reactive energy managementstudiecd.dk/pdfs/kap_12/varplus_pfced310003en.pdfreactive energy your...

98
Energy management Reactive Energy management Catalogue September 2010 Low Voltage components PE90156

Upload: others

Post on 15-Feb-2021

2 views

Category:

Documents


0 download

TRANSCRIPT

  • Energy management

    Reactive Energy management

    Catalogue September 2010

    Low Voltage components

    PE

    9015

    6

  • Your requirements….Reactive Energy management

    Optimize energy consumption• By reducing electricity bills,• By reducing power losses,• By reducing CO2 emissions.

    Increase power availability• Compensate for voltage sags detrimental to process operation,• Avoid nuisance tripping and supply interruptions.

    Improve your business performance• Optimize installation size,• Reduce harmonic distortion to avoid the premature ageing of equipment and destruction of sensitive components.

  • 1

    Reactive Energy management

    Reactive energy managementIn electrical networks, reactive energy results in increased line currents for a given active energy transmitted to loads.

    The main consequences are:

    • Need for oversizing of transmission and distribution networks by utilities,• Increased voltage drops and sags along the distribution lines, • Additional power losses.

    This results in increased electricity bills for industrial customers because of:

    • Penalties applied by most utilities on reactive energy,• Increased overall kVA demand,• Increased energy consumption within the installations.

    Reactive energy management aims to optimize your electrical installation by reducing energy consumption, and to improve power availability. Total CO2 emissions are also reduced.

    Utility power bills are typically reduced by 5% to 10%.

    Our solutions….

    “Our energy con-sumption was reduced

    by 9%after we installed 10 capacitor banks with detuned reactors. Electricity bill optimised by 8% and payback in 2 years.”Testifies MichelinAutomotive in France.

    “Energy consumption

    reduced by 5%with LV capacitor bank and active filterinstalled.”POMA OTIS Railways,Switzerland.

    “70 capacitor banks with detuned reac-tors installed, energy consumption reduced by 10%, electrcity bill optimised by 18%, payback in just

    1 year.”Madrid Barrajas airport Spain.

  • 2

    Improve electrical networks and reduce energy costs

    Reactive Energy management

    Power Factor CorrectionEvery electric machine needs active power (kW) and reactive power (kvar) to operate. The power rating of the installation in kVA is the combination of both: (kVA)² = (kW)² + (kvar)².

    The Power Factor has been defined as the ratio of active power (kW) to apparent power (kVA).

    Power Factor = (kW) / (kVA).

    The objective of Reactive Energy management is improvement of Power Factor, or “Power Factor Correction”.

    This is typically achieved by producing reactive energy close to the consuming loads, through connection of capacitor banks to the network.

    DE

    9015

    4

  • 3

    Ensure reliability and safety on installations

    Reactive Energy management

    Thanks to the know-how developed over 50 years, Schneider Electric ranks as the global specialist in Energy management providing a unique and comprehensive portfolio. Schneider Electric helps you to make the most of your energy with innovative, reliable and safe solutions.

    Quality and reliability• Continuity of service thanks to the high performance and long life expectancy of capacitors.• 100% testing in manufacturing plant.• Design and engineering with the highest international standards.

    Safety• Tested safety features integrated on each phase. • Over-pressure system for safe disconnection at the end of life.• All materials and components are free of PCB pollutants.

    Efficiency and productivity• Product development including innovation in ergonomics and ease of installation and connection.• Specially designed components to save time on installation and maintenance.• All components and solutions available through a network of distributors and partners in more than 100 countries.

    PE90075PE90081 PE90076PE90160

  • 4

    Quality & Environment

    Schneider Electric undertakes to reduce the energy bill and CO2 emissions of its customers by proposing products, solutions and services which fit in with all levels of the energy value chain. The Power Factor Correction and harmonic filtering offer form part of the energy efficiency approach.

    PE

    5673

    3

    Quality certified ISO 9001 A major strengthIn each of its units, Schneider Electric has an operating organization whose main role is to verify quality and ensure compliance with standards. This procedure is:• uniform for all departments;• recognized by numerous customers and official organizations. But, above all, its strict application has made it possible to obtain the recognition of independent organizations.The quality system for design and manufacturing is certified in compliance with the requirements of the ISO 9001 Quality Assurance model.

    Stringent, systematic controlsDuring its manufacture, each equipment item undergoes systematic routine tests to verify its quality and compliance:• measurement of operating capacity and tolerances;• measurement of losses;• dielectric testing;• checks on safety and locking systems;• checks on low-voltage components;• verification of compliance with drawings and diagrams.The results obtained are recorded and initialled by the Quality Control Department on the specific test certificate for each device.

