recent res. devel. chemical engg., 7(2014): 19-32 isbn ... c… · valorization of waste and side...

14
Transworld Research Network 37/661 (2), Fort P.O. Trivandrum-695 023 Kerala, India Review Article Recent Res. Devel. Chemical Engg., 7(2014): 19-32 ISBN: 978-81-7895-593-3 2. Enhanced technologies for the valorization of waste and side vegetable products using supercritical fluids Marcelo M. R. de Melo, Armando J. D. Silvestre and Carlos M. Silva CICECO and Department of Chemistry, University of Aveiro, Campus Universitário de Santiago, 3810-193, Aveiro, Portugal Abstract. Supercritical fluid extraction has been increasingly investigated in food, pharmaceutical, cosmetic and additives fields, since its green character highly suits biorefinery and sustainable challenges. In this context, the valorization of waste and side vegetable products is specifically addressed here, with emphasis on combined and hybrid supercritical extraction technologies. Matrix pretreatments like milling, sonication, enzymatic hydrolysis, and high-pressure carbon dioxide explosion processes are reviewed. The selection of operating conditions and cosolvents, along with their optimization and phenomenological and statistical modeling are also addressed. 1. Introduction As the worldwide demand grows for many of the goods produced by beverages, food, and pulp and paper industries, the question of dealing with the consequent vegetable biomass residues becomes increasingly pertinent. Correspondence/Reprint request: Dr. Carlos M. Silva, CICECO and Department of Chemistry, University of Aveiro, Campus Universitário de Santiago, 3810-193, Aveiro, Portugal. E-mail: [email protected]

Upload: hoangthien

Post on 22-Mar-2018

215 views

Category:

Documents


1 download

TRANSCRIPT

Transworld Research Network

37/661 (2), Fort P.O.

Trivandrum-695 023

Kerala, India

Review Article

Recent Res. Devel. Chemical Engg., 7(2014): 19-32 ISBN: 978-81-7895-593-3

2. Enhanced technologies for the valorization

of waste and side vegetable products using

supercritical fluids

Marcelo M. R. de Melo, Armando J. D. Silvestre and Carlos M. Silva CICECO and Department of Chemistry, University of Aveiro, Campus Universitário de Santiago,

3810-193, Aveiro, Portugal

Abstract. Supercritical fluid extraction has been increasingly

investigated in food, pharmaceutical, cosmetic and additives fields,

since its green character highly suits biorefinery and sustainable

challenges. In this context, the valorization of waste and side

vegetable products is specifically addressed here, with emphasis on

combined and hybrid supercritical extraction technologies. Matrix

pretreatments like milling, sonication, enzymatic hydrolysis, and

high-pressure carbon dioxide explosion processes are reviewed. The

selection of operating conditions and cosolvents, along with their

optimization and phenomenological and statistical modeling are also

addressed.

1. Introduction

As the worldwide demand grows for many of the goods produced by

beverages, food, and pulp and paper industries, the question of dealing

with the consequent vegetable biomass residues becomes increasingly

pertinent.

Correspondence/Reprint request: Dr. Carlos M. Silva, CICECO and Department of Chemistry, University of

Aveiro, Campus Universitário de Santiago, 3810-193, Aveiro, Portugal. E-mail: [email protected]

Marcelo M. R. de Melo et al. 20

The wastes in question typically arise from biomass pretreatment procedures

(e.g. debarking, sieving) but also include the processed biomass that is

functionally exhausted. The valorization of such residues is a likely strategy to

unveil added-value opportunities that that may justify further processing steps. A

sound embodiment for the valorization is the biorefinery concept, which aims at

an integration of processes and the launching of biobased products from biomass

refining, with an incisive emphasis on green technologies.

In the last decade, supercritical fluid extraction (SFE) with carbon

dioxide (cT = 31.0º C and

cP = 73.7 bar [1]) has been researched with very

encouraging success to obtain crude extracts from vegetable biomass. In

general, this high-pressure technology deals firstly with a combination of

the operating pressure (P) and temperature (T) so that an optimized

extraction yield (high and/or selective) is achieved within the supercritical

state window. For this, the density, viscosity, superficial tension and

polarity of the solvent may be manipulated with advantage, as well as

diffusivities and solubility. Recent reviews [2-4] report the great activity

on the field in terms of experimental and modeling work, and the large

number of vegetable species that have been studied with this separation

technology. Concerning the valorization of vegetable residues with

combined or hybrid SFE technology, the prevailing species according to

the available scientific literature comprise apricot (Prunus armeniaca L.)

[5-9], coffee (Coffea spp.) [10-13], eucalypt (Eucalyptus spp.) [14-20], flax

(Linum usitatissimum L.) [21-26], grape (Vitis spp.) [27-48], olive (Olea

europaea L.) [49-55], orange (Citrus sinensis) [56-58], pumpkin

(Cucurbita spp.) [59-62], rice (Oriza spp.)[63-69], soybean (Glycine

variety) [70-71], sunflower (Helianthus annuus L.) [72-76], and tomato

(Solanum lycopersicum L.) [77-80].

