real%algebraic%geometryin computaonal %game%theory%%% · r.a.g.%in%``pure´´game% theory% •...

27
Real Algebraic Geometry in Computa5onal Game Theory Peter Bro Miltersen Aarhus University ctic.au.dk Solving Polynomial Equa5ons, Berkeley, 15/10/14 1

Upload: others

Post on 17-Jun-2020

0 views

Category:

Documents


0 download

TRANSCRIPT

Page 1: Real%Algebraic%Geometryin Computaonal %Game%Theory%%% · R.A.G.%in%``pure´´game% theory% • Long%history% • Classics%in%the%theoryof stochas+c&games:% – Truman%Bewley%and%ElonKohlberg

Real  Algebraic  Geometry  in  Computa5onal  Game  Theory      

Peter  Bro  Miltersen  Aarhus  University  

ctic.au.dk Solving  Polynomial  Equa5ons,  Berkeley,  

15/10/14   1  

Page 2: Real%Algebraic%Geometryin Computaonal %Game%Theory%%% · R.A.G.%in%``pure´´game% theory% • Long%history% • Classics%in%the%theoryof stochas+c&games:% – Truman%Bewley%and%ElonKohlberg

Computa5onal  Game  Theory  

•  Input:  Descrip5on  of  game.  •  Output:  Solu+on  to  game.  

– Find  value/minimax  strategy  – Find  Nash  equilibrium  – …..  

   

Solving  Polynomial  Equa5ons,  Berkeley,  15/10/14   2  

Page 3: Real%Algebraic%Geometryin Computaonal %Game%Theory%%% · R.A.G.%in%``pure´´game% theory% • Long%history% • Classics%in%the%theoryof stochas+c&games:% – Truman%Bewley%and%ElonKohlberg

R.A.G.  in  ``pure´´  game  theory  •  Long  history  •  Classics  in  the  theory  of  stochas+c  games:  

–  Truman  Bewley  and  Elon  Kohlberg.  The  asympto+c  theory  of  stochas+c  games.  Mathema5cs  of  Opera5ons  Research,  1:197-­‐208,  1976.    

–  J.F.  Mertens  and  A.  Neyman.  Stochas+c  games.  Int.  J.  of  Game  Theory,  pages  53-­‐66,  1981.  

–  Emanuel  Milman.  The  Semi-­‐Algebraic  Theory  of  Stochas+c  Games.  Mathema5cs  of  Opera5ons  Research  27:2  ,  401-­‐418,  2002.    

–  A.  Neyman.  Real  Algebraic  tools  in  Stochas+c  Games.  Stochas5c  Games  and  Applica5ons.  NATO  Science  Series  Volume  570,  2003,  pp  57-­‐75  

•  Oaen  relies  on  ``crude´´  tools  (e.g.  Tarski  Transfer  Principle)  •  Slogan  of  this  talk:  In  the  computa5onal  sedng,  finer  tools  are  

advantageous.  

Solving  Polynomial  Equa5ons,  Berkeley,  15/10/14   3  

Page 4: Real%Algebraic%Geometryin Computaonal %Game%Theory%%% · R.A.G.%in%``pure´´game% theory% • Long%history% • Classics%in%the%theoryof stochas+c&games:% – Truman%Bewley%and%ElonKohlberg

Recent  papers  •  Kristoffer  Arnsfelt  Hansen,  Michal  Koucký,  and  Peter  Bro  Miltersen.  Winning  concurrent  

reachability  games  requires  doubly  exponen7al  pa7ence.  In  Proceedings  of  LICS’09,  pages  332–341.  

•  Kristoffer  Arnsfelt  Hansen,  Rasmus  Ibsen-­‐Jensen,  and  Peter  Bro  Miltersen.  The  complexity  of  solving  reachability  games  using  value  and  strategy  itera7on.  In  Proceedings  of  CSR’11,  volume  6651  of  LNCS,  pages  77–90.  

