recent and ongoing results from the south pole...

32
Recent and ongoing results from the South Pole Telescope Recontres de Moriond Alessandro Manzotti, Lagrange fellow, Institute D’Astrophysique de Paris for the SPT collaboration

Upload: others

Post on 22-Oct-2020

0 views

Category:

Documents


0 download

TRANSCRIPT

  • Recent and ongoing results from the South Pole Telescope

    R e c o n t r e s d e M o r i o n d

    Alessandro Manzotti, Lagrange fellow,

    Institute D’Astrophysique de Paris

    for the SPT collaboration

  • 6h

    The SPT sz/Pol specs you need to know

    5000 deg2 surveyed in total by SPT-SZ and SPTpol

    150 GHz depths between 4-30 uK-arcmin (from ~Planck depth, to ~7 times deeper)

    -20

    -30

    -40

    -50

    -60

    2h0h

    SPT-SZSPTpol

    SPTpol-SummerSPTpol deep

    4h

    Freq (GHz)

    SPT-SZSPTpol deep SPTpol

    SPTpol Summer

    95 40 10 12.5 50150 17 5/3.5 5.3 30220 80 40 40/80 -

    Area (deg2) 2500 100 500 2500Status Complete Complete Complete Complete

    Noise in temperature

  • SPT-Pol: a low noise high resolution cmb polarization experiment

    High-resolution 1 arcmin Large and small scale 50

  • SPT-Pol: open a new cmb polarization window, match and improve previous results.

    Measuring very high S/N of gravitational lensing, also from CMB polarization maps.

    Measure CMB E-modes B-modes both at large and small scales and improve constraints on inflation and early universe physics.

    Find more clusters, reducing mass detection threshold (higher-z). With less contamination (Polarization)

    Polarization contains more information than temperature.

    Polarization is affected by different systematics and foreground. It is very clean at small scales.

    High resolutions allow seeing astrophysical objects.

    Observing 500 deg^2 from the South Pole allows having reasonably low noise.

    S. Galli et al. 1403.5271

    https://arxiv.org/abs/1403.5271

  • SPT-Pol: open a new cmb polarization window, match and improve previous results.

    Measuring very high S/N of gravitational lensing, also from CMB polarization maps.

    Measure CMB E-modes B-modes both at large and small scales and improve constraints on inflation and early universe physics.

    Find more clusters, reducing mass detection threshold (higher-z). With less contamination (Polarization)

    Polarization contains more information than temperature.

    Polarization is affected by different systematics and foreground. It is very clean at small scales.

    High resolutions allow seeing astrophysical objects.

    Observing 500 deg^2 from the South Pole allows having reasonably low noise.

    S. Galli et al. 1403.5271

    https://arxiv.org/abs/1403.5271

  • also Challenges: small signal needs excellent control of systematics

    The SPTpol control polarization systematics:

    single-moded feedhorns —> low cross-polarization bolometer pairs well-matched —> low atmospheric noise

    improved ground shield design small beam —> small temperature to polarization leakage

    • - “Monopole” leakage - constant fraction of T map in Q and U.

    Corrections for Bias: T-> P Leakage

    Contaminated Q Map Cleaned Q Map

    ✏P =

    Pw`

    CTP`CTT`Pw`

    P̂ = P � ✏PT

    Temperature

  • also Challenges: small signal needs excellent control of systematics

    • - “Monopole” leakage - constant fraction of T map in Q and U.

    Corrections for Bias: T-> P Leakage

    Contaminated Q Map Cleaned Q Map

    ✏P =

    Pw`

    CTP`CTT`Pw`

    P̂ = P � ✏PT—> Polarization

    The SPTpol control polarization systematics:

    single-moded feedhorns —> low cross-polarization bolometer pairs well-matched —> low atmospheric noise

    improved ground shield design small beam —> small temperature to polarization leakage

  • also Challenges: small signal needs excellent control of systematics

    • - “Monopole” leakage - constant fraction of T map in Q and U.

    Corrections for Bias: T-> P Leakage

    Contaminated Q Map Cleaned Q Map

    ✏P =

    Pw`

    CTP`CTT`Pw`

    P̂ = P � ✏PTCleaned!

