O Negishi enoltriflate coupling

Me

Me

O

O O

O

O

O

Enantioselectivedouble allylation

Methylation

O

O O

O

O

OClaisen-Dieckmann

OO

O

O

(!)-Cyanthiwigin F

Pd(dmdba)2 (5 mol%)

! Sets all key stereochemistry in one step

OO

O

OO

O O

O

O

Oallyl alcohol, NaH

toluene, reflux

K2CO3, MeI

51%, two steps

O

O O

O

O

OMe

Me

1:1 racemic:mesoPPh2 N

O

t-Bu

Me

Me

O

O

64% yield, 99% ee

Me

Me

O

O

14% yield

(R,R)

meso

! Guides selective formation of other stereocenters

5.5 mol%

(!)-Cyanthiwigin F

O

O O

O

O

OMe

Me (R, R)

O

O O

O

O

OMe

Me

O

O O

O

O

OMe

Me

O

O O

OMe

Me

O

O O

OMe

Me

O

O O

O

Me

Me

O

O O

O

Me

Me

O

O O

O

Me

Me

O

O O

O

Me

Me

(S, R)

(R, S)

(S, S)(S, S)

meso (R, S)

(R, R)(R)

(S)

50%

25%

25%

50%

50%

R R

S R

R S

S S

(!)-Cyanthiwigin F

(R)

(S)O

O

Me

Me

O

O

Me

Me

(R, R)

O

O O

O

Me

Me

O

O O

O

Me

Me

O

O O

O

Me

Me

O

O O

O

Me

Me

(S, R)

(R, S)

(S, S)

R R

S R

S R

S S

O

O

Me

Me

O

O

Me

Me

O

O

Me

Me

(S, S)

meso (R, S)

(R, R)

18%

<1%

81%

(!)-Cyanthiwigin F

(R, R)

(S, R)

(R, S)

(S, S)

(S, S)

meso (R, S)

(R, R)

(R)

(S)

(S, S)

meso (R, S)

(R, R)

(R)

(S)

18%

<1%

81%

(!)-Cyanthiwigin F

(R, R)

(R, S)

(S, S)

meso (R, S)

(R, R)

(R)

(S)

(S, S)

meso (R, S)

(R, R)

(R)

18%

<1%

81%

(!)-Cyanthiwigin F

Me

Me

O

O

(R,R)

Me

Me

O

2) Zn, TMS-Cl, Pd(PPh3)41) KHMDS, PhN(Tf)2

57%, two steps

I

B(pin)

10% Hoveyda-Grubbs II

51%then NaBO3, THF/H2O

Me

Me

Me

O

O

H

t-BuSH, AIBN

57%

Me

O

Me

Me

O

H

H

Me

MeMe

Me

Me

O

H

H2) i-PrMgCl, CuCN;1) KHMDS, PhN(Tf)2

24%, two steps

! 9 steps from diallyl succinate

! 2.06% yield, 99% ee, single diastereomerPd(dppf)Cl2 (15 mol%)

Cyanthiwigin overview

First Synthesis

Family

Concepts

MethodologyBroadInterest

! First synthesis of F

! Third cyanthiwigin synthesis

! Only one synthesized

! Double enantioselective alkylation ! Key step guides stereochemistry

! Enantioselective Tsuji allylation

! Tandem RCM/CM

Biological Activity

! Cytotoxic against human tumor cells (3.1 µM)

! Suggests applicability to other cyanthiwigins

! Other cyanthins have variety of activities

Total synthesis of a chlorosulpholipid cytotoxin associated with seafood poisoning

Nilewski, C., Geisser, R. W., Carriera, E. M. Nature, 2007, 446, 404-408.

hexachlorosulpholipid

Me

Cl

Cl

O

Cl

Cl

Cl

HO3S

Cl6

Hexachlorosulpholipid:Retrosynthetic Analysis

Me

Cl

Cl

O

Cl

Cl

Cl

HO3S Takai-Utimoto, [O]

Cl6 Me

Cl

Cl

OH

Cl

Cl

Cl6

OTBS

Me

Cl

Cl

OH

Cl6

OTBS

Me

Cl

Cl OTBS

O

6

chlorination

Anti-epoxide openingWittig, [O]