This chapter covers the recent advances on valorization of vegetable

biomass using combined and hybrid supercritical fluid extraction

technologies. Section 2 is devoted to experimental work in terms of

operating conditions and use of cosolvents (subsection 2.1), physico-chemical

matrix pretreatments (subsection 2.2), and comparison with conventional

technologies (subsection 2.3). Section 3 covers modeling, with specific

focus on the phenomenological and empirical modeling (subsection 3.1),

subsidiary relations (subsection 3.1) and the statistical modeling

(subsection 3.3). The last section presents main conclusions (section 4).

2. Supercritical fluid extraction and recent advances

To begin with, Table 1 presents a list of SFE research publications

involving waste and side vegetable products. The criterion to delimit side

Valorization of waste and side vegetable products using supercritical fluids 21

raw materials was to consider biomass components that do not typically take

part in the main application of the species in question, as, for instance,

leaves, bark, peel, and seeds in the case of species mostly explored by their

fruits and wood. In the whole, 44% of the 110 selected publications (see

Figure 1) involve residues from processed parts, while the remaining

comprises side vegetable biomass products. As shown in Figure 1, seeds are

the most studied unprocessed side product, and pomace the most usual

processed biomass raw material studied for valorization.

The major share of the works presented in Table 1 defines the extraction

of specific target compounds as the research objective. This implies that

both concentration and yield are important variables for the assessment of SFE

in these cases. Examples of investigated molecules/families are allelopathic

compounds [73-75], anthocyanins [46], amino acids [84], caffeine [13],

Figure 1. Statistics regarding the SFE works on vegetable biomass valorization

considered in this study.

Table 1. SFE studies involving waste and side vegetable products for valorization.

Marcelo M. R. de Melo et al. 22

cafestol [11], β-carotene [5, 8-9], carotenoids [103], catechins [32, 97],

cuminaldehyde [99], flavonoids [95], gallic acid [37], kahweol [11], lignans

[23], L-limonene [56], limonoids [109], lycopene [77-79, 110, 114],

mangiferin [111], methyl morolate [19], naringin [100, 109], γ-oryzanol [67,

69], perillyl alcohol [57-58], phenolics [20, 28, 34, 38-41, 44, 48, 72, 95],

phytosterols [30, 96], quercetin [32, 111], β-sitosterol [16-18, 49], spinasterol

[60], tocopherols [51, 53, 70-71, 76, 83], triterpenic acids [15-18].

2.1. Operating conditions and cosolvents

Upon an analysis of the publications in Table 1, pressure, temperature,

and cosolvent may be systematized in order to allow a generic portrait of the

SFE research:

Pressure – The most chosen minimum extraction P window is 100-199 bar

(31% of the works), while the maximum comprises 300-399 bar (31%).

Nevertheless, nearly 20% of the SFE works explored pressures between

500 and 800 bar.

Temperature – Concerning the temperature of operation, in half of the

considered cases the minimum T ranges within 40-49ºC, while maximum

T lies within 60-69ºC (27% of the cases). Even though high temperatures

can lead to thermal degradation of the extractives, 18% of the SFE works

set the maximum operating temperature beyond 80ºC. In many cases, the

absence of oxygen during extraction preserves the solutes.

Cosolvents – The addition of a cosolvent to increase SC-CO2 polarity tuning is

a very frequent feature in SFE studies. Accordingly, 42% of the works

from Table 1 comprise at least one experiment with a cosolvent, being the

most chosen ethanol, which is found in 80% of the works employing

modifiers. The preference towards ethanol is explained by the innocuity

requirements that pharmaceutical, food and cosmetic applications demand.

2.2. Physico-chemical matrix pretreatments

Milling is perhaps the most widespread matrix pretreatment. Its direct effect

on the reduction of particle size turns extractives more accessible to CO2,

therefore boosting the mass transfer phenomena in a SFE process. This physical

pretreatment has been investigated in SFE of apricot pomace [9] and kernel [6],

flax seed [24, 26], grape seed [36], palm kernel cake [88], peach kernel [94],

tomato skin [80] and waste [77-78]. Depending on the case under consideration,

milling can be so influential to SFE that the attained yield increments are as high

as 90% (flax seed [24]) or even 300% (grape seed [36]). An example of milling

effect is provided in Figure 2-A), for SFE of grape seed.

Valorization of waste and side vegetable products using supercritical fluids 23

Sonication is a treatment whose combination with SFE has been attempted by some researchers under the designation of ultrasound assisted SFE, with the particularity of occurring at the same time the extraction takes place. Through a disruptive effect on plant cell walls and a mixing effect, ultrasound is able to favor the solubilization of extractives in CO2. Examples of the latter are the SFE essays of roasted cocoa cake [92] and grape residues [48]. Results reveal yield enhancements of around 15-37% [48], eventually up to 45% [92] depending on the case. Enzymatic hydrolysis is another solution to enhance SFE performance. Through the hydrolysis of vegetable cells wall, mass transport can be eased, leading the process to kinetic and yield advantages. Nonetheless, the combination of enzymatic hydrolysis, as a pretreatment technique, with SFE is scarcely found in literature, being the only example SFE of grape seeds [42], where an enhancement of oil yield up to 40% is reported in relation SFE and Soxhlet using untreated samples. Examples of enzymatic pretreatment are also found for SFE of nonresidual vegetable biomass [115-116]. This pretreatment has been much studied in the context of more conventional separation technologies, and literature provides comprehensive studies [117-118] on the different enzymes that may be used and relevant variables for an optimized pretreatment effect. A demonstration of this pretreatment is provided in Figure 2-B), for SFE of grape seed. High-pressure carbon dioxide explosion can be defined as a method by which a sudden release of pressure causes the collapse of biomass solid structures and opens thus way to an eased access to extractives and inner particle regions. This pretreatment technique was successfully employed on banana peels [82], canola flakes [119], guayule (Parthenium argentatum L.) pomace [120-121] and sugarcane (Saccharum spp.) bagasse [122]. Studies show enhancements on downstream steps can range between 16% [122] and 30% [121].