    The SPTpol control polarization systematics:

    single-moded feedhorns —> low cross-polarization bolometer pairs well-matched —> low atmospheric noise

    improved ground shield design small beam —> small temperature to polarization leakage

  • also Challenges: small signal needs excellent control of systematics

    The SPTpol control polarization systematics:

    Accurate beam, polarization efficiency, polarization angle calibration.

    Can we do large scales ℓ < 200 with 10m telescopes from the ground?

    Beam Spectra

  •   (Also to Amy Bender, Kimmy Wu)

    Just 3 highlights from past 2 years:

    CMB lensing from spt-sz and pol

    500 CMB E-mode measurements

    500 CMB b-mode measurements

    ask for more !

  • CMB Lensing SPT-SZ and SPT-Pol

  • the Final SPT-SZ (2500 deg2), lensing resultsY. Omori G.Simard

    We fill the missing filtered modes with Planck maps.

    Inverse variance weighted.

    +

    SPT SZ temperature Fourier space

    Planck (SPT-SZ Patch) Fourier space

    ??AAACgXicbVHLbtQwFHVCCyXlMcCSTdRMJdTFkGQDiE0FG5ZF6rSVJqOR49y01vgl+wY0svIh/FZ3/RpwpiN1aHslW8fn3KP7cG0Ed5jnN1H8ZGf36bO958n+i5evXo/evD1zurMMpkwLbS9q6kBwBVPkKODCWKCyFnBeL78P+vkvsI5rdYorA3NJLxVvOaMYqMXoT1Ip+M20lFQ1FVcNGAiXQl8ZqxEYVpLilaECEOGOvMs87QML1vR9UjXQbitZkZV+7bcgfGUFNX48kOO+kkuwqpSdH959MCfj7fLjZDHK8km+jvQhKDYgI5s4WYyuq0azTgY3E9S5WZEbnHtqkTMBobvOgaFsSS9hFqCiEtzcr1fYp4eBadJW23AUpmt22+GpdG4l65A5zOPuawP5mDbrsP0891yZDkGx20JtJ1LU6fAfacNt2KdYBUCZ5aHXlF1RSxmGXxuWUNwf+SGYlpMvk+JnmR1/22xjj7wnB+QDKcgnckx+kBMyJYz8jQ6jSfQx3omP4jwub1PjaON5R/6L+Os/YfLEHw==AAACgXicbVHLbtQwFHVCCyXlMcCSTdRMJdTFkGQDiE0FG5ZF6rSVJqOR49y01vgl+wY0svIh/FZ3/RpwpiN1aHslW8fn3KP7cG0Ed5jnN1H8ZGf36bO958n+i5evXo/evD1zurMMpkwLbS9q6kBwBVPkKODCWKCyFnBeL78P+vkvsI5rdYorA3NJLxVvOaMYqMXoT1Ip+M20lFQ1FVcNGAiXQl8ZqxEYVpLilaECEOGOvMs87QML1vR9UjXQbitZkZV+7bcgfGUFNX48kOO+kkuwqpSdH959MCfj7fLjZDHK8km+jvQhKDYgI5s4WYyuq0azTgY3E9S5WZEbnHtqkTMBobvOgaFsSS9hFqCiEtzcr1fYp4eBadJW23AUpmt22+GpdG4l65A5zOPuawP5mDbrsP0891yZDkGx20JtJ1LU6fAfacNt2KdYBUCZ5aHXlF1RSxmGXxuWUNwf+SGYlpMvk+JnmR1/22xjj7wnB+QDKcgnckx+kBMyJYz8jQ6jSfQx3omP4jwub1PjaON5R/6L+Os/YfLEHw==AAACgXicbVHLbtQwFHVCCyXlMcCSTdRMJdTFkGQDiE0FG5ZF6rSVJqOR49y01vgl+wY0svIh/FZ3/RpwpiN1aHslW8fn3KP7cG0Ed5jnN1H8ZGf36bO958n+i5evXo/evD1zurMMpkwLbS9q6kBwBVPkKODCWKCyFnBeL78P+vkvsI5rdYorA3NJLxVvOaMYqMXoT1Ip+M20lFQ1FVcNGAiXQl8ZqxEYVpLilaECEOGOvMs87QML1vR9UjXQbitZkZV+7bcgfGUFNX48kOO+kkuwqpSdH959MCfj7fLjZDHK8km+jvQhKDYgI5s4WYyuq0azTgY3E9S5WZEbnHtqkTMBobvOgaFsSS9hFqCiEtzcr1fYp4eBadJW23AUpmt22+GpdG4l65A5zOPuawP5mDbrsP0891yZDkGx20JtJ1LU6fAfacNt2KdYBUCZ5aHXlF1RSxmGXxuWUNwf+SGYlpMvk+JnmR1/22xjj7wnB+QDKcgnckx+kBMyJYz8jQ6jSfQx3omP4jwub1PjaON5R/6L+Os/YfLEHw==AAACgXicbVHLbtQwFHVCCyXlMcCSTdRMJdTFkGQDiE0FG5ZF6rSVJqOR49y01vgl+wY0svIh/FZ3/RpwpiN1aHslW8fn3KP7cG0Ed5jnN1H8ZGf36bO958n+i5evXo/evD1zurMMpkwLbS9q6kBwBVPkKODCWKCyFnBeL78P+vkvsI5rdYorA3NJLxVvOaMYqMXoT1Ip+M20lFQ1FVcNGAiXQl8ZqxEYVpLilaECEOGOvMs87QML1vR9UjXQbitZkZV+7bcgfGUFNX48kOO+kkuwqpSdH959MCfj7fLjZDHK8km+jvQhKDYgI5s4WYyuq0azTgY3E9S5WZEbnHtqkTMBobvOgaFsSS9hFqCiEtzcr1fYp4eBadJW23AUpmt22+GpdG4l65A5zOPuawP5mDbrsP0891yZDkGx20JtJ1LU6fAfacNt2KdYBUCZ5aHXlF1RSxmGXxuWUNwf+SGYlpMvk+JnmR1/22xjj7wnB+QDKcgnckx+kBMyJYz8jQ6jSfQx3omP4jwub1PjaON5R/6L+Os/YfLEHw==