    Reactive Energy management

  • 5

    Power Factor Correction and harmonic filtering

    A new solution for building your electrical installations

    A comprehensive offerPower Factor Correction and harmonic filtering form part of a comprehensive offer of products perfectly coordinated to meet all medium- and low-voltage power distribution needs.All these products have been designed to operate together: electrical, mechanical and communications consistency.The electrical installation is accordingly both optimized and more efficient:• improved continuity of service;• reduced power losses;• guarantee of scalability;• efficient monitoring and management.You thus have all the trumps in hand in terms of expertise and creativity for optimized, reliable, expandable and compliant installations.

    Tools for easier design and setupWith Schneider Electric, you have a complete range of tools that support you in the knowledge and setup of products, all this in compliance with the standards in force and standard engineering practice.These tools, technical notebooks and guides, design aid software, training courses, etc. are regularly updated.

    Because each electrical installation is a specific case, there is no universal solution. The variety of combinations available allows you to achieve genuine customization of technical solutions. You can express your creativity and highlight your expertise in the design, development and operation of an electrical installation.

    Schneider Electric joins forces with your expertise and your creativity for optimized, reliable, expandable and compliant installations.

    PE

    9008

    8

  • 6

  • 7

    Main contents

    Power Factor Correction guideline 9

    Low Voltage capacitors 21

    Overview 1-5

    Detuned reactors 75

    Power Factor controllers 81

    Contactors 85

    Appendix 89

    Reactive Energy Management

  • 8

  • 9

    Reactive Energy Management Power Factor Correction guideline

    Contents

    Why reactive energy management? 10Principle 10

    Benefits 11

    Method for determining compensation 12Calculation of the required reactive power 12

    Selection of the compensation mode 13

    Selection of the compensation type 14

    Allowing for operating conditions and harmonics 15

    Low Voltage capacitors with detuned reactors 16

    Rated voltage and current 17

    Capacitor selection guide 18

    Construction of references - Principle 19

  • 10

    Why reactive energy management?

    All AC electrical networks consume two types of power: active power (kW) and reactive power (kvar):• The active power P (in kW) is the real power transmitted to loads such as motors, lamps, heaters, computers, etc. The electrical active power is transformed into mechanical power, heat or light.• The reactive power Q (in kvar) is used only to power the magnetic circuits of machines, motors and transformers.

    The apparent power S (in kVA) is the vector combination of active and reactive power.

    The circulation of reactive power in the electrical network has major technical and economic consequences. For the same active power P, a higher reactive power means a higher apparent power, and thusa higher current must be supplied.

    The circulation of active power over time results in active energy (in kWh). The circulation of reactive power over time results in reactive energy (kvarh).

    In an electrical circuit, the reactive energy is supplied in addition to the active energy.

    Due to this higher supplied current, the circulation of reactive energy in distribution networks results in:• Overload of transformers;• Higher temperature rise in power cables; • Additional losses;• Large voltage drops;• Higher energy consumption and cost;• Less distributed active power.

    DE

    9008

    7

    In this representation, the Power Factor (P/S) is equal to cosφ.

    Powergeneration

    Transmissionnetwork Motor

    Active energy Active energy

    Reactive energy Reactive energy

    DE

    9007

    1

    Reactive energy supplied and billed by the energy provider.

    CapacitorsCapacitors

    Powergeneration

    Transmissionnetwork Motor

    Active energy Active energy

    Reactive energy

    DE

    9007

    1

    The reactive power is supplied by capacitors. No billing of reactive power by the energy supplier.

    For these reasons, there is a great advantage in generating reactive energy at the load level in order to prevent the unnecessary circulation of current in the network. This is what is known as “power factor correction”. This is obtained by the connection of capacitors, which produce reactive energy in opposition to the energy absorbed by loads such as motors.

    The result is a reduced apparent power, and an improved power factor P/S’ as illustrated in the diagram opposite.

    The power generation and transmission networks are partially relieved, reducing power losses and making additional transmission capacity available.

    Q

    cQ

    DE

    9008

    8Power Factor Correction guideline

    Principle of reactive energy management

  • 11

    Savings on the electricity bill

    • Eliminating penalties on reactive energy and decreasing kVA demand:• Reducing power losses generated in the transformers and conductors of the installation.