Figure 2. Examples of physico-chemical matrix pretreatments in SFE works: A)

milling effect on extraction yield of grape seed at 500 bar and 40ºC [36], B) enzymatic

hydrolysis effect on extraction yield of grape seed at 180 bar and 40 ºC [42].

Marcelo M. R. de Melo et al. 24

2.3. Comparison with conventional technologies

Since SFE is an emergent separation technology in an industrial

panorama still dominated by extractions with organic solvents (in particular

hexane and dichloromethane), its achievements are typically contrasted with

the existing methods. Accordingly, Soxhlet extractions are common practice

to analyze SFE results, and several works from Table 1 report them [10-11,

15, 18-19, 22, 24, 34, 49-51, 56, 59, 67-68, 72, 81, 98, 107, 110]. In general,

given the range of operating conditions that SFE experiments may cover, a

typical situation consists in the distribution of SFE yield results below,

nearby or even greater than those achieved by Soxhlet [24, 56, 107].

Contrarily to Soxhlet extractions, whose results are relatively unalterable for

a fixed matrix and solvent, the supercritical solvent power is always function

of, at least, the chosen pressure, temperature, and cosolvent content. Taking

this into account, some of the works from Table 1 that led to yields lower

than Soxhlet extraction may evidence a non-optimized choice of operating

conditions [10, 15, 18, 22, 49]. On the other hand, even after optimization,

Soxhlet yield results may prevail higher than SFE values [11, 17, 59]. Lab

equipment limitations play a significant role in SFE results, particularly

yields. Nevertheless, as referred before, yield is not the only variable to

consider, and it is worth noting that supercritical extracts can exhibit much

higher concentrations of target compounds [11, 51] despite lower extraction

yields (see Figure 3). For this reason carefulness is recommended when

comparing SFE with conventional extraction technologies.

Figure 3. Examples of concentration enhancement attained by SFE in comparison to

Soxhlet extraction with dichloromethane, for two distinct matrices /target

compounds: A) spent coffee grounds/diterpenes (image retrieved from [11]), and B)

E. grandis x globulus outer bark/methyl morolate (adapted from [19]).

Valorization of waste and side vegetable products using supercritical fluids 25

3. Modeling supercritical fluid extraction

Much attention has been paid to the modeling of SFE processes having

vegetable biomass as raw material. Complete reviews on the subject are

available in the literature [2-4], covering empirical, semi-empirical and

phenomenological approaches, as well as statistical modeling.

3.1. Phenomenological and empirical modeling

The most important phenomenological models for SFE processes are the

broken plus intact cells (BIC) model [123], shrinking core model [124], and

BIC plus shrinking core model [125], with a great emphasis on BIC model.

Deeper considerations on their features may be consulted elsewhere [3, 126].

Comprehensive modeling is found in some works from Table 1, such as

apricot bagasse [5], grape seed [36, 127], parsley seed [91], peach kernel

[94], spent coffee grounds and coffee husks [10]. Since those approaches can

be of very challenging implementation, some researchers employ empirical

modeling like the expressions proposed by Subra et al. [128], and Naik et al.

[129], with good fitting flexibility but lack of relationship with mass transfer

mechanisms. In between those, simplified models such as Logistic model

[130], Desorption model [131], Simple Single Plate model [132], Diffusion

model [133], and Brunner model [134] can provide useful physical insights

without the complexity of phenomenological models. Their application was

found in some works from Table 1 [79, 91, 94].

3.2. Equilibrium and transport subsidiary relations

When dealing with comprehensive modeling, equilibrium and transport

properties are essential. For this reason, subsidiary relations deserve special

attention as they are key to enable detailed modeling works of SFE. Along

the last 25 years, the research on models for solubility [135-148] and

diffusivity [149-162] has been particularly active. These variables embody,

perhaps, the most challenging areas of subsidiary relations for SFE modeling

in terms of density, viscosity, convective mass transfer coefficient and axial

dispersion. Further remarks on this are available elsewhere [2-3, 126].

3.3. Statistical modeling and optimization

In view of the great natural variability that characterizes vegetable

biomass, a very expedite approach to disclose effects of variables on results

and even to perform optimization studies is through statistical modeling.

Marcelo M. R. de Melo et al. 26

Designs of Experiments and Response Surface Methodology have been

applied in larger extent than phenomenological models. Examples of

application of statistical modeling in SFE works can be consulted among those

listed in Table 1 [11, 17, 20, 23-24, 26, 50, 61, 75, 108-109]. Further remarks

on this are recommended in reviews that cover it with great detail such as [2].