•  Kristoffer  Arnsfelt  Hansen,  Michal  Koucký,  Niels  Lauritzen,  Peter  Bro  Miltersen,  and  Elias  P.  Tsigaridas.  Exact  algorithms  for  solving  stochas7c  games  .  In  Proceedings  of  STOC’11,  pages  205–214.  

•  Søren  Kristoffer  S5il  Frederiksen  and  Peter  Bro  Miltersen.  Approxima7ng  the  value  of  a  concurrent  reachability  game  in  the  polynomial  7me  hierarchy.  In  Proceedings  of    ISAAC’13,  volume  8283  of  LNCS,  pages  457–467.    

•  Søren  Kristoffer  S5il  Frederiksen  and  Peter  Bro  Miltersen.  Monomial  strategies  for  concurrent  reachability  games  and  other  stochas7c  games.  In  Proceedings  of  RP’13,  volume  8169  of  LNCS,  pages  122–134.  

•  Kousha  Etessami,  Kristoffer  Arnsfelt  Hansen,  Peter  Bro  Miltersen,  Troels  Bjerre  Sørensen.  The  complexity  of  approxima7ng  a  trembling  hand  perfect  equilibrium  of  a  mul7-­‐player  game  in  strategic  form.  In  Proceedings  of  SAGT'14,  volume  8768  of  Lecture  Notes  in  Computer  Science,  volume  8768,  pages  231-­‐243,  2014.  

Solving  Polynomial  Equa5ons,  Berkeley,  15/10/14   4  

Page 5: Real%Algebraic%Geometryin Computaonal %Game%Theory%%% · R.A.G.%in%``pure´´game% theory% • Long%history% • Classics%in%the%theoryof stochas+c&games:% – Truman%Bewley%and%ElonKohlberg

Today:  Just  one  example  

•  Compu5ng  the  value  of  a  concurrent  reachability  game.  – Worst  case  5me  complexity  analysis  of  Strategy  itera+on  algorithm.  

–  [HKM’09,  HKLMT’11,  HIM’11]  

•  Algorithm  does  not  rely  on  R.A.G.  •  Quan5ta5ve  but  not  algorithmic  R.A.G.  needed.    

Solving  Polynomial  Equa5ons,  Berkeley,  15/10/14   5  

Page 6: Real%Algebraic%Geometryin Computaonal %Game%Theory%%% · R.A.G.%in%``pure´´game% theory% • Long%history% • Classics%in%the%theoryof stochas+c&games:% – Truman%Bewley%and%ElonKohlberg

R.A.G.  engine:  The  Sampling  Theorem  

Solving  Polynomial  Equa5ons,  Berkeley,  15/10/14   6  

If  a  sign  condi5on  is  realizable,  then  it  is  realized  by  a  point  of  ”low  algebraic  complexity”.  

Page 7: Real%Algebraic%Geometryin Computaonal %Game%Theory%%% · R.A.G.%in%``pure´´game% theory% • Long%history% • Classics%in%the%theoryof stochas+c&games:% – Truman%Bewley%and%ElonKohlberg

Concurrent  Reachability  Game  (CRG)  

GOAL  

Row  player  wants  pebble  to  reach  GOAL  

Column  player  wants  to  prevent  pebble  from  reaching  GOAL  

Solving  Polynomial  Equa5ons,  Berkeley,  15/10/14   7  

Page 8: Real%Algebraic%Geometryin Computaonal %Game%Theory%%% · R.A.G.%in%``pure´´game% theory% • Long%history% • Classics%in%the%theoryof stochas+c&games:% – Truman%Bewley%and%ElonKohlberg

Concurrent  Reachability  Game  (CRG)  

GOAL  

Row  player  wants  pebble  to  reach  GOAL  

Column  player  wants  to  prevent  pebble  from  reaching  GOAL  

Solving  Polynomial  Equa5ons,  Berkeley,  15/10/14   8  

Page 9: Real%Algebraic%Geometryin Computaonal %Game%Theory%%% · R.A.G.%in%``pure´´game% theory% • Long%history% • Classics%in%the%theoryof stochas+c&games:% – Truman%Bewley%and%ElonKohlberg