    independent from Planck full sky

    2000-2000

    -2000

    2000

    0ℓx

    ℓy

    Maps (both of temperature and lensing) by the end of March!

    102 103

    Lensing Multipole L

    10-2

    10-1

    100

    [L(L

    +1) ]2

    C�� L/2

    ⇡[⇥

    107 ]

    Planck TT + LOWP + LENSINGSPT+Planck2500 (T)

    POLARBEAR (P)SPT (T)ACT (T)BK14 (P)SPTPOL (T+P)ACTPOL (T+P)Planck full-sky (T+P)

    Biggest CMB lensing maps from ground.

    7% constraint on the amplitude.

    Planck has little effect; it improves small scale lensing, very important for cross-

    correlation.

    better than Planck full skySimard, Omori et al.

    https://arxiv.org/abs/1712.07541

  • Maps (both of temperature and lensing) by the end of March!

    102 103

    Lensing Multipole L

    10-2

    10-1

    100

    [L(L

    +1) ]2

    C�� L/2

    ⇡[⇥

    107 ]

    Planck TT + LOWP + LENSINGSPT+Planck2500 (T)

    POLARBEAR (P)SPT (T)ACT (T)BK14 (P)SPTPOL (T+P)ACTPOL (T+P)Planck full-sky (T+P)

    Biggest CMB lensing maps from ground.

    7% constraint on the amplitude.

    Planck has little effect; it improves small scale lensing, very important for cross-

    correlation.

    better than Planck full sky

    Simard, Omori et al. 1712.07541

    Omori et al.

    the Final SPT-SZ (2500 deg2), lensing results

    Y. Omori G.Simard

    We fill the missing filtered modes with Planck maps.

    Inverse variance weighted.