4. Conclusion

Supercritical fluids provide a clean and versatile technological solution for

the valorization of vegetable residues and side products. Presently, literature

offers a vast range of SFE works on a myriad of vegetable species and

matrices, whether processed or not, and results are well supported by modeling

tools that enable key theoretical interpretations of the mass transport.

The combination of SFE with milling, sonication, and even enzymatic

hydrolysis provides interesting solutions to enhance yield results. This issue

is particularly important as, many times, even the optimization of operating

conditions does not allow simple SFE to reach the values obtained from the

employment of conventional organic solvents. While the concentration of

target compounds in extracts tends in many cases to be favored upon the use

of SFE technology, the combination with pretreatments may provide

synergies to overcome yield barriers.

5. Acknowledgements

Authors acknowledge the 7th Framework Programme FP7/2007-2013 for

funding project AFORE: Forest Biorefineries: Added-value from chemicals

and polymers by new integrated separation, fractionation and upgrading

technologies (CP-IP 228589-2) and to Associate Laboratory CICECO (Pest-

C/CTM/LA0011/2013). This work is financed by FEDER funds through the

Competitive Factors Operational Program (COMPETE) and by national funds

through FCT (Portuguese Foundation for Science and Technology), through

the project CICECO - FCOMP-01-0124-FEDER-037271.

6. References

1. Reid, R.C., Prausnitz, J.M., Poling, B.E.,1987, The properties of gases & liquids,

McGraw-Hill Book Company, Singapore.

2. de Melo, M.M.R., Silvestre, A.J.D., Silva, C.M., (in press), J Supercrit Fluid,

DOI: 10.1016/j.supflu.2014.04.007.

3. Oliveira, E.L.G., Silvestre, A.J.D., Silva, C.M., 2011, Chem. Eng. Res. Des., 89

1104-1117.

Valorization of waste and side vegetable products using supercritical fluids 27

4. Sovová, H., Stateva R.P., 2011, Rev. Chem. Eng, 27 79-156.

5. Doker, O., Salgin, U., Sanal, I., Mehmetoglu, U., Calimli, A., 2004, J Supercrit

Fluid, 28 11-19.

6. Ozkal, S.G., Yener, M.E., Bayindirli, L., 2005, J Supercrit Fluid, 35 119-127.

7. Ozkal, S.G., Yener, M.E., Bayindirli, L., 2005, Lwt-Food Sci Technol, 38

611-616.

8. Sanal, I.S., Bayraktar, E., Mehmetoglu, U.U., Calimli, A., 2005, J Supercrit

Fluid, 34 331-338.

9. Sanal, I.S., Guvenc, A., Salgin, U., Mehmetoglu, U., Calimli, A., 2004, J

Supercrit Fluid, 32 221-230.

10. Andrade, K.S., Goncalvez, R.T., Maraschin, M., Ribeiro-do-Valle, R.M.,

Martinez, J., Ferreira, S.R.S., 2012, Talanta, 88 544-552.

11. Barbosa, H.M.A., de Melo, M.M.R., Coimbra, M.A., Passos, C.P., Silva, C.M.,

2014, J Supercrit Fluid, 85 165-172.

12. de Melo, M.M.R., Barbosa, H.M.A., Passos, C.P., Silva, C.M., 2014, J Supercrit

Fluid, 86 150-159.

13. Tello, J., Viguera, M., Calvo, L., 2011, J Supercrit Fluid, 59 53-60.

14. Ashtiani, F., Sefidkon, F., Yamini, Y., Khajeh, K., 2007, J Essent Oil Bear Pl, 10

198-208.

15. de Melo, M.M.R., Oliveira, E.L.G., Silvestre, A.J.D., Silva, C.M., 2012, J

Supercrit Fluid, 70 137-145.

16. Domingues, R.M.A., de Melo, M.M.R., Neto, C.P., Silvestre, A.J.D., Silva,

C.M., 2012, J Supercrit Fluid, 72 176-185.

17. Domingues, R.M.A., de Melo, M.M.R., Oliveira, E.L.G., Neto, C.P., Silvestre,

A.J.D., Silva, C.M., 2013, J Supercrit Fluid, 74 105-114.

18. Domingues, R.M.A., Oliveira, E.L.G., Freire, C.S.R., Couto, R.M., Simões,

P.C., Neto, C.P., Silvestre, A.J.D., Silva, C.M., 2012, Int J Mol Sci, 13

7648-7662.

19. Patinha, D.J.S., Domingues, R.M.A., Villaverde, J.J., Silva, A.M.S., Silva, C.M.,

Freire, C.S.R., Pascoal Neto, C., Silvestre, A.J.D., 2013, Ind Crop Prod, 43

340-348.

20. Santos, S.A.O., Villaverde, J.J., Silva, C.M., Neto, C.P., Silvestre, A.J.D., 2012,

J Supercrit Fluid, 71 71-79.

21. Barthet, V.J., Daun, J.K., 2002, J Am Oil Chem Soc, 79 245-251.

22. Bozan, B., Temelli, F., 2002, J Am Oil Chem Soc, 79 231-235.

23. Comin, L.M., Temelli, F., Saldana, M.A., 2011, J Am Oil Chem Soc, 88

707-715.

