recent progress in many-body theories barcelona, 20 july 2007 antonio acín 1,2 j. ignacio cirac 3...

18
Recent Progress in Many-Body Theories Barcelona, 20 July 2007 Antonio Acín 1,2 J. Ignacio Cirac 3 Maciej Lewenstein 1,2 1 ICFO-Institut de Ciències Fotòniques (Barcelona) 2 ICREA-Institució Catalana de Recerca i Estudis Avançats 3 Max-Planck Institute for Quantum Optics Cryptographic properties of nonlocal correlations Entanglement Percolation in Quantum Networks

Upload: ashley-price

Post on 14-Jan-2016

212 views

Category:

Documents


0 download

TRANSCRIPT

Page 1: Recent Progress in Many-Body Theories Barcelona, 20 July 2007 Antonio Acín 1,2 J. Ignacio Cirac 3 Maciej Lewenstein 1,2 1 ICFO-Institut de Ciències Fotòniques

Recent Progress in Many-Body Theories

Barcelona, 20 July 2007

Antonio Acín1,2

J. Ignacio Cirac3

Maciej Lewenstein1,2

1ICFO-Institut de Ciències Fotòniques (Barcelona)2ICREA-Institució Catalana de Recerca i Estudis Avançats

3Max-Planck Institute for Quantum Optics

Cryptographic properties of nonlocal correlations

Entanglement Percolation in Quantum Networks

Page 2: Recent Progress in Many-Body Theories Barcelona, 20 July 2007 Antonio Acín 1,2 J. Ignacio Cirac 3 Maciej Lewenstein 1,2 1 ICFO-Institut de Ciències Fotòniques

• Quantum Information Theory (QIT) studies how information can be transmitted and processed when encoded on quantum states.

• New information applications are possible because of quantum features: communication complexity and computational speed-up, secure information transmission and quantum teleportation.

• The key resource for all these applications is quantum correlations, or entanglement.

• A pure state is entangled whenever it cannot be written in a product form:

• A mixed state is entangled whenever it cannot be obtained by mixing product states:

Quantum Information Theory

baAB

iiiii

iAB bbaap

Page 3: Recent Progress in Many-Body Theories Barcelona, 20 July 2007 Antonio Acín 1,2 J. Ignacio Cirac 3 Maciej Lewenstein 1,2 1 ICFO-Institut de Ciències Fotòniques

Quantum CommunicationDistant parties aim at establishing maximally entangled two-qubit states.

11002

1

AB

Crypto: If the parties share this state, they know they have no correlations with any third party. By measuring the state they obtain a perfect secret key.

More in general, if the parties have this state they can teleport any qubit. Thus, a maximally entangled state is equivalent to a perfect quantum channel.

M

CORR

CORR

Page 4: Recent Progress in Many-Body Theories Barcelona, 20 July 2007 Antonio Acín 1,2 J. Ignacio Cirac 3 Maciej Lewenstein 1,2 1 ICFO-Institut de Ciències Fotòniques

Entanglement Theory

Given a quantum state:• Is it entangled?• If yes, can the parties transform many copies of it into fewer

maximally entangled states?• What are the optimal procedures?

Entanglement Swapping:

A B A B

By local operations and classical communication (LOCC) at the repeater, the distant parties are able to establish a maximally entangled state between them.

Page 5: Recent Progress in Many-Body Theories Barcelona, 20 July 2007 Antonio Acín 1,2 J. Ignacio Cirac 3 Maciej Lewenstein 1,2 1 ICFO-Institut de Ciències Fotòniques

Quantum Networks

Quantum Network: N distant nodes share a quantum state ρ.

A B ρ

The goal is to establish an entangled state between two distant nodes, A and B, by local operations and classical communication (LOCC).

A B

Page 6: Recent Progress in Many-Body Theories Barcelona, 20 July 2007 Antonio Acín 1,2 J. Ignacio Cirac 3 Maciej Lewenstein 1,2 1 ICFO-Institut de Ciències Fotòniques

Quantum Networks

...

A BR1 R2 RN

1D Structures: the nodes are connected by a series of quantum repeaters.

One of our main goals is to consider geometries of larger dimension.

There exist several possible figures of merit:

iAB

i

EiELOCC

Prmax

The maximum probability such that A and B share a two-qubit maximally entangled state, 1100

2

1

Briegel, Dür, Ciracand Zoller, PRL’98

iAB

iEE

LOCC

minmax

• The averaged concurrence.

• The worst-case entanglement.

• The singlet-conversion probability, SCP.

• The averaged concurrence.

• The worst-case entanglement.

• The singlet-conversion probability, SCP.

Page 7: Recent Progress in Many-Body Theories Barcelona, 20 July 2007 Antonio Acín 1,2 J. Ignacio Cirac 3 Maciej Lewenstein 1,2 1 ICFO-Institut de Ciències Fotòniques

Quantum Networks

We focus on a simple version of the problem where (i) the network has a well-defined geometry and (ii) the state connecting the nodes are pure.

...

...

...

... ... ... ......

...

φ

d

ii ii

1

021 d

Despite their apparent simplicity, these networks already contain rich and intriguing features.

Example: 2/121

Page 8: Recent Progress in Many-Body Theories Barcelona, 20 July 2007 Antonio Acín 1,2 J. Ignacio Cirac 3 Maciej Lewenstein 1,2 1 ICFO-Institut de Ciències Fotòniques

Classical Entanglement Percolation

A B A B

φ Φ

OKp

Majorization Theory: 112,1min OKp

Bond Percolation

Lattice Percolation Threshold

Square

Triangular

Honeycomb

1/2

0.3473

0.6527

18/sin2 18/sin21

The classical entanglement percolation strategy (CEP) defines some bounds for the minimal amount

of entanglement for non-exponential SCP.