Concurrent  Reachability  Game  (CRG)  

GOAL  

Row  player  wants  pebble  to  reach  GOAL  

Column  player  wants  to  prevent  pebble  from  reaching  GOAL  

Solving  Polynomial  Equa5ons,  Berkeley,  15/10/14   9  

Page 10: Real%Algebraic%Geometryin Computaonal %Game%Theory%%% · R.A.G.%in%``pure´´game% theory% • Long%history% • Classics%in%the%theoryof stochas+c&games:% – Truman%Bewley%and%ElonKohlberg

Concurrent  Reachability  Game  (CRG)  

GOAL  

Row  player  wants  pebble  to  reach  GOAL  

Column  player  wants  to  prevent  pebble  from  reaching  GOAL  

Solving  Polynomial  Equa5ons,  Berkeley,  15/10/14   10  

Page 11: Real%Algebraic%Geometryin Computaonal %Game%Theory%%% · R.A.G.%in%``pure´´game% theory% • Long%history% • Classics%in%the%theoryof stochas+c&games:% – Truman%Bewley%and%ElonKohlberg

Concurrent  Reachability  Game  (CRG)  

GOAL  

Row  player  wants  pebble  to  reach  GOAL  

Column  player  wants  to  prevent  pebble  from  reaching  GOAL  

Solving  Polynomial  Equa5ons,  Berkeley,  15/10/14   11  

Page 12: Real%Algebraic%Geometryin Computaonal %Game%Theory%%% · R.A.G.%in%``pure´´game% theory% • Long%history% • Classics%in%the%theoryof stochas+c&games:% – Truman%Bewley%and%ElonKohlberg

Values  and  Near-­‐Op5mal  Strategies  (Everes’57)  

•  Each  posi5on  i  in  a  CRG  has  a  value  vi  so  that  

               vi      =  minsta5onary  y  maxgeneral  x  μi(x,y)                                                                                          =  sup  sta5onary  x  mingeneral  y    μi(x,y)                      where  μi(x,y)  is  the  probability  of  reaching  GOAL  when  row  player  plays  by  strategy  x  and  column  player  plays  by  strategy  y.    

Solving  Polynomial  Equa5ons,  Berkeley,  15/10/14   12  

Page 13: Real%Algebraic%Geometryin Computaonal %Game%Theory%%% · R.A.G.%in%``pure´´game% theory% • Long%history% • Classics%in%the%theoryof stochas+c&games:% – Truman%Bewley%and%ElonKohlberg

Howard’s  algorithm  (1960)  (aka  policy  itera5on,  policy  improvement,  strategy  

itera5on/improvement)  

Basic algorithm for online, sequential decision making in face of uncertainty

Solving  Polynomial  Equa5ons,  Berkeley,  15/10/14   13  

Page 14: Real%Algebraic%Geometryin Computaonal %Game%Theory%%% · R.A.G.%in%``pure´´game% theory% • Long%history% • Classics%in%the%theoryof stochas+c&games:% – Truman%Bewley%and%ElonKohlberg

Howard’s  algorithm  for  CRGs  Chaserjee,  de  Alfaro,  Henzinger  ’06,  Etessami  and  Yannakakis  ‘06  

Solve Markov Decision Process

Solve matrix game

Solving  Polynomial  Equa5ons,  Berkeley,  15/10/14   14  

Page 15: Real%Algebraic%Geometryin Computaonal %Game%Theory%%% · R.A.G.%in%``pure´´game% theory% • Long%history% • Classics%in%the%theoryof stochas+c&games:% – Truman%Bewley%and%ElonKohlberg

Proper5es      

•  The  valua5ons  vti  converge  to  the  values  vi  (from  below).  

•  The  strategies  xt  guarantee  the  valua5ons  vti  for  row  player.  