24. Ivanov, D.S., Colovic, R.R., Levic, J.D., Sredanovic, S.A., 2012, Eur J Lipid Sci

Technol, 114 807-815.

25. Morrison, W.H., Holser, R., Akin, D.E., 2006, Ind Crop Prod, 24 119-122.

26. Ozkal, S.G., 2009, J Am Oil Chem Soc, 86 1129-1135.

27. Agostini, F., Bertussi, R.A., Agostini, G., dos Santos, A.C.A., Rossato, M.,

Vanderlinde, R., 2012, Sci World J, 1-9.

28. Arce, L., Lista, A.G., Ríos, A., Valcárcel, M., 2001, Anal Lett, 34 1461-1476.

29. Ashraf-Khorassani, M., Taylor, L.T., 2004, J Agric Food Chem, 52 2440-2444.

Marcelo M. R. de Melo et al. 28

30. Beveridge, T.H.J., Girard, B., Kopp, T., Drover, J.C.G., 2005, J Agric Food

Chem, 53 1799-1804.

31. Cao, X.L., Ito, Y.C., 2003, J Chromatogr A, 1021 117-124.

32. Chafer, A., Pascual-Martí, M.C., Salvador, A., Berna, A., 2005, J Sep Sci, 28

2050-2056.

33. Da Silva, T.L., Bernardo, E.C., Nobre, B., Mendes, R.L., Reis, A., 2008, J Food

Lipids, 15 356-369.

34. de Campos, L.M.A.S., Leimann, F.V., Pedrosa, R.C., Ferreira, S.R.S., 2008,

Bioresource Technol, 99 8413-8420.

35. Dos Santos Freitas, L., de Oliveira, J.V., Dariva, C., Jacques, R.A., Caramao,

E.B., 2008, J Agric Food Chem, 56 2558-2564.

36. Fiori, L., 2007, The Journal of Supercritical Fluids, 43 43-54.

37. Ghafoor, K., AL-Juhaimi, F.Y., Choi, Y.H., 2012, Plant Food Hum Nutr, 67

407-414.

38. Murga, R., Ruiz, R., Beltran, S., Cabezas, J.L., 2000, J Agric Food Chem, 48

3408-3412.

39. Palenzuela, B., Arce, L., Macho, A., Munoz, E., Rios, A., Valcarcel, M., 2004,

Anal Bioanal Chem, 378 2021-2027.

40. Palenzuela, B., Rodriguez-Amaro, R., Rios, A., Valcarcel, M., 2002,

Electroanal, 14 1427-1432.

41. -

735-740.

42. Passos, C.P., Silva, R.M., Da Silva, F.A., Coimbra, M.A., Silva, C.M., 2009, J

Supercrit Fluid, 48 225-229.

43. Passos, C.P., Silva, R.M., Da Silva, F.A., Coimbra, M.A., Silva, C.M., 2010,

Chem Eng J, 160 634-640.

44. Pinelo, M., Ruiz-Rodriguez, A., Sineiro, J., Senorans, F.J., Reglero, G., Nunez,

M.J., 2007, Eur Food Res Technol, 226 199-205.

45. Prado, J.M., Dalmolin, I., Carareto, N.D.D., Basso, R.C., Meirelles, A.J.A.,

Oliveira, J.V., Batista, E.A.C., Meireles, M.A.A., 2012, J Food Eng, 109

249-257.

46. Vatai, T., Skerget, M., Knez, Z., 2009, J Food Eng, 90 246-254.

47. Yilmaz, E.E., Ozvural, E.B., Vural, H., 2011, J Supercrit Fluid, 55 924-928.

48. González-M, G.G.-M.G., Usaquén-C, X.U.-C.X., Martínez-R, M.M.-R.M.,

Aya-Baquero, H.A.-B.H., 2006, 638.

49. Boszormenyi, A., Szarka, S., Hethelyi, E., Gyurjan, I., Laszlo, M., Simandi, B.,

Szoke, E., Lemberkovics, E., 2009, Acta Chromatogr, 21 659-669.

50. de Lucas, A., de la Ossa, E.M., Rincon, J., Blanco, M.A., Gracia, I., 2002, J

Supercrit Fluid, 22 221-228.

51. de Lucas, A., Rincon, J., Gracia, I., 2002, J Am Oil Chem Soc, 79 237-243.

52. de Lucas, A., Rincon, J., Gracia, I., 2003, J Am Oil Chem Soc, 80 181-188.

53. Ibanez, E., Palacios, J., Senorans, F.J., Santa-Maria, G., Tabera, J., Reglero, G.,

2000, J Am Oil Chem Soc, 77 187-190.

54. Sahin, S., Bilgin, M., Dramur, M.U., 2011, Separ Sci Technol, 46 1829-1837.

55. Stavroulias, S., Panayiotou, C., 2005, Chem Biochem Eng Q, 19 373-381.

Valorization of waste and side vegetable products using supercritical fluids 29

56. Benelli, P., Riehl, C.A.S., Smania, A., Smania, E.F.A., Ferreira, S.R.S., 2010, J

Supercrit Fluid, 55 132-141.

57. Lee, C.H., Row, K.H., Lee, Y.W., Kim, J.D., Lee, Y.Y., 2001, J Liq Chromatogr

R T, 24 1987-1996.

