real-time ultrasound elastographic imaging of ocular and ... · ophthalmic surgery, lasers &...

7
OPHTHALMIC SURGERY, LASERS & IMAGING · VOL 41, NO 1, 2010 135 EXPERIMENTAL SCIENCE I M A G I N G Real-Time Ultrasound Elastographic Imaging of Ocular and Periocular Tissues: A Feasibility Study Efstathios T. Detorakis, MD, PhD; Eleni E. Drakonaki, MD; Miltiadis K. Tsilimbaris, MD, PhD; Ioannis G. Pallikaris, MD, PhD; Spiridon Giarmenitis, MD, PhD n BACKGROUND AND OBJECTIVE: This study examines the value of ultrasound elastography for the examination of ocular and periocular structures. n SUBJECTS AND METHODS: Five patients, aged 22 to 75 years, who each had one blind eye were in- cluded. Patients underwent ultrasound elastography of their blind eye and periocular tissues using a 7-13 MHz probe. Strain grayscale and color-coded elastographic maps were recorded. In the former, a quantitative assess- ment of signal intensity (corresponding to elastic prop- erties) for specific anatomical structures was performed. n RESULTS: Anterior vitreous displayed intermediate elasticity, whereas posterior vitreous displayed low elastic- ity. Medial and lateral rectus muscle elasticity was higher in primary position than in adduction or abduction. n CONCLUSION: The pattern of elastic imaging in the vitreous cavity could be attributed to posterior vit- reous detachment, whereas that of medial and lateral rectus muscles may be related to the level of muscle fiber strain. [Ophthalmic Surg Lasers Imaging 2010;41:135-141.] From the Departments of Ophthalmology (ETD, MKT, IGP) and Medical Imaging (EED, SG), University Hospital of Heraklion, Crete, Greece. Accepted for publication March 30, 2009. The authors have no financial or proprietary interest in the materials presented herein. Address correspondence to Efstathios T. Detorakis, MD, Department of Ophthalmology, University Hospital of Heraklion, Crete, Greece. doi: 10.3928/15428877-20091230-24 INTRODUCTION The determination of the elasticity of living tissues has been used as an important indicator of disease because the mechanical properties of diseased tissue are typically different from those of the normal tissue surrounding them. 1 Elastography is a method of imaging and mea- suring the elastic properties of tissues based on static compression and cross-correlation methods. 2 The main elastographic techniques include magnetic resonance elastography and ultrasound elastography. 3 In the former method, constrained modulus reconstruction techniques have been employed, assuming that the geometry of nor- mal and suspicious tissues is available from magnetic reso- nance imaging segmentation. 3 In the latter method, the footprint of the ultrasound probe is used to compress the tissues axially and tissue axial displacements are estimated with cross-correlation analysis applied to pre-decompres- sion and post-decompression echoes. 3 By employing ultrasound elastography, a variety of normal and diseased living human tissues and organs have been evaluated, including lymph nodes, 4 prostate, 5 articular cartilage, 6 pancreas, 7 kidney, 8 skin, 9 and breast. 10 Through the development of ultra-fast algorithms tai- lored to suitable hardware, ultrasound elastography can currently be performed in a typical clinical ultrasound

Upload: duonglien

Post on 16-Aug-2019

217 views

Category:

Documents


0 download

TRANSCRIPT

Page 1: Real-Time Ultrasound Elastographic Imaging of Ocular and ... · Ophthalmic Surgery, laSerS & imaging · VOl 41, nO 1, 2010 135 e x p e r i m e n t a l s c i e n c e i m a g i n g

Ophthalmic Surgery, laSerS & imaging · VOl 41, nO 1, 2010 135

■ e x p e r i m e n t a l s c i e n c e ■

i m a g i n g

Real-TimeUltrasoundElastographicImagingofOcularandPeriocularTissues:AFeasibilityStudy