•  What  is  the  number  of  itera5ons  required  to  guarantee  a  good  approxima5on?  

Solving  Polynomial  Equa5ons,  Berkeley,  15/10/14   15  

Page 16: Real%Algebraic%Geometryin Computaonal %Game%Theory%%% · R.A.G.%in%``pure´´game% theory% • Long%history% • Classics%in%the%theoryof stochas+c&games:% – Truman%Bewley%and%ElonKohlberg

Main  theorem  

For  all  games  with  N  posi5ons  and  m  ac5ons  for  each  player  in  each  posi5on,  (1/ε)mO(N)  itera5ons  is  sufficient  to  arrive  at  ε-­‐op5mal  strategy.    N  =  Number  of  posi5ons  m  =  dimension  of  (largest)  matrix  

 

Solving  Polynomial  Equa5ons,  Berkeley,  15/10/14   16  

Page 17: Real%Algebraic%Geometryin Computaonal %Game%Theory%%% · R.A.G.%in%``pure´´game% theory% • Long%history% • Classics%in%the%theoryof stochas+c&games:% – Truman%Bewley%and%ElonKohlberg

Step  1:  Reduc5on  to  analysis  of  value  itera5on  

•  We  can  relate  the  valua5ons  computed  by  strategy  itera5on  to  the  valua5ons  computed  by  value  itera5on.  

 

Valuations computed by strategy iteration

Valuations computed by value iteration

Actual values

Solving  Polynomial  Equa5ons,  Berkeley,  15/10/14   17  

Page 18: Real%Algebraic%Geometryin Computaonal %Game%Theory%%% · R.A.G.%in%``pure´´game% theory% • Long%history% • Classics%in%the%theoryof stochas+c&games:% – Truman%Bewley%and%ElonKohlberg

Value  itera5on  (dynamic  programming)  

Value iteration computes the value of a time bounded game, for larger and larger values of the time bound t, by backward induction.

Solving  Polynomial  Equa5ons,  Berkeley,  15/10/14   18  

Page 19: Real%Algebraic%Geometryin Computaonal %Game%Theory%%% · R.A.G.%in%``pure´´game% theory% • Long%history% • Classics%in%the%theoryof stochas+c&games:% – Truman%Bewley%and%ElonKohlberg

Step  2:  Reduc5on  to  bounding  pa+ence  

•  We  need  to  upper  bound  the  difference  in  value  between  5me  bounded  and  infinite  versions  of  the  game.  

•  The  difference  in  value  between  a  5me  bounded  and  the  infinite  version  of  a  concurrent  reachability  game  is  captured  by  the  pa5ence  of  its  sta5onary  near-­‐op5mal  strategies.  –  Pa5ence  =  1/smallest  non-­‐zero  probability  used    

•  Lemma:  If  the  game  has  an  𝜀-­‐op5mal  strategy  with  pa5ence  

𝐿,  then  for  𝑇=𝑘𝑁𝐿↑𝑁 ,  the  value  of  the  game  with  5me  

bound  𝑇  differs  from  the  value  of  the  original  game  by  at  

most  𝜀+ 𝑒↑−𝑘 .      Solving  Polynomial  Equa5ons,  Berkeley,  

15/10/14   19  

Page 20: Real%Algebraic%Geometryin Computaonal %Game%Theory%%% · R.A.G.%in%``pure´´game% theory% • Long%history% • Classics%in%the%theoryof stochas+c&games:% – Truman%Bewley%and%ElonKohlberg

Step  3:  Bounding  pa5ence  using  R.A.G.  •  Everes’s  characteriza5on  (1957)  of  value  and  near-­‐op5mal  strategies:          

Solving  Polynomial  Equa5ons,  Berkeley,  15/10/14   20  

Page 21: Real%Algebraic%Geometryin Computaonal %Game%Theory%%% · R.A.G.%in%``pure´´game% theory% • Long%history% • Classics%in%the%theoryof stochas+c&games:% – Truman%Bewley%and%ElonKohlberg

Step  3:  Bounding  pa5ence  using  R.A.G.  