58. Lee, Y.W., Lee, C.H., Kim, J.D., Lee, Y.Y., Row, K.H., 2000, Separ Sci

Technol, 35 1069-1076.

59. Bernardo-Gil, M.G., Lopes, L.M.C., 2004, Eur Food Res Technol, 219 593-597.

60. Hrabovski, N., Sinadinovic-Fiser, S., Nikolovski, B., Sovilj, M., Borota, O.,

2012, Eur J Lipid Sci Technol, 114 1204-1211.

61. Mitra, P., Ramaswamy, H.S., Chang, K.S., 2009, J Food Eng, 95 208-213.

62. Yu, W.L., Zhao, Y.P., Chen, J.J., Shu, B., 2004, Eur J Lipid Sci Technol, 106

355-358.

63. Bhattacharjee, P., Ranganathan, T.V., Singhal, R.S., Kulkarni, P.R., 2003, J Sci

Food Agr, 83 880-883.

64. Danielski, L., Zetzl, C., Hense, H., Brunner, G., 2005, J Supercrit Fluid, 34

133-141.

65. Dunford, N.T., King, J.W., 2000, J Food Sci, 65 1395-1399.

66. Manosroi, A., Ruksiriwanich, W., Abe, M., Sakai, H., Manosroi, W., Manosroi,

J., 2010, J Supercrit Fluid, 54 137-144.

67. Perretti, G., Miniati, E., Montanari, L., Fantozzi, P., 2003, J Supercrit Fluid, 26

63-71.

68. Wang, C.H., Chen, C.R., Wu, J.J., Wang, L.Y., Chang, C.M.J., Ho, W.J., 2008, J

Sep Sci, 31 1399-1407.

69. Xu, Z.M., Godber, J.S., 2000, J Am Oil Chem Soc, 77 547-551.

70. Araujo, J.M.D., Nicolino, A.P.N., Blatt, C., 2000, Pesqui Agropecu Bras, 35

201-205.

71. Chang, C.M.J., Chang, Y.F., Lee, H.Z., Lin, J.Q., Yang, P.W., 2000, Ind Eng

Chem Res, 39 4521-4525.

72. Andrich, G., Balzini, S., Zinnai, A., De Vitis, V., Silvestri, S., Venturi, F.,

Fiorentini, R., 2001, Eur J Lipid Sci Technol, 103 151-157.

73. Casas, L., Mantell, C., Rodriguez, M., Torres, A., Macias, F.A., de la Ossa,

E.J.M., 2008, J Supercrit Fluid, 45 37-42.

74. Casas, L., Mantell, C., Rodriguez, M., Torres, A., Macias, F.A., de La Ossa,

E.J.M., 2009, J Sep Sci, 32 1445-1453.

75. Casas, L., Mantell, C., Rodriguez, M., Torres, A., Macias, F.A., de la Ossa,

E.M., 2007, J Supercrit Fluid, 41 43-49.

76. Vazquez, L., Torres, C.F., Fornari, T., Grigelmo, N., Senorans, F.J., Reglero, G.,

2006, Eur J Lipid Sci Technol, 108 659-665.

77. Nobre, B.P., Palavra, A.F., Pessoa, F.L.P., Mendes, R.L., 2009, Food Chem, 116

680-685.

78. Sabio, E., Lozano, M., Montero de Espinosa, V., Mendes, R.L., Pereira, A.P.,

Palavra, A.F., Coelho, J.A., 2003, Ind Eng Chem Res, 42 6641-6646.

79. Vági, E., Simándi, B., Vásárhelyiné, K.P., Daood, H., Kéry, Á., Doleschall, F.,

Nagy, B., 2007, J Supercrit Fluid, 40 218-226.

Marcelo M. R. de Melo et al. 30

80. Vasapollo, G., Longo, L., Rescio, L., Ciurlia, L., 2004, J Supercrit Fluid, 29

87-96.

81. Devittori, C., Gumy, D., Kusy, A., Colarow, L., Bertoli, C., Lambelet, P., 2000,

J Am Oil Chem Soc, 77 573-579.

82. Albarelli, J.Q., Rabelo, R.B., Santos, D.T., Beppu, M.M., Meireles, M.A.A.,

2011, J Supercrit Fluid, 58 343-351.

83. Fernandez, M.P., Rodriguez, J.F., Garcia, M.T., de Lucas, A., Gracia, I., 2008,

Ind Eng Chem Res, 47 1614-1619.

84. Arnaiz, E., Bernal, J., Martin, M.T., Nozal, M.J., Bernal, J.L., Toribio, L., 2012,

J Chromatogr A, 1250 49-53.

85. Li, H.Y., Wu, J., Rempel, C.B., Thiyam, U., 2010, J Am Oil Chem Soc, 87

1081-1089.

86. Gaspar, F., 2002, Ind Eng Chem Res, 41 2497-2503.

87. Maxia, A., Marongiu, B., Piras, A., Porcedda, S., Tuveri, E., Goncalves, M.J.,

Cavaleiro, C., Salgueiro, L., 2009, Fitoterapia, 80 57-61.