Efstathios T. Detorakis, MD, PhD; Eleni E. Drakonaki, MD; Miltiadis K. Tsilimbaris, MD, PhD; Ioannis G. Pallikaris, MD, PhD; Spiridon Giarmenitis, MD, PhD

n BACKGROUND AND OBJECTIVE:Thisstudyexaminesthevalueofultrasoundelastographyfortheexaminationofocularandperiocularstructures.

n SUBJECTS AND METHODS:Fivepatients,aged22 to75 years,who eachhadoneblind eyewere in-cluded.Patientsunderwentultrasoundelastographyoftheirblindeyeandperioculartissuesusinga7-13MHzprobe. Strain grayscale and color-coded elastographicmapswererecorded.Intheformer,aquantitativeassess-mentofsignalintensity(correspondingtoelasticprop-erties)forspecificanatomicalstructureswasperformed.

n RESULTS:Anteriorvitreousdisplayedintermediateelasticity,whereasposteriorvitreousdisplayedlowelastic-ity.Medialandlateralrectusmuscleelasticitywashigherinprimarypositionthaninadductionorabduction.

n CONCLUSION:Thepatternofelasticimaginginthevitreouscavitycouldbeattributedtoposteriorvit-reousdetachment,whereas thatofmedialand lateralrectus muscles may be related to the level of musclefiberstrain.

[Ophthalmic Surg Lasers Imaging 2010;41:135-141.]

From the Departments of Ophthalmology (ETD, MKT, IGP) and Medical Imaging (EED, SG), University Hospital of Heraklion, Crete, Greece.

Accepted for publication March 30, 2009.The authors have no financial or proprietary interest in the materials presented herein.Address correspondence to Efstathios T. Detorakis, MD, Department of Ophthalmology, University Hospital of Heraklion, Crete, Greece.doi: 10.3928/15428877-20091230-24

INTRODUCTION

Thedeterminationof theelasticityof living tissueshasbeenusedasanimportantindicatorofdiseasebecausethemechanicalpropertiesofdiseasedtissuearetypicallydifferent from those of the normal tissue surroundingthem.1 Elastography is a method of imaging and mea-suring the elastic properties of tissues based on staticcompression and cross-correlation methods.2The mainelastographic techniques include magnetic resonanceelastographyandultrasoundelastography.3Intheformermethod,constrainedmodulusreconstructiontechniqueshavebeenemployed,assumingthatthegeometryofnor-

malandsuspicioustissuesisavailablefrommagneticreso-nanceimagingsegmentation.3Inthelattermethod,thefootprintoftheultrasoundprobeisusedtocompressthetissuesaxiallyandtissueaxialdisplacementsareestimatedwithcross-correlationanalysisappliedtopre-decompres-sionandpost-decompressionechoes.3

Byemployingultrasoundelastography,avarietyofnormal and diseased living human tissues and organshavebeenevaluated,includinglymphnodes,4prostate,5articularcartilage,6pancreas,7kidney,8skin,9andbreast.10Through thedevelopmentofultra-fast algorithms tai-loredtosuitablehardware,ultrasoundelastographycancurrentlybeperformed ina typicalclinicalultrasound

Page 2: Real-Time Ultrasound Elastographic Imaging of Ocular and ... · Ophthalmic Surgery, laSerS & imaging · VOl 41, nO 1, 2010 135 e x p e r i m e n t a l s c i e n c e i m a g i n g

136 cOpyright ©SlacK incOrpOrated

i m a g i n g i m a g i n g

settingatquasireal-time(approximatelyataframerateof8frames/sec)andwiththeuseofahandheldtransduc-er(asopposedtothepreviouslyusedframe-suspendedset-up),duringandsimultaneouslywithanultrasoundexamination.1Inthisstudy,wepresentfindingsfromul-trasoundelastographyinlivinghumanocularandperi-oculartissues.Itisapreliminaryfeasibilitystudyinblindeyes,whichcouldhelpindeterminingthepotentialroleofultrasoundelastographyintheevaluationofnormalanddiseasedocularandperioculartissues.