Me

Cl

Cl

O

OH

Me

Cl

ClOTBS

bis-hydroxylation,epoxidation

chlorination

reduction

MeCO2Et

Hexachlorosulpholipid: First Route

Et4NCl3Me

CO2Et68% Me

Cl

Cl

CO2Et DIBAL72% Me

Cl

Cl

87%Me

Cl

Cl

TBS-Climidazole

5.6:1, 68% major

OsO4, NMOAcetone/H2OMe

Cl

Cl

OH

OH

OH

OTBSOTBS

2) n-BuLiMe

Cl

Cl OTBS

O

6

Me

Cl

Cl

O

OH

75 %, (96% by RSM)1) Tf2O, DABCO

98%2) CSA, MeOH OTBS

6BrPh3P

1) Swern

62%, two steps4.2:1 Z:E

! Diastereoselective installation of chlorides ! Forms cis epoxide for chloride opening

! Wittig sets olefin geometry for chlorination

Hexachlorosulpholipid: First Route

1) Et4NCl3

41%, two steps2) CSA, MeOH

Me

Cl

Cl

OH

Cl6

OTBS

Me

Cl

Cl

OH

Cl

Cl

Cl6

1) DAIB, TEMPO

49%, two steps2) CrCl2, CHCl3

Me

Cl

Cl

OH

Cl

Cl

Cl6

OH

SO3•Pyr

27% (66% RSM) Me

Cl

Cl

O

Cl

Cl

Cl6 Cl

HO3S

Me

Cl

Cl OTBS

O

6 4% minor, 31% RSM39% major

TMS-Cl *

* * *

* * * * * *Cl

Hexachlorosulpholipid: First Route

Me

Cl

Cl

O

Cl

Cl

Cl6 Cl

HO3S

(±)-single diastereomer natural product

Me

Cl

Cl

O

Cl

Cl

Cl6 Cl

HO3S

* * *

! 2D 1H NMR and 1H-heteronuclear coupling experiments determine relative configuration

Me

Cl

Cl

O

Cl

Cl

6 Cl

HO3S

Cl

564

Me

Cl

Cl

OH

Cl6

OTBS

! Similar analysis of synthesized allylic chloride revealed 4,5-anti configuration

54

Hexachlorosulpholipid: Initial Route

Me

Cl

Cl OTBS

O

6

Me

Cl

Cl Cl

OHR

Me

Cl

Cl R

OCl-

TMS

Cl

OTMS

R

Me

Cl

ClR

OTMS

Me

Cl

Cl-

Cl-

or Me

Cl

Cl Cl

OHR

TMS-Cl

4%

39%

Hexachlorosulpholipid: Revised Route

Et4NCl3Me

CO2Et68% Me

Cl

Cl

CO2Et DIBAL72% Me

Cl

Cl

95%

Me

Cl

Cl

MCPBA1:1 dr

Ley oxidation; then n-BuLi

OH

OHO

OTBS6

BrPh3P

7:1 Z:E

Me

Cl

Cl

O

34% (56% by RSM)

OTBS6

ClR

OTMS

Me

ClCl-

TMS-Cl 43%73% by RSM

Me

Cl

Cl OTBS6

OH

Cl

! Shortens previous route by 3 steps

! Sets trans epoxide and utilizes anchimeric assistance to from chlorohydrin

! Improved Z-selectivity in Wittig

Hexachlorosulpholipid: Revised Route

Me

Cl

Cl

OH

Cl

Cl

Cl6

OH

1) DAIB, TEMPO

47%, two steps2) CrCl2, CHCl3Me

Cl

Cl

OH

Cl

Cl

Cl6 Cl

SO3•Pyr

99%

Me

Cl

Cl

O

Cl

Cl

Cl6 Cl

HO3S

2) CSA, MeOH1) Et4NCl3 (10:1 dr)

83% desired diastereomer91%, two steps

Me

Cl

Cl OTBS6

OH

Cl

! Identical NMR to natural product

! 10 steps from ethyl scorbate

! 1.15% of desired diastereomer (3.21% based on RSM)

Hexachlorosulpholipid overview

First Synthesis

Family

Concepts

MethodologyBroadInterest

! First chlorosulpholipid

! Only one synthesized

! Contributes to NMR database ! Use of anchimeric assistance

! J-based configurational analysis

Biological Activity

! Suggests framework for other syntheses

! Shown to inhibit cell growth

! Scaleable synthesis ! Facilitates biological studies

! Selective chlorination via cyclic chloronium

! Related compounds show anti-microbial activity

Total synthesis of eudesmane terpenes by site-selecitve C-H oxidations

Chen, K., Baran, P. S. Nature, 2009, 459, 824-828.