Nielsen & Vidal

Page 9: Recent Progress in Many-Body Theories Barcelona, 20 July 2007 Antonio Acín 1,2 J. Ignacio Cirac 3 Maciej Lewenstein 1,2 1 ICFO-Institut de Ciències Fotòniques

Entanglement Percolation

• Is Classical Entanglement Percolation always optimal?

• If not, does it predict the right asymptotic behaviour?

NO

NO

The distribution of entanglement though a quantum network defines a new type of phase transition, an entanglement phase transition

that we call entanglement percolation.

Page 10: Recent Progress in Many-Body Theories Barcelona, 20 July 2007 Antonio Acín 1,2 J. Ignacio Cirac 3 Maciej Lewenstein 1,2 1 ICFO-Institut de Ciències Fotòniques

1D Geometries1 Repeater

A B

212

1100 21

A

A B2121

22

21

212

A B

One has , which is better than the CEP strategy. 212,1min OKOK ppSCP

BES (zz)

Worst-case strategy: the goal is to maximize the minimum of the entanglement over the measurement outcomes.

iAB

iEE

LOCC

minmax

The optimal strategy is ES (zx basis) and gives the same entanglement for all i.

The intermediate repeater does not imply any loss of SCP!

(this property of course does not scale with the number of repeaters)

Page 11: Recent Progress in Many-Body Theories Barcelona, 20 July 2007 Antonio Acín 1,2 J. Ignacio Cirac 3 Maciej Lewenstein 1,2 1 ICFO-Institut de Ciències Fotòniques

1D Geometries

Asymptotic regime

A1100 21

R1 R2 RN

B

kkr

NrrN NMMC det2det2sup 121 1

1. The exponential decay of the SCP whenever automatically follows from this result.

2. Most of these results can be translated to arbitrary dimension, especially for one-way communication LOCC strategies.

1det2 k

An exponential decay of the entanglement is observed whenever the connection between the repeater does not majorize the singlet.

The same result is obtained by CEP.

Verstraete, Martín-Delgado and Cirac, PRL’04

Page 12: Recent Progress in Many-Body Theories Barcelona, 20 July 2007 Antonio Acín 1,2 J. Ignacio Cirac 3 Maciej Lewenstein 1,2 1 ICFO-Institut de Ciències Fotòniques

2D Geometries

A B

• CEP:

• Previous strategy:

2211 OKp

211 OKpSCP

Not surprisingly, CEP is not optimal for finite lattices.

Finite-size entanglement percolation

A AB B A B

6498.02/1 1

A singlet can be established with probability one whenever

i

j

Page 13: Recent Progress in Many-Body Theories Barcelona, 20 July 2007 Antonio Acín 1,2 J. Ignacio Cirac 3 Maciej Lewenstein 1,2 1 ICFO-Institut de Ciències Fotòniques

2D GeometriesUsing the previous measurement strategy, we already see some

differences with the classical case.

...

...

...

... ... ... ...

...

...

...

...

...

... ... ... ...

...

...

Many end points can be connected with

probability one!

Page 14: Recent Progress in Many-Body Theories Barcelona, 20 July 2007 Antonio Acín 1,2 J. Ignacio Cirac 3 Maciej Lewenstein 1,2 1 ICFO-Institut de Ciències Fotòniques

2D Geometries 2

21

2

2 1100

2OKp

thh

aOK pp 2

1)( 12

tht

bOK pp 1)( 12

CEP

Combining entanglement swapping and CEP, long-distance entanglement can be established in a network where CEP fails.

Page 15: Recent Progress in Many-Body Theories Barcelona, 20 July 2007 Antonio Acín 1,2 J. Ignacio Cirac 3 Maciej Lewenstein 1,2 1 ICFO-Institut de Ciències Fotòniques

• The distribution of entanglement through quantum networks defines a framework where statistical methods and concepts naturally apply.

• It leads to a novel type of critical phenomenon, an entanglement phase transition that we call entanglement percolation.

• Is any amount of pure-state entanglement between the nodes sufficient for entanglement percolation?

• More examples beyond CEP.• Mixed states?

Conclusions

Raussendorf, Bravyi and Harrington, PRA’05

Page 16: Recent Progress in Many-Body Theories Barcelona, 20 July 2007 Antonio Acín 1,2 J. Ignacio Cirac 3 Maciej Lewenstein 1,2 1 ICFO-Institut de Ciències Fotòniques

Mixed states

...

...

...

... ... ... ...

...

...

In this case, it is much easier to obtain lower bounds for long-distance entanglement.

ρ

Given a mixed state, there exist many different ensembles:

ii

ip

EESS pp

EE pp min

If pE(ρ) is smaller than the percolation threshold

probability → long-distance entanglement is impossible.

Page 17: Recent Progress in Many-Body Theories Barcelona, 20 July 2007 Antonio Acín 1,2 J. Ignacio Cirac 3 Maciej Lewenstein 1,2 1 ICFO-Institut de Ciències Fotòniques

Conclusions

Quantum Information Theory

Many-Body Systems

Page 18: Recent Progress in Many-Body Theories Barcelona, 20 July 2007 Antonio Acín 1,2 J. Ignacio Cirac 3 Maciej Lewenstein 1,2 1 ICFO-Institut de Ciències Fotòniques

Thanks for

your attention!

Antonio Acín, J. Ignacio Cirac and Maciej Lewenstein, Entanglement Percolation in Quantum Networks, Nature Phys. 3, 256 (2007).