SUBJECTS AND METHODS

Patients were recruited from the Department ofOphthalmology of the University Hospital of Her-aklion,Crete,Greece.Elastography imagingwasper-formedattheDepartmentofMedicalImagingoftheUniversityHospitalofHeraklion,Crete,Greece.Fiveadult patients, three men and two women, who hadsufferedpermanentandcomplete(nolightperception)vision loss inoneeyewere studied.Theexaminationofblindeyeswasbasedonsafetyissuesbecausetheuseof acoustic radiation force as the stressingagentmayrequireintensitiesexceedingthoseallowedbytheU.S.Food and Drug Administration.11 Participants gavewritten informed consent to a protocol approved bytheInstitutionalReviewBoardinconformitywiththetenetsoftheDeclarationofHelsinki.

Meansubjectage(±standarddeviation)was52±7years,witharangeof22to75years.Demographicandclinicalcharacteristicsofsubjectsstudied,includ-ingage,gender,andcauseofunilateralblindness,arepresented inTable1.Amedical andophthalmichis-torywasrecordedfromeachpatient.Acomprehensiveophthalmicexaminationwasalsoperformed,includingapplanationtonometry,cornealpachymetry,andaxiallengthmeasurementoftheexaminedeye.

Each subject underwent combined ultrasound B-modeandelastographyimagingoftheblindeyeandip-silateralorbit.Allelastographicstudieswereperformedbythesameexperiencedexaminer(EED).Acommer-ciallyavailableultrasoundsystem(SiemensAntares,Pre-mium Edition; Siemens Medical Solutions, Erlangen,Germany),equippedwithspecificsoftwaretoperformelastography (eSie-touch elasticity; Siemens MedicalSolutions), was used. The ultrasound examination ofallvolunteersincludedB-modescanning(usinga7-13MHzprobe)andreal-timefreehandelastography.

Subjectswereexamined in the supineposition.Anadequate amount of coupling gel was applied over thegentlyclosedeyelids.Real-timefreehandelastographywasperformedbyapplyingsubtlemanualcompressionwiththetransducerovertheregionofinterest(ROI).TheROIwassettoincludetheeyeballandadjacentorbitalstruc-tures.Measurementswererecordedinatransversesectionthroughtheequatoroftheeyeball.TheB-modeandelas-tographicimages(colorandgrayscale)weredisplayedside-by-sideonasplit-screendisplay.Inthecaseofgrayscaleelastographicimages,thelowerluminositysignal(darker)represented areas of lower elasticity, whereas the higherluminosity signal (brighter) represented areas of higherelasticity.Inthecaseofcolor-coded(pseudo-chromatic)real-timeimages(superimposedontheB-modeimage),thecolorcodeindicatedtherelativestiffnessofthetissueswithintheROIandrangedfromred(moststiff)toblue(leaststiff).Greenandyellowcolorsindicatedintermedi-atestiffnesses.Color-codedimageswereconstructedau-tomaticallywiththesamesettingsthroughoutallstudies.To ensure reproducibility, three compression-relaxationcycleswereappliedtotheorbitandtheimageswerestoredascine-loopsinthememoryoftheultrasoundsystem.Toensurecorrectapplicationofthetechnique,onlytheim-ages where the elastogram consistently overlapped withtheB-modeimagewereusedforevaluation.

Table1

Demographic and Clinical Characteristics of Patients StudiedPatient Gender Age (Y) Eye Studied Cause of Visual Loss