    Example:Loss reduction in a 630 kVA transformer PW = 6,500 W with an initial Power Factor = 0.7.With power factor correction, we obtain a final Power Factor = 0.98.The losses become: 3,316 W, i.e. a reduction of 49%.

    Reducing voltage drops in the installation

    Installing capacitors allows voltage drops to be reduced upstream of the point where the power factor correction device is connected. This prevents overloading of the network and reduces harmonics, so that you will not have to overrate your installation.

    Optimized management of reactive energy brings economic and technical advantages.

    Increasing available power

    A high power factor optimizes an electrical installation by allowing better use of the components. The power available at the secondary of a MV/LV transformer can therefore be increased by fitting power factor correction equipment on the low voltage side.

    The table opposite shows the increased available power at the transformer output through improvement of the Power Factor from 0.7 to 1.

    Power Increasedfactor available power0.7 0 %0.8 + 14 %0.85 + 21 %0.90 + 28 %0.95 + 36 %1 + 43 %

    Reducing installation size

    Installing power factor correction equipment allows conductor cross-section to be reduced, since less current is absorbed by the compensated installation for the same active power.

    The opposite table shows the multiplying factor for the conductor cross-section with different power factor values.

    Power Cable cross-factor section multi- plying factor1 10.80 1.250.60 1.670.40 2.50

    Benefits of reactive energy management

  • 12

    Method for determining compensation

    The objective is to determine the required reactive power Qc (kvar) to be installed, in order to improve the power factor cos φ and reduce the apparent power S.

    For φ’ < φ, we obtain: cos φ’ > cos φ and tan φ’ < tan φ.

    This is illustrated in the diagram opposite.

    Qc can be determined from the formula Qc = P. (tan φ - tan φ‘), which is deduced from the diagram.

    Step 1: Calculation of the required reactive powerThe selection of Power Factor Correction equipment can follow a 4-step process:

    • Calculation of the required reactive energy.

    • Selection of the compensation mode:- Central, for the com-plete installation;- By sector;- For individual loads, such as large motors.

    • Selection of the compensation type:- Fixed, by connection of a fixed-value capa-citor bank;- Automatic, by connection of a diffe-rent number of steps, allowing adjustment of the reactive energy to the required value;- Dynamic, for com-pensation of highly fluctuating loads.

    • Allowance for operating conditions and harmonics.

    Qc = power of the capacitor bank in kvar.P = active power of the load in kW.tan φ = tangent of phase shift angle before compensation.tan φ’ = tangent of phase shift angle after compensation.

    The parameters φ and tan φ can be obtained from billing data, or from direct measurement in the installation. The following table can be used for direct determination.

    Before Reactive power (kvar) to be installed per kW of load,compensation in order to get the required cos φ’ or tan φ’ tan φ’ 0.75 0.62 0.48 0.41 0.33 0.23 0.00 cos φ’ 0.80 0.85 0.90 0.925 0.95 0.975 1.000tan φ cos φ1.73 0.5 0.98 1.11 1.25 1.32 1.40 1.50 1.731.02 0.70 0.27 0.40 0.54 0.61 0.69 0.79 1.020.96 0.72 0.21 0.34 0.48 0.55 0.64 0.74 0.960.91 0.74 0.16 0.29 0.42 0.50 0.58 0.68 0.910.86 0.76 0.11 0.24 0.37 0.44 0.53 0.63 0.860.80 0.78 0.05 0.18 0.32 0.39 0.47 0.57 0.800.75 0.80 0.13 0.27 0.34 0.42 0.52 0.750.70 0.82 0.08 0.21 0.29 0.37 0.47 0.700.65 0.84 0.03 0.16 0.24 0.32 0.42 0.650.59 0.86 0.11 0.18 0.26 0.37 0.590.54 0.88 0.06 0.13 0.21 0.31 0.540.48 0.90 0.07 0.16 0.26 0.48

    g q φ φtan φ’ 0.23 0.000.75 0.62 0.48 0.41 0.33 00.33

    Example: Consider a 1000kW motor with cos φ = 0.8 (tan φ = 0.75).In order to obtain cosφ = 0.95, it is necessary to install a capacitor bank with a reactive power equal to k x P, i.e.: Qc = 0.42 x 1000 = 420 kvar.

    Power Factor Correction guideline

    P

    Q S

    S’

    DE

    9009

    1

    Qc

  • 13

    Step 2: Selection of the compensation modeThe location of low-voltage capacitors in an installation constitutes the mode of compensation, which may be central (one location for the entire installation), by sector (section-by-section), at load level, or some combi-nation of the latter two. In principle, the ideal compensation is applied at a point of consumption and at the level required at any moment in time.