•  Applying  the  fundamental  theorem  of  linear  programming  and  Cramer’s  rule:  

Solving  Polynomial  Equa5ons,  Berkeley,  15/10/14   21  

Page 22: Real%Algebraic%Geometryin Computaonal %Game%Theory%%% · R.A.G.%in%``pure´´game% theory% • Long%history% • Classics%in%the%theoryof stochas+c&games:% – Truman%Bewley%and%ElonKohlberg

Step  3:  Bounding  pa5ence  using  R.A.G.  

+  

   +            separa5on  bounds  for  roots  of  univariate  polynomials    (Cauchy)  

                                                                                                     =      An  𝜀-­‐op5mal  strategy  with  all  probabili5es  either  0  or  bounded  from  below  by   𝜀↑𝑚↑𝑂(𝑁)        

Solving  Polynomial  Equa5ons,  Berkeley,  15/10/14   22  

+  

Page 23: Real%Algebraic%Geometryin Computaonal %Game%Theory%%% · R.A.G.%in%``pure´´game% theory% • Long%history% • Classics%in%the%theoryof stochas+c&games:% – Truman%Bewley%and%ElonKohlberg

Main  theorem  

For  all  games  with  N  posi5ons  and  m  ac5ons  for  each  player  in  each  posi5on,  (1/ε)mO(N)  itera5ons  is  sufficient  to  arrive  at  ε-­‐op5mal  strategy.  

 

Solving  Polynomial  Equa5ons,  Berkeley,  15/10/14   23  

Page 24: Real%Algebraic%Geometryin Computaonal %Game%Theory%%% · R.A.G.%in%``pure´´game% theory% • Long%history% • Classics%in%the%theoryof stochas+c&games:% – Truman%Bewley%and%ElonKohlberg

Tight  example  

Generalized  Purgatory  P(N,m):  •  Column  player  repeatedly  hides  a  number  in  {1,..,m}.  •  Row  player  must  try  to  guess  the  number.  •  If  he  guesses  correctly  N  5mes  in  a  row,  he  wins  the  game.  •  If  he  ever  guesses  incorrectly  overshoo5ng  hidden  

number,  he  loses  the  game.  

–  These  games  all  have  value  1(!)  –  Strategy  itera5on  needs  (1/ε)mN-­‐o(N)  to  get  ε-­‐op5mal  strategy.  

Solving  Polynomial  Equa5ons,  Berkeley,  15/10/14   24  

Page 25: Real%Algebraic%Geometryin Computaonal %Game%Theory%%% · R.A.G.%in%``pure´´game% theory% • Long%history% • Classics%in%the%theoryof stochas+c&games:% – Truman%Bewley%and%ElonKohlberg

Main  theorem  

For  all  games  with  N  posi5ons  and  m  ac5ons  for  each  player  in  each  posi5on,  (1/ε)mO(N)  itera5ons  is  sufficient  to  arrive  at  ε-­‐op5mal  strategy.  

 

Solving  Polynomial  Equa5ons,  Berkeley,  15/10/14   25  

Page 26: Real%Algebraic%Geometryin Computaonal %Game%Theory%%% · R.A.G.%in%``pure´´game% theory% • Long%history% • Classics%in%the%theoryof stochas+c&games:% – Truman%Bewley%and%ElonKohlberg

R.A.G.  engine:  The  sampling  Theorem  

Solving  Polynomial  Equa5ons,  Berkeley,  15/10/14   26  

Page 27: Real%Algebraic%Geometryin Computaonal %Game%Theory%%% · R.A.G.%in%``pure´´game% theory% • Long%history% • Classics%in%the%theoryof stochas+c&games:% – Truman%Bewley%and%ElonKohlberg

Thank  you!  

Solving  Polynomial  Equa5ons,  Berkeley,  15/10/14   27