1 Male 75 left Opticneuropathy

2 Male 62 Right absoluteglaucoma

3 Female 28 left absoluteglaucoma

4 Male 22 left Opticneuropathy

5 Female 58 Right Retinaldetachment

Page 3: Real-Time Ultrasound Elastographic Imaging of Ocular and ... · Ophthalmic Surgery, laSerS & imaging · VOl 41, nO 1, 2010 135 e x p e r i m e n t a l s c i e n c e i m a g i n g

i m a g i n g

Ophthalmic Surgery, laSerS & imaging · VOl 41, nO 1, 2010 137

i m a g i n g

Subjectswereimagedwiththeeyesinprimarypo-sition, adduction, and abduction. Transverse sections(throughtheequatoroftheglobe)wereexamined.Theopticnervedarkzonewasidentifiedinallcasesandusedasalandmarkfortheimagingoftheocularandorbitalstructures,includingtheanteriorandposteriorvitreouscavity,medialandlateralintraconalorbitalfatpads,andmedial and lateral rectus muscles. In one case (case 5inTable1,sufferingfromchronicretinaldetachment),theelasticpropertiesofdetachedretinaandsubretinalfluidwerealsoexamined.DigitalgrayscaleelastographicimageswerequantifiedandanalyzedusingeFilmwork-station(eFilmMedicalInc.,Toronto,Ontario,Canada)andthe imageprocessingtoolboxoftheEvoRadRIS/PACSsystem(EvoRad,Athens,Greece).

Thecross-sectionalareaofimagedstructures,includ-ingtheanteriorandposteriorvitreouscavity(anteriorandposteriortotheglobeequator),posteriorsclera(betweenthemedialandlateralrectusinsertions),andopticnerveandintraconalfatpads(betweentheopticnerveandme-dialorlateralrectusmuscle)weredelineatedattransversesectionsnearesttotheequatoroftheeyeball.Themeanlu-minositysignalofthedelineatedstructureswasmeasured(histogram,luminositychannel)usingAdobePhotoshop,version7.0(Adobe,SanJose,CA).Likewise,themedialandlateralrectusmusclesweredelineatedinprimarygaze,

adduction,andabduction.Themeanluminositysignalofdelineatedmusclesinadductionandabductionwasalsorecordedandrespectivevaluesbetweendifferentgazepo-sitionswerecompared(paired-samples t test).StatisticalanalyseswereperformedusingSPSS8.0software(SPSS,Inc.,Chicago,IL).

RESULTS

Elastographic imaging of ocular and periocularstructures resulted in reproducible findings in all sub-jectsexaminedinthisstudy.Ingrayscaleimages,thein-traconalorbitalfatpadsappearedwithahigherluminos-itysignal(moreelastic)thantheopticnerveandmedialandlateralrectusmuscles(Fig.1B).Attheposteriorpoleoftheglobe,arimoflowerluminositysignal(lesselastictissue)appearedinterlacedbetweentworimsofhigherluminosity signal (more elastic tissue), as presented inFigure 1B. These possibly corresponded to the sclera(lesselasticrim),retinaandchoroid(moreelasticrimattheinnersurfaceoftheglobe),andintraconalfatpads(moreelasticrimattheinnersurfaceoftheglobelater-allyandmediallytotheopticnerve).Theiridolenticulararea and anterior vitreous cavity appeared of interme-diateluminosity(intermediateelasticity)inallsubjects,whereastheposteriorvitreouscavityappearedoflower

Figure 1.Grayscaleultrasoundtransverseelastographicimageof(a)aneyeandorbitand(b)correspondingb-scanimage.Theretinaandchoroid(RC)arepresentedwithhigherluminosity(moreelastic)thanthesclera(*).Theintraconalfatpads(+)lateralandmedialtotheopticnervearealsoshownwithahigherluminosity(moreelastic).Themedialandlateralrectusmuscle(MRandlR,respectively)andtheopticnerve(ON)areshownwithintermediateluminosity.Theanteriorvitreouscavity(aV)isshownwithintermediateluminosity(intermediateelasticity)comparedwiththeposteriorvitreouscavity(lowerluminosityand,therefore,lowerelasticity).Thegrayscalefromwhite(moreelastic)toblack(lesselastic)isshownbetweenaandb.