    +

    SPT SZ temperature Fourier space

    Planck (SPT-SZ Patch) Fourier space

    ??AAACgXicbVHLbtQwFHVCCyXlMcCSTdRMJdTFkGQDiE0FG5ZF6rSVJqOR49y01vgl+wY0svIh/FZ3/RpwpiN1aHslW8fn3KP7cG0Ed5jnN1H8ZGf36bO958n+i5evXo/evD1zurMMpkwLbS9q6kBwBVPkKODCWKCyFnBeL78P+vkvsI5rdYorA3NJLxVvOaMYqMXoT1Ip+M20lFQ1FVcNGAiXQl8ZqxEYVpLilaECEOGOvMs87QML1vR9UjXQbitZkZV+7bcgfGUFNX48kOO+kkuwqpSdH959MCfj7fLjZDHK8km+jvQhKDYgI5s4WYyuq0azTgY3E9S5WZEbnHtqkTMBobvOgaFsSS9hFqCiEtzcr1fYp4eBadJW23AUpmt22+GpdG4l65A5zOPuawP5mDbrsP0891yZDkGx20JtJ1LU6fAfacNt2KdYBUCZ5aHXlF1RSxmGXxuWUNwf+SGYlpMvk+JnmR1/22xjj7wnB+QDKcgnckx+kBMyJYz8jQ6jSfQx3omP4jwub1PjaON5R/6L+Os/YfLEHw==AAACgXicbVHLbtQwFHVCCyXlMcCSTdRMJdTFkGQDiE0FG5ZF6rSVJqOR49y01vgl+wY0svIh/FZ3/RpwpiN1aHslW8fn3KP7cG0Ed5jnN1H8ZGf36bO958n+i5evXo/evD1zurMMpkwLbS9q6kBwBVPkKODCWKCyFnBeL78P+vkvsI5rdYorA3NJLxVvOaMYqMXoT1Ip+M20lFQ1FVcNGAiXQl8ZqxEYVpLilaECEOGOvMs87QML1vR9UjXQbitZkZV+7bcgfGUFNX48kOO+kkuwqpSdH959MCfj7fLjZDHK8km+jvQhKDYgI5s4WYyuq0azTgY3E9S5WZEbnHtqkTMBobvOgaFsSS9hFqCiEtzcr1fYp4eBadJW23AUpmt22+GpdG4l65A5zOPuawP5mDbrsP0891yZDkGx20JtJ1LU6fAfacNt2KdYBUCZ5aHXlF1RSxmGXxuWUNwf+SGYlpMvk+JnmR1/22xjj7wnB+QDKcgnckx+kBMyJYz8jQ6jSfQx3omP4jwub1PjaON5R/6L+Os/YfLEHw==AAACgXicbVHLbtQwFHVCCyXlMcCSTdRMJdTFkGQDiE0FG5ZF6rSVJqOR49y01vgl+wY0svIh/FZ3/RpwpiN1aHslW8fn3KP7cG0Ed5jnN1H8ZGf36bO958n+i5evXo/evD1zurMMpkwLbS9q6kBwBVPkKODCWKCyFnBeL78P+vkvsI5rdYorA3NJLxVvOaMYqMXoT1Ip+M20lFQ1FVcNGAiXQl8ZqxEYVpLilaECEOGOvMs87QML1vR9UjXQbitZkZV+7bcgfGUFNX48kOO+kkuwqpSdH959MCfj7fLjZDHK8km+jvQhKDYgI5s4WYyuq0azTgY3E9S5WZEbnHtqkTMBobvOgaFsSS9hFqCiEtzcr1fYp4eBadJW23AUpmt22+GpdG4l65A5zOPuawP5mDbrsP0891yZDkGx20JtJ1LU6fAfacNt2KdYBUCZ5aHXlF1RSxmGXxuWUNwf+SGYlpMvk+JnmR1/22xjj7wnB+QDKcgnckx+kBMyJYz8jQ6jSfQx3omP4jwub1PjaON5R/6L+Os/YfLEHw==AAACgXicbVHLbtQwFHVCCyXlMcCSTdRMJdTFkGQDiE0FG5ZF6rSVJqOR49y01vgl+wY0svIh/FZ3/RpwpiN1aHslW8fn3KP7cG0Ed5jnN1H8ZGf36bO958n+i5evXo/evD1zurMMpkwLbS9q6kBwBVPkKODCWKCyFnBeL78P+vkvsI5rdYorA3NJLxVvOaMYqMXoT1Ip+M20lFQ1FVcNGAiXQl8ZqxEYVpLilaECEOGOvMs87QML1vR9UjXQbitZkZV+7bcgfGUFNX48kOO+kkuwqpSdH959MCfj7fLjZDHK8km+jvQhKDYgI5s4WYyuq0azTgY3E9S5WZEbnHtqkTMBobvOgaFsSS9hFqCiEtzcr1fYp4eBadJW23AUpmt22+GpdG4l65A5zOPuawP5mDbrsP0891yZDkGx20JtJ1LU6fAfacNt2KdYBUCZ5aHXlF1RSxmGXxuWUNwf+SGYlpMvk+JnmR1/22xjj7wnB+QDKcgnckx+kBMyJYz8jQ6jSfQx3omP4jwub1PjaON5R/6L+Os/YfLEHw==