    In practice, technical and economic factors govern the choice.

    The location for connection of capacitor banks in the electrical network is determined by:

    • the overall objective (avoid penalties on reactive energy, relieve transformer or cables, avoid voltage drops and sags);• the operating mode (stable or fluctuating loads);• the foreseeable influence of capacitors on the network characteristics;• the installation cost.

    Central compensation

    The capacitor bank is connected at the head of the installation to be compensated in order to provide reactive energy for the whole installation. This configuration is convenient for a stable and continuous load factor.

    Group compensation (by sector)

    The capacitor bank is connected at the head of the feeders supplying one particular sector to be compensated. This configuration is convenient for a large installation, with workshops having different load factors.

    Compensation of individual loads

    The capacitor bank is connected right at the inductive load terminals (especially large motors). This configuration is very appropriate when the load power is significant compared to the subscribed power. This is the ideal technical configuration, as the reactive energy is produced exactly where it is needed, and adjusted to the demand.

    CC : Central CompensationGC : Group CompensationIC : Individual CompensationM : Motor Load

    CC

    GC GC

    IC IC IC IC

    M M M M

    Circuit-breaker

    Transformer

    Supply Bus

  • 14

    Method for determining compensationPower Factor Correction guideline

    Step 3: Selection of the compensation typeDifferent types of compensation should be adopted depending on the performance requirements and complexity of control:• Fixed, by connection of a fixed-value capacitor bank;• Automatic, by connection of a different number of steps, allowing adjustment of the reactive energy to the required value;• Dynamic, for compensation of highly fluctuating loads.

    Fixed compensation This arrangement uses one or more capacitor(s) to provide a constant level of compensation. Control may be:

    • Manual: by circuit-breaker or load-break switch;• Semi-automatic: by contactor;• Direct connection to an appliance and switched with it.

    These capacitors are installed:

    • At the terminals of inductive loads (mainly motors);• At busbars supplying numerous small motors and inductive appliances for which individual compensation would be too costly;• In cases where the load factor is reasonably constant.

    Automatic compensation

    This kind of compensation provides automatic control and adapts the quantity of reactive power to the variations of the installation in order to maintain the targeted cos φ. The equipment is installed at points in an installation where the active-power and/or reactive-power variations are relatively large, for example:

    • On the busbars of a main distribution switchboard;• On the terminals of a heavily-loaded feeder cable.

    Where the kvar rating of the capacitors is less than or equal to 15% of the power supply transformer rating, a fixed value of compensation is appropriate. Above the 15% level, it is advisable to install an automatically-controlled capacitor bank.

    Control is usually provided by an electronic device (Power Factor Controller) which monitors the actual power factor and orders the connection or disconnection of capacitors in order to obtain the targeted power factor. The reactive energy is thus controlled by steps. In addition, the Power Factor Controller provides information on the network characteristics (voltage amplitude and distortion, power factor, actual active and reactive power …) and equipment status. Alarm signals are transmitted in case of malfunction.

    Connection is usually provided by contactors. For compensation of highly fluctuating loads, fast and highly repetitive connection of capacitors is necessary, and static switches must be used.

    Dynamic compensation

    This kind of compensation is required when fluctuating loads are present, and voltage fluctuations have to be prevented. The principle of dynamic compensation is to associate a fixed capacitor bank and an electronic var compensator, providing either leading or lagging reactive currents.

    The result is continuously varying fast compensation, perfectly suitable for loads such as lifts, crushers, spot welding, etc.

  • 15

    Step 4: Allowing for operating conditions and harmonicsCapacitors should be selected depending on the working conditions expected during their lifetime.

    Allowing for operating conditions

    The operating conditions have a great influence on the life expectancy of capacitors. The following parameters should be taken into account:• Ambient Temperature (°C);• Expected over-current, related to voltage disturbances, including maximum sustained overvoltage;• Maximum number of switching operations/year;• Required life expectancy.

    Allowing for harmonics

    Depending on the magnitude of harmonics in the network, different confi-gurations should be adopted. • Standard capacitors: when no significant non-linear loads are present.• Oversized capacitors: when a few non-linear loads are present. The rated current of capacitors must be increased in order to cope with the circulation of harmonic currents.• Harmonic rated capacitors used with detuned reactors. Applicable when a significant number of non-linear loads are present. Reactors are necessary in order to limit the circulation of harmonic currents and avoid resonance.• Tuned filters: when non-linear loads are predominant, requesting har-monic mitigation. A special design is generally necessary, based on on-site measurements and computer simulations of the network.