Page 4: Real-Time Ultrasound Elastographic Imaging of Ocular and ... · Ophthalmic Surgery, laSerS & imaging · VOl 41, nO 1, 2010 135 e x p e r i m e n t a l s c i e n c e i m a g i n g

138 cOpyright ©SlacK incOrpOrated

i m a g i n g i m a g i n g

luminosity(lesselastic).Acolor-codedimageandcor-respondingB-scanimageofaneyeandperioculartissuesarepresentedinFigure2(sameeyeasinFig.1).Meanluminosityvaluesofopticnerve,intraconalfatpads,lat-eralandmedialrectusmuscles(primarygazeposition),anteriorandposteriorvitreouscavity,andposteriorscleraarepresentedinTable2.

Detachedretinainaneyewithchronicretinaldetach-mentappearedasabandofhighelasticityembeddedwiththeposteriorvitreouscavity.Inthesameeye,subretinalfluidappearedwithlowerluminositysignal(lesselastic),retinalpigmentepitheliumandchoroidallayersappearedwithintermediateluminosity(intermediateelasticity),andscleraappearedwithlowluminosity(lowerelasticity).AneyewithchronicretinaldetachmentispresentedinFigure3(B-scanandgrayscaleelastographicmap)andFigure4(B-scanandcolor-codedelastographicmap).

Theopticaldensitiesofthemedialandlateralrectus

musclesweresignificantlydecreasedinbothadductionandabductioncomparedwiththeprimarygazeposition(Table3).Grayscaleultrasoundelastographicimagesofthelateralrectusmuscleinprimarypositionandabduc-tionarepresentedinFigure5.Color-codedelastographicimagesofthemedialrectusmuscleinprimarypositionandadductionarepresentedinFigure6.

DISCUSSION

Thisstudyevaluatedthefeasibilityofperformingul-trasoundelastographyinocularandperioculartissuesbyemployingacommerciallyavailablesystem.Resultsimplythatthetechniqueisfeasibleandcanprovideinformationoftheelasticityofocularandperioculartissuesthatmayhaveclinicalimplicationsinvariousconditions.

Resultsfromseveralpreviousstudiesemployingul-trasoundelastographyintheinvivoexaminationofvari-

Table2

Mean Area Delineated and Mean Luminosity Values (Mean ± SD) of Optic Nerve, Medial and Lateral Intraconal Fat Pads, Anterior and Posterior Vitreous Cavity, and Posterior Sclera

Delineated Structure Area (mm2, Mean ± SD) Luminosity (Mean ± SD)

Opticnerve 92.1±16.9 69.4±22.8

Medialandlateralintraconalfatpads 141.2±24.2 100.6±32.4

anteriorvitreouscavity 130.1±19.1 96.3±27.5

Posteriorvitreouscavity 113.0±40.3 25.1±10.6

Posteriorsclera 104.2±18.1 34.2±12.9

SD = standard deviation.

Figure 2.Color-codedultrasoundtransverseelastographicimageofthesameeyepresentedinFigure1(b)andcorrespondingb-scanimage(a).Thecolorscalefromblue(moreelastic)tored(lesselastic)isshownbetweenaandb.

Page 5: Real-Time Ultrasound Elastographic Imaging of Ocular and ... · Ophthalmic Surgery, laSerS & imaging · VOl 41, nO 1, 2010 135 e x p e r i m e n t a l s c i e n c e i m a g i n g

i m a g i n g

Ophthalmic Surgery, laSerS & imaging · VOl 41, nO 1, 2010 139

i m a g i n g

Figure 3.Grayscaleultrasoundtransverseelastographicimageofaneyewithchronicretinaldetachment(b).Thedetachedretina(RD)appearsmoreelastic(withhigherluminosity),comparedwiththeposteriorvitreouscavity(PV)andlong-standing(viscous)subretinalfluid(SRF).Thecomplexofretinalpigmentepithelium(RPe)andchoroid(C)alsoappearswithahighluminosity(elastic),whereastheanteriorvitreouscavity(aV)appearswithintermediateluminosity.Onthecontrary,thesclera(S)isshownwithalowluminosity(inelastic).acorrespondingb-scanimageisalsopresented(a),whereasthegrayscalefromwhite(moreelastic)toblack(lesselastic)isshownbetweenaandb.