    independent from Planck full sky

    2000-2000

    -2000

    2000

    0ℓx

    ℓy

    https://arxiv.org/abs/1712.07541https://arxiv.org/abs/1705.00743

  • 7% amplitude constraint. Consistent with other data.

    0.30 0.60 0.90 1.20⌦m

    0.60

    0.80

    1.00

    1.20

    � 8

    Planck TT / lowPACTPolKiDS-450CFHTLenSDESPlanck full-skySPT+Planck2500 (this work)

    DES correlations show SZ bias at ~20% Correct or use polarization?

    Bandpowers and likelihood available on LAMBDA! Baxter, Omori et al.

    Simard, Omori et al. 1712.07541

    LCDM

    https://arxiv.org/abs/1802.05257https://arxiv.org/abs/1712.07541

  • 7% amplitude constraint. Consistent with other data.

    0.30 0.60 0.90 1.20⌦m

    0.60

    0.80

    1.00

    1.20

    �8

    Planck TT / lowPACTPolKiDS-450CFHTLenSDESPlanck full-skySPT+Planck2500 (this work)

    DES correlations show SZ bias at ~20% Correct or use polarization?

    Bandpowers and likelihood available on LAMBDA! Baxter, Omori et al. 1802.05257

    Simard, Omori et al.

    LCDM

    https://arxiv.org/abs/1802.05257https://arxiv.org/abs/1712.07541

  • spt pol 500^2 lensing: ~7% Alens Polarization almost as good as temperature!

    Constraints ~ SPT-SZ+Planck, even on 1/5 area.

    Polarization-only competitive with Planck polarization-only!

    Preliminary!

    K. StoryG.SimardM. Mocanu

    Spectra constraints not everything: these maps have L ~< 250 modes imaged with S/N > 1. Cross correlation with DES, Delensing, cluster lensing etc..

    Story et al.T P

    Estimators

    https://arxiv.org/abs/1412.4760

  • amazing signal to noise maps

    SPT

  • Polarizations results: E and B modes.

  • E

    9.4 μK-arcmin between 2000 < ℓ < 4000. SPTpol 150 GHz

    SPT Polarization E-mode. small and large (ell>50) from the ground

    J. Henning

    Smoothed at 4 arcmin

  • Noise Noise: First-half map minus second-half map.SPTpol 150 GHz

    Smoothed at 4 arcmin

    SPT Polarization E-mode. small and large (ell>50) from the ground

  • SPT Pol from large to small scales!The most sensitive spectra at ℓ >1050

    Sample-variance limited ℓ =1750

    JW Henning et al., 1707.09353

    https://arxiv.org/abs/1707.09353

  • The most sensitive spectra on small scalesThe most sensitive spectra at ℓ >1475

    ℓ =2050

    JW Henning 1707.09353

    Sample variance limited

    https://arxiv.org/abs/1707.09353

  • 9 peaks (50 < ℓ < 3000 ) and 4 times tighter upper limits on foregrounds

    - DℓPS < 0.1 μK2 at 95% confidence (Contributes < 1 μK-arcmin to rms map noise). Source cut at > 50 mJy in T.