88. Ab Rahman, N.N., Al-Rawi, S.S., Ibrahim, A.H., Ben Nama, M.M., Ab Kadir,

M.O., 2012, J Food Eng, 108 166-170.

89. Adil, I.H., Yener, M.E., Bayindirli, A., 2008, Separ Sci Technol, 43 1091-1110.

90. Bernardo-Gil, G., Oneto, C., Antunes, P., Rodrigues, M.F., Empis, J.M., 2001,

Eur Food Res Technol, 212 170-174.

91. Louli, V., Folas, G., Voutsas, E., Magoulas, K., 2004, J Supercrit Fluid, 30 163-174.

92. Riera, E., Blanco, A., Garcia, J., Benedito, J., Mulet, A., Gallego-Juarez, J.A.,

Blasco, M., 2010, Ultrasonics, 50 306-309.

93. Sanchez-Vicente, Y., Cabanas, A., Renuncio, J.A.R., Pando, C., 2009, J

Supercrit Fluid, 49 167-173.

94. Mezzomo, N., Martinez, J., Ferreira, S.R.S., 2009, J Supercrit Fluid, 51 10-16.

95. Wu, S.J., Tsai, J.Y., Chang, S.P., Lin, D.L., Wang, S.S., Huang, S.N., Ng, L.T.,

2006, J Ethnopharmacol, 108 407-413.

96. Taylor, S.L., King, J.W., 2002, J Am Oil Chem Soc, 79 1133-1136.

97. Yesil-Celiktas, O., Otto, F., Gruener, S., Parlar, H., 2009, J Agric Food Chem,

57 341-347.

98. Arshadi, M., Hunt, A.J., Clark, J.H., 2012, Rsc Adv, 2 1806-1809.

99. Heikes, D.L., Scott, B., Gorzovalitis, N.A., 2001, J Aoac Int, 84 1130-1134.

100. Giannuzzo, A.N., Boggetti, H.J., Nazareno, M.A., Mishima, H.T., 2003,

Phytochem Anal, 14 221-223.

101. Teng, W.Y., Chen, C.C., Chung, R.S., 2005, Phytochem Anal, 16 459-462.

102. Fernandes, J.B., David, V., Facchini, P.H., da Silva, M.F.D.F., Rodrigues, E.,

Vieira, P.C., Galhiane, M.S., Pagnocca, F.C., Bueno, O.C., Hebling, M.J.,

Victor, S.R., dos Santos, A.M.R., 2002, Quim Nova, 25 1091-1095.

103. Lim, S., Jung, S.K., Jwa, M.K., 2003, Food Sci Biotechnol, 12 513 - 520.

104. Beis, S., Dunford, N., 2006, J Amer Oil Chem Soc, 83 953-957.

105. Marzouki, H., Piras, A., Marongiu, B., Rosa, A., Dessi, M.A., 2008, Molecules,

13 1702-1711.

106. Co, M., Fagerlund, A., Engman, L., Sunnerheim, K., Sjoberg, P.J.R., Turner, C.,

2012, Phytochem Anal, 23 1-11.

Valorization of waste and side vegetable products using supercritical fluids 31

107. Rajaei, A., Barzegar, M., Yamini, Y., 2005, Eur Food Res Technol, 220

401-405.

108. Wang, Y.F., Sun, D., Chen, H., Qian, L.S., Xu, P., 2011, Int J Mol Sci, 12

7708-7719.

109. Yu, J., Dandekar, D.V., Toledo, R.T., Singh, R.K., Patil, B.S., 2007, Food

Chem, 105 1026-1031.

110. Huang, W., Li, Z., Niu, H., Li, D., Zhang, J., 2008, Journal of Food Engineering,

89 298-302.

111. Fernandez-Ponce, M.T., Casas, L., Mantell, C., Rodriguez, M., de la Ossa, E.M.,

2012, J Supercrit Fluid, 72 168-175.

112. Jung, G.W., Kang, H.M., Chun, B.S., 2012, J Ind Eng Chem, 18 360-363.

113. Gelmez, N., Kincal, N.S., Yener, M.E., 2009, J Supercrit Fluid, 48 217-224.

114. Mezzomo, N., Mileo, B.R., Friedrich, M.T., Martinez, J., Ferreira, S.R.S., 2010,

Bioresource Technol, 101 5622-5632.

115. Kha, T.C., Phan-Tai, H., Nguyen, M.H., 2014, J Food Eng, 120 44-49.

116. Prado, G.C., Saldaña, M.A., 2013, J Am Oil Chem Soc, 90 731-742.

117. Rosenthal, A., Pyle, D.L., Niranjan, K., 1996, Enzyme Microb Technol, 19

402-420.

118. Zetzl, C., Gairola, K., Kirsch, C., Perez-Cantu, L., Smirnova, I., 2011, Chem.

Ing. Tech., 83 1016-1025.

119. Dong, M., Walker, T.H., 2008, J Supercrit Fluid, 44 193-200.

120. Srinivasan, N., Ju, L.-K., 2010, Bioresource Technol, 101 9785-9791.

121. Srinivasan, N., Ju, L.-K., 2012, Biomass Bioenerg, 47 451-458.

122. Benazzi, T., Calgaroto, S., Astolfi, V., Dalla Rosa, C., Oliveira, J.V., Mazutti,

M.A., 2013, Enzyme and Microb Technol, 52 247-250.