Figure 4.Color-codedultrasoundtransverseelastographicimageofthesameeyepresentedinFigure3(b)andcorrespondingb-scanimage(a).Thecolorscalefromblue(moreelastic)tored(lesselastic)isshownbetweenaandb.

Table3

Mean Luminosity Signal of the Medial and Lateral Rectus Muscles in Primary Position, Adduction, and Abduction, and Statistical Significance of Respective Differences

Muscle Adduction Pa Primary Pa Abduction

Medialrectus 21.1±13.4 .11 25.8±12.1 .15 22.3±14.0

lateralrectus 23.1±17.8 .23 25.7±14.3 .16 22.9±16.7aPaired samples t test.

Page 6: Real-Time Ultrasound Elastographic Imaging of Ocular and ... · Ophthalmic Surgery, laSerS & imaging · VOl 41, nO 1, 2010 135 e x p e r i m e n t a l s c i e n c e i m a g i n g

140 cOpyright ©SlacK incOrpOrated

i m a g i n g i m a g i n g

oustissues,otherthanocularandperiocularstructures,implythatthetechniquecanaccuratelyassesstheme-chanicalpropertiesoftissues,differentiatenormalfromabnormal tissues, and provide indications for the na-tureoftumors.4-10Theeyediffersfromotherorgansinwhichelastographyhasbeenappliedsofarbecauseitisnotsolidandhasaheterogeneousinternalstructure.Thecalculationoftheelasticmodulusofatissuedependsonassumptionsonitsproperties(ideallythetissueshouldbe incompressible, isotropic, and solid).2Thecyst-likeinternalconfigurationandheterogeneousarchitectureoftheeyeimplythatitmaydeviatefromthepreviouslyde-scribedidealelastictissuemodelandinsteaddisplay,atleastinpart,poroelasticproperties(inporoelasticmod-els,asolidskeletonincorporatesamountsoffluidwithinitspores).2Nevertheless, the fact that imagesobtainedfromallsubjectswerereproducibleandcompatiblewiththehistologiccharacteristicsoftissuesexaminedimplythat ultrasound electrography may be applied for thestudyofocularandperiocularstructures.ThetechniqueisnotcurrentlyapprovedbytheU.S.FoodandDrugAdministration for routine ophthalmic applications.11However,becausethestressingpulseisbrief(onlyafew

millisecondsinduration),thepotentialfordamagefromtemperature increase is minimized and probably doesnotintroduceaserioussafetyissue.12

Inthecaseoftheeyeball,thevitreouscavitydisplayedaheterogeneousappearanceinbothgrayscaleandcolor-codedelastographic images.Thesignal fromtheanteri-orvitreouscavitycorrespondedto intermediateorhighelasticity,whereas the signal fromtheposteriorvitreouscavity corresponded to low elasticity.This finding maybeexplainedbythefactthatalleyesexaminedhadpos-teriorvitreousdetachment (evident in indirectophthal-moscopy)andthustheposteriorvitreouscavitywasfilledwithaqueousfluid.The latterdisplayeda lowelasticitysignalduetoitsincompressiblenature.Onthecontrary,the degenerated vitreous scaffold (partly compressible)wasdisplacedintheanteriorvitreouscavity,whichthusdisplayedanintermediateelasticitysignal.However,thisfindingmayalsobeartefactual,resultingfromexcessiveincoherentfluidmotioninsidethevitreouscavityunderexternalcompression,ashaspreviouslybeendescribedforthyroidcysticlesionswithcolloidcontent.13

The fact that themedial and lateral rectusmuscles

Figure 6. Transverse b-scan images (a and C) and respectivecolor-codedultrasoundelastographicimages(bandD)ofaneyeinprimaryposition(aandb)andadduction(CandD).Thecentralportionofthemedialrectusmuscle(MR)displaysadifferentcolorpattern in adduction (red-yellow) than in primary position (blue-green),implyingdecreasedelasticityinthelattercondition.Thecol-orscalefromblue(moreelastic)tored(lesselastic)isalsoshown.