    EEBandpowers and likelihood

    available on LAMBDA!

    Poisson power crosses EE at ℓ ~ 3800.

    JW Henning et al. 1707.09353

    https://arxiv.org/abs/1707.09353

  • 2.7-3.0 reduction of parameter space volume (compared to planck). All consistent so far.

    - “Low-ℓ” SPTpol data (ℓ < 1000) in agreement with PlanckTT results.

    - Adding “high-ℓ” data (ℓ > 1000) pushes H0 higher 𝜎8 lower compared to PlanckTT

    (Full-range SPTpol)

    J.W. Henning, Sayre, Reichardt, et al., 2017

    - Similar to trends in SPT-SZ TT data (Aylor et al., 2017, arXiv:1706.10286)

    - but: consistent with Planck when matching modes.

  • B-modes, now on 500 deg^2 and improved analysis

    Improved from the100d: better detector cross-talk cleaning and monopole T—>P leakage removal.

    Also: we demonstrate we can go to larger scale from the ground (ℓmin=50)!!

    5 times the area, √5 noise improvement.

    J.T. Sayre

  • sptpol 500^2 B-modes, The best current B-mode power at ell>300The most sensitive spectra at ℓ >300

    Prelimin

    ary!!!

  • We improve constraint on lensing and Primordial magnetic fields. first sptpol inflationary constraints

    10-15% constrain on the amplitude (Alens), 7-8 sigma.

    Primordial magnetic field constrained pushed down by ~2

    r < ~0.3-0.35 at 95% from SPTPol B-modes alone. First step towards inflationary constraints.

    Prelim

    inary

  • we have done more in the past few years …

    Demonstration of CMB B-mode delensing

    Cluster lensing with temperature data.

    KSZ with DES cross correlation

    Detailed systematics tests against Planck.

    A lot of cluster physics.0.0 0.5 1.0 1.5 2.0

    Redshift

    1

    10

    M50

    0 (10

    14 M

    sun h

    70-1 )

    SPTpol (Projected)SPT-SZ 2500 deg2

    Planck-DR1

    eRosita

    DES

    500d Catalog Construction well underway!

    • Incorporating all SPTpol 500d data; Final 150 GHz map depth ~5 uK-arcmin

    • Ongoing DES-SPT projection for cluster confirmation

    • 2 Spitzer programs complete

    • NIR imaging on Magellan/FOURSTAR obtained Oct 17

  • … and we will do more

    Of course SPT-3G

    Bicep-Keck joint delensing analysis

    Deep 100: amazing 5 muK in pol at 1 arc min resolution.

    We have 1 summer observation of the KIDS field.

    Clusters ( for example lensing polarization, you will hear from us soon)

    Transients searches.

    DES cross-correlations (again:you will hear from us soon ).

  • … and we will do more

    Of course SPT-3G

    Bicep-Keck joint delensing analysis

    Deep 100: amazing 5 muK in pol at 1 arc min resolution.

    We have 1 summer observation of the KIDS field.

    Clusters ( for example lensing polarization, you will hear from us soon)

    Transients searches.

    DES cross-correlations (again:you will hear from us soon ).

    Stay - tu

    ned

    Thanks!

    !

  • Available spectra/likelihood lambda.gsfc.nasa.gov/product/spt/:

    SPT Pol EE,TE: goo.gl/Tp8VMT SPT SZ -Planck lensing like: goo.gl/KXtH6D

    SPT SZ -Planck T, lensing Maps: by the end of March SPT BB-modes: BP and like by the end of March/ mid April,

    100 deg^2 available

    Alessandro Manzotti, Lagrange fellow,

    Institute D’Astrophysique de Paris for the SPT collaboration

    https://lambda.gsfc.nasa.gov/product/spt/https://goo.gl/Tp8VMThttps://goo.gl/KXtH6Dhttps://lambda.gsfc.nasa.gov/product/spt/sptpol_bp_2015_info.cfm

  • Backup Slides