123. Sovová, H., 1994, Chem Eng Sci, 49 409-414.

124. Goto, M., Roy, B.C., Hirose, T., 1996, J Supercrit Fluid, 9 128-133.

125. Fiori, L., Basso, D., Costa, P., 2009, J Supercrit Fluid, 48 131-138.

126. Sovová, H., Stateva, R.P., 2011, Rev Chem Eng, 27 79-156.

127. Passos, C.P., Coimbra, M.A., Da Silva, F.A., Silva, C.M., 2011, Chem Eng Res

Des, 89 1118-1125.

128. Subra, P., Castellani, S., Jestin, P., Aoufi, A., 1998, J Supercrit Fluid, 12

261-269.

129. Naik, S.N., Lentz, H., Maheshwari, R.C., 1989, Fluid Phase Equilibr, 49

115-126.

130. Martinez, J., Monteiro, A.R., Rosa, P.T.V., Marques, M.O.M., Meireles,

M.A.A., 2003, Ind Eng Chem Res, 42 1057-1063.

131. Tan, C.-S., Liou, D.-C., 1989, AIChE Journal, 35 1029-1031.

132. Gaspar, F., Lu, T., Santos, R., Al-Duri, B., 2003, J Supercrit Fluid, 25 247-260.

133. Crank, J.,1975, The mathematics of diffusion / by J. Crank, Clarendon Press,

Oxford [England] :.

134. Brunner, G., 1984, Ber Bunsen-Ges Phys Chem, 88 887-891.

135. Adachi, Y., Lu, B.C.Y., 1983, Fluid Phase Equilib, 14 147-156.

136. Bartle, K.D., Clifford, A.A., Jafar, S.A., Shilstone, G.F., 1991, J Phys Chem Ref

Data, 20 713-756.

Marcelo M. R. de Melo et al. 32

137. Chrastil, J., 1982, J Phys Chem, 86 3016-3021.

138. del Valle, J.M., Aguilera, J.M., 1988, Ind Eng Chem Res, 27 1551-1553.

139. Garlapati, C., Madras, G., 2009, Fluid Phase Equilib, 283 97-101.

140. Gordillo, M.D., Blanco, M.A., Molero, A., Martinez de la Ossa, E., 1999, J

Supercrit Fluid, 15 183-190.

141. Güçlü-Üstündağ, Ö., Temelli, F., 2004, J Supercrit Fluid, 31 235-253.

142. Kumar, S.K., Johnston, K.P., 1988, J Supercrit Fluid, 1 15-22.

143. Méndez-Santiago, J., Teja, A.S., 1999, Fluid Phase Equilib, 158–160 501-510.

144. Sung, H.D., Shim, J.J., 1999, J Phys Chem Ref Data, 44 985-989.

145. Yu, Z.-R., Singh, B., Rizvi, S.S.H., Zollweg, J.A., 1994, J Supercrit Fluid, 7

51-59.

146. Gonzalez, J.C., Vieytes, M.R., Botana, A.M., Vieites, J.M., Botana, L.M., 2001,

J Chromatogr A, 910 119-125.

147. Mendez-Santiago, J., Teja, A.S., 2000, J Supercrit Fluid, 39 4767-4771.

148. Sauceau, M., Letourneau, J.J., Richon, D., Fages, J., 2003, Fluid Phase Equilib,

208 99-113.

149. Reid, R.C., Prausnitz, J.M., Poling, B.E.,1987, The properties of gases and

liquids.

150. Funazukuri, T., Wakao, N., 1993.

151. Liu, H., Silva, C.M., Macedo, E.A., 1997, Ind Eng Chem Res, 36 246-252.

152. Zhu, Y., Lu, X.H., Zhou, J., Wang, Y.R., Shi, J., 2002, Fluid Phase Equilib, 194

1141-1159.

153. Dymond, H.B., E.; Vogel, E.; Wakeham, W.A.; Vesovic, V.; Assael, M.J.,

2005, Theory—dense fluids, Cambridge University Press.

154.

2010, Ind Eng Chem Res, 49 7697-7700.

155. Magalhães, A.L., Da Silva, F.A., Silva, C.M., 2011, J Supercrit Fluid, 55

898-923.

156. Magalhães, A.L., Da Silva, F.A., Silva, C.M., 2011, Chem Eng J, 166 49-72.

157. Lito, P.F., Magalhães, A.L., Gomes, J.R.B., Silva, C.M., 2013, J Chromatogr A,

1290 1-26.

158. Magalhães, A.L., Da Silva, F.A., Silva, C.M., 2013, J Supercrit Fluid, 74

89-104.

159. Magalhães, A.L., Lito, P.F., Da Silva, F.A., Silva, C.M., 2013, J Supercrit Fluid,

76 94-114.

160. Vaz, R.V., Magalhães, A.L., Silva, C.M., 2013, Fluid Phase Equilib, 360

401-415.

161. Lai, C.-C., Tan, C.-S., 1995, Ind Eng Chem Res, 34 674-680.

162. Vaz, R.V., Magalhães, A.L., Silva, C.M., in press, J Supercrit Fluid,

DOI:10.1016/j.supflu.2014.03.011.