Figure 5.Transverse b-scan images (a and C) and respectivegrayscaleultrasoundelastographicimages(bandD)ofaneyeinprimaryposition(aandb)andabduction(CandD).Thelateralrectusmuscle(lR)isshownwithdecreasedluminosity(lesselas-tic) inabductioncomparedwithprimaryposition.Thegrayscalefromwhite(moreelastic)toblack(lesselastic)isalsoshown.

Page 7: Real-Time Ultrasound Elastographic Imaging of Ocular and ... · Ophthalmic Surgery, laSerS & imaging · VOl 41, nO 1, 2010 135 e x p e r i m e n t a l s c i e n c e i m a g i n g

i m a g i n g

Ophthalmic Surgery, laSerS & imaging · VOl 41, nO 1, 2010 141

i m a g i n g

displayed a signal of lower elasticity with the globe inprimarygazepositionandasignalofhigherelasticityinadduction or abduction (although not at a statisticallysignificantlevel)mayreflectthetensionstatusofmusclefibers in thesemuscles indifferent gazedirections.Thepossibilityofevaluatingtheelasticpropertiesofextraocu-lar muscles by ultrasound elastography may be appliedinconditionsinwhichmusclerigidityisaltered,suchasGraves’orbitopathy,inwhichrestrictivefibroticchangesrendertheaffectedtissuesinelastic.14Therefore,ifnorma-tivedataarecollectedontheelasticityofextraocularmus-cles,ultrasoundelastographycouldhavediagnosticvalueinthediagnosisofGraves’orbitopathyandpossiblyinthedifferentialdiagnosisbetweenGraves’orbitopathyandor-bitalmyositis,whichisacommonclinicalquestion.

Thequantitativeevaluationoftheelasticityoftheocularwallsmaybeusedintheassessmentoftheocularrigidity.Thelatteriscurrentlyindirectlycalculatedbymeasuringchangesintheintraocularpressurefollowinggradedvolumedisplacementandemployingnormativedatafromcadavericeyes(Friedenwalddiagram).15Thismethodhasreceivedcriticismbecausetheelasticprop-ertiesofcadavericeyesdifferfromthoseinlivingeyes.15Althoughmethodsofdirectmeasurementofocularri-gidityinlivinghumaneyeshavebeendescribed,theyare interventional and include the intraoperative in-traocularinsertionofmanometricprobes.16Theeasiernoninvasiveelastographicexaminationofocularrigid-itycouldthusleadtotheevaluationoftheroleofthisparameterinvariousconditions,includingglaucoma17andage-relatedmaculardegeneration,18inwhichrigid-itymayplayasignificantpathogeneticrole.

Although the current report did not include pa-tientswithintraocularorintraorbitaltumors,duetoitsdesignasafeasibilitystudyitwouldbereasonabletoas-sumethatoncethevalueofultrasoundelastographyforocularandperioculartissuesisestablisheditsusemaybeexpandedtotheevaluationofocularorperiocularneo-plasticconditions.Themethodisalreadyinwidespreaduseforthesystematicstudyofvariousnon-ophthalmictumors.4,5,7,8,10Thefactthatdetachedretinawasimagedin both grayscale and color-coded elastographic mapsimpliesthatthetechniquecanbeusedforthediagnosisand study of retinal detachment and possibly the dif-ferentiationbetweenretinaltissuehemorrhagicormem-branousformationsinthevitreouscavity.