MeMe

Me

Me

HOHO

4-epiajanol

MeMe

Me

Me

HO

dihydrojunenol

MeMe

Me

Me

HO HO

dihydroxyeudesmane

MeMe

Me

Me

HOHO HO

pygmol

MeMe

OH

HOHO

eudesmantetraol

Me

OHMe

MeMe

HOHO

11-epieudesmantetraol

HO

OH

eudesmane terpenes

Terpene Syntheses:General Concept

! Terpene biosynthesis

! Two phase total synthesis approach

oxidationphase

taxadiene

MeMe

Me

Me Me

H

MeMe

Me Me

HO BzOAcO O

OHOR1O

R2O

cyclasephase

paclitaxel

OP2O63-

MeH

4

geranylgeranyl pyrophosphate

R1 = Ac, R2 = Ph

NHBz O

OH

10-deactyl-baccatin III

R1,R2 = H

oxidationphase

cyclasephasesimple commercial

starting materialsMe

Me

Me

Me

HO

MeMe

Me

Me

HO

MeMe

HO

HO

HO Me

OH OH

4-epiajanol

eudesmantetraol

Dihydrojunenol

! 9 steps, 21%, single diastereomer

2) LiOH, i-PrOH

1)

63%, 89% ee

O

Me

O

MeMe

NH

Ph

OMePh

H

O

Me Me

5 mol%

99%

I2, pyridine

O

Me Me

IMgBr

2) PCC, MS

1)

74%, two steps

Me Me

I

OMe

MeO

Me

Me

P(Ph)3 (30 mol%)

Pd(OAc)2 (10 mol%)Me

MeO99%

LiMe2Cu

95%

2) Na, EtOH

1) Pd/C, H2

87%, two stepsMe

MeOH

Me

MeH

! Previous route: 9 steps, 8%, 3 isomers

! "Gram quantities" for oxidation studies

Eudesmane terpenes

! 12 steps each, 17 and 9% from commercial

82%

TFDO

100 W sunlamp

CH3CO2Br

! Reassigned dihydroxyeudesmane

! Structures verified by X-ray

Me

MeOH

Me

MeH

MeMe

MeMe

OO

NHF3CH2C

H3

H1 H2 H4H599%

CF3CH2NCO

O O

F3C Me MeMe

Me

Me

OO

NHF3CH2C

HO

MeMe

Me

Me

HOHO

MeMe

MeMe

OO

NHF3CH2C

Br

MeMe

Me

Me

HO HOthen LiOH

Ag2CO3, AcOH;

43%, 39% SM

82%

NaOMe

4-epiajanol

dihydojunenol

dihydroxyeudesmane

Eudesmane terpenes

MeMe

Me

Me

HOHO 52%, 30% RSM

LiOH

pygmolHO

AgCO3

MeMe

MeMe

OO

NHF3CH2C

H3

HO H2 H4H5

100 W sunlamp

CH3CO2BrMe

Me

MeMe

OO

NHF3CH2C

H3

HO H2 H4Br

MeMe

Me

OO

NHF3CH2C

HOAcOH

! 13 steps, 9% from commercial

! Previously unsynthesized

Eudesmane terpenes

TMP

MeMe

MeMe

OO

NHF3CH2C

H3

HO H2 H4H5

NBS

100 W sunlamp

CH3CO2BrMe

Me

MeMe

OO

NHF3CH2C

H3

HO H2 H4Br

MeMe

Me

OO

NHF3CH2C

HO

MeMe

Me

OHO

O

O Br

MeMe

HOHO

O

Me 52%, 30% RSM

LiOH

MeMe

OH

HOHO

eudesmantetraolMe

OHMe

MeMe

HOHO

11-epieudesmantetraolHO

OH

NaOH90%H2SO487%

! 15 steps, 4% from commercial

! Previously unsynthesized

Linear Oxidation Concept

! "...linear C-H activation strategy featuring multiple site selective oxidations in total synthesis"

Eudesmane terpenes overview

First Synthesis

Family

Concepts

MethodologyBroad

Interest

! Four unsynthesized

! Adaptable to new syntheses

! One improved intermediate

! Six Eudesmane terpenes

! References the terpene family (taxol)

! Two-phase synthesis approach ! "Retrosynthesis pyramid"

! "Gram-scale"

! One new analogue

! Trifluoroethyl carbamate directing group

! TFDO selective oxidation predicted by 13C NMR

Biological Activity

! Related to taxol

Why Nature?

Biological Activity

Methodology

Concepts

Family

First Synthesis

BroadInterest