Thesmallnumberofpatientsstudiedandnon-ran-domizedselectionmaybeconsideredweakpointsofthis

study.Furthermore,luminositysignalmeasurementcor-respondingtoelasticityvalueswasindirectlyobtainedus-ingAdobePhotoshop7.0becausetheelastographysystemuseddidnotprovidedirectluminositymeasurementsofthestructuresexamined.Ontheotherhand,thefactthatallpatientswereexaminedbythesameexaminerusingthesametechniquepossiblyenhancesthevalidityofresults.Futureresearchinthisareamaysetspecificnormativedataofelasticityforocularandperioculartissuesandexplorethepotentialroleofultrasoundelastographyintheevalu-ationofvariousophthalmicpathologicalconditions.

REFERENCES

1. KonofagouEE.Quovadiselasticityimaging?Ultrasonics.2004;42:331-336.

2. KonofagouEE,HarriganTP,OphirJ,KrouskopTA.Poroelastogra-phy: imaging the poroelastic propertied of tissues. Ultrasound Med Biol.2001;27:1387-1397.

3. LuoJ,YingK,BaiJ.Elasticityreconstructionforultrasoundelastog-raphy using a radial compression: an inverse approach. Ultrasonics.2006;44:195-198.

4. SaftoiuA,VilmannP,CiureaT,etal.DynamicanalysisofEUSusedforthedifferentiationofbenignandmalignantlymphnodes.Gastro-intest Endosc.2007;66:291-300.

5. PatilAV,GarsonCD,HossackJA.3Dprostateelastography:algorithm,simulationsandexperiments.Phys Med Biol.2007;52:3643-3663.

6. Nieminen HJ, Julkunen P,Toyras J, Jurvelin JS. Ultrasound speedinarticularcartilageundermechanicalcompression.Ultrasound Med Biol.2007;3:1755-1766.

7. JanssenJ,SchlorerE,GreinerL.EUSelastographyofthepancreas:feasibility and pattern description of the normal pancreas, chron-ic pancreatitis, and focal pancreatic lesions. Gastrointest Endosc.2007;65:971-978.

8. PareekG,WilkinsonER,BharatS,etal.Elastographicmeasurementsofin-vivoradiofrequencyablationlesionsofthekidney.J Endourol.2006;20:959-964.

9. Mofid Y, Ossant F, Imberdis C, Josse G, Patat F. In-vivo imagingof skin under stress: potential of high-frequency (20 MHz) static2-D elastography. IEEE Trans Ultrason Ferroelectr Freq Control.2006;53:925-935.

10. ItohA,UenoE,TohnoE,etal.Breastdisease:clinicalapplicationofUSelastographyfordiagnosis.Radiology. 2006;239:341-350.

11. NightingaleKR,PalmeriML,NightingaleRW,TraheyGE.Onthefeasibilityofremotepalpationusingacousticradiationforce.J Acoust Soc Am2001;110:625-634.

12. DuckFA.Medical andnon-medicalprotection standards forultra-soundandinfrasound.Prog Biophysics Mol Biol.2007;93176-93191.

13. LyshchikA,HigashiT,AsatoR,etal.ThyroidglandtumordiagnosisatUSelastography.Radiology.2005;237:202-211.

14. Riemann CD, Foster JA, Kosmorsky GS. Direct orbital manom-etry inpatientswiththyroid-associatedorbitopathy.Ophthalmology.1999;106:1296-1302.

15. FriedenwaldJS.Contributiontothetheoryandpracticeoftonom-etry.Am J Ophthalmol.1937;20:985-1024.

16. Pallikaris IG, Kymionis GD, Ginis HS, Kounis GA, TsilimbarisMK.Ocularrigidityinlivinghumaneyes.Invest Ophthalmol Vis Sci.2005;46:409-414.

17. AgrawalKK,SharmaDP,BhargavaG,SanadhyaDK.Scleralrigidityinglaucoma,beforeandduring topical antiglaucomadrug therapy.Indian J Ophthalmol.1991;39:85-86.

18. PallikarisIG,KymionisGD,GinisHS,KounisGA,ChristodoulakisE,TsilimbarisMK.Ocularrigidityinpatientswithage-relatedmacu-lardegeneration.Am J Ophthalmol. 2006;141:611-615.