    Capacitor selection

    Different ranges with different levels of ruggedness are proposed:• "SDuty": Standard duty capacitors for standard operating conditions, and when no significant non-linear loads are present.• "HDuty": Heavy duty capacitors for difficult operating conditions, parti-cularly voltage disturbances, or when a few non-linear loads are present. The rated current of capacitors must be increased in order to cope with the circulation of harmonic currents.• "Energy": Specially designed capacitors, for harsh operating condi-tions, particularly high temperature.• "Harmonic HDuty" or "Harmonic Energy": harmonic rated capacitors used with detuned reactors. Applicable when a significant number of non-linear loads are present.

    To know more about the influence of harmonics in electrical installations see appendix page 90

    DE

    9007

    0

    Before After

  • 16

    Power Factor Correction guideline

    Low Voltage capacitors with detuned reactors

    Effective reactive energyIn the pages relating to detuned capacitor banks (Harmonic HDuty and Harmonic Energy), the reactive energy (kvar) given in the tables is the resul-ting reactive energy provided by the combination of capacitors and reactors.

    Capacitor rated voltageCapacitors have been specially designed to operate in detuned bank configu-rations. Parameters such as the rated voltage, over-voltage and over-currentcapabilities have been improved, compared to standard configuration.

    Reactors should be associated with capacitor banks for Power Factor Correction in systems with significant non-linear loads, generating harmonics. Capacitors and reactors are configured in a series resonant circuit, tuned so that the series resonant frequency is below the lowest harmonic frequency present in the system. For this reason, this configu-ration is usually called “Detuned Capacitor Bank”, and the reactors are referred to as “Detuned Reactors”.

    The use of detuned reactors thus prevents harmonic resonance problems, avoids the risk of overloading the capacitors and helps reduce voltage harmonic distortion in the network.

    The tuning frequency can be expressed by the relative impedance of the reactor (in %), or by the tuning order, or directly in Hz.

    The most common values of relative impedance are 5.7, 7 and 14%. (14% is used with high level of 3rd harmonic voltages).

    The selection of the tuning frequency of the reactor capacitor depends on several factors: • Presence of zero-sequence harmonics (3, 9, …);• Need for reduction of the harmonic distortion level;• Optimization of the capacitor and reactor components;• Frequency of ripple control system if any.

    • To prevent disturbances of the remote control installation, the tuning fre-quency should be selected at a lower value than the ripple control frequency.• In a detuned filter application, the voltage across the capacitors is higher than the system’s rated voltage. In that case, capacitors should be designed to withstand higher voltages.• Depending on the selected tuning frequency, part of the harmonic currents is absorbed by the detuned capacitor bank. In that case, capacitors should be designed to withstand higher currents, combining fundamental and harmonic currents.

    Relative Tuning Tuning Tuning impedance order frequency frequency (%) @5 0Hz (Hz) @ 60Hz (Hz)5.7 4.2 210 2507 3.8 190 23014 2.7 135 160

  • 17

    Rated voltage and currentPower Factor Correction guideline

    According to IEC 60681-1 standard, the rated voltage (UN) of a capacitor is defined as the continuously admissible operating voltage.

    The rated current (IN) of a capacitor is the current flowing through the capacitor when the rated voltage (UN) is applied at its terminals, supposing a purely sinusoidal voltage and the exact value of reactive power (kvar) generated.Capacitor units shall be suitable for continuous operation at an r.m.s. current of (1.3 x IN).

    In order to accept system voltage fluctuations, capacitors are designed to sustain over-voltages of limited duration. For compliance to the standard, capacitors are for example requested to sustain over-voltages equal to 1.1 times UN, 8h per 24h.

    VarplusCan and VarplusBox capacitors have been designed and tested extensively to operate safely on industrial networks. The design margin allows operation on networks including voltage fluctuations and common disturbances. Capacitors can be selected with their rated voltage corresponding to the network voltage. For different levels of expected disturbances, different technologies are proposed, with larger design margin for capacitors adapted to the most stringent working conditions (HDuty & Energy).

  • 18

    Capacitor selection guidePower Factor Correction guideline

    Capacitors must be selected depending on the working conditions expected during their lifetime.

    Solution Description Recommended use for Max. condition SDuty Standard • Networks with non significant non-linear loads NLL ≤ 10% capacitor • Standard over-current 1.5 IN • Standard operating temperature 55°C (class D) • Normal switching frequency 5,000 / year • Standard life expectancy Up to 100,000h*

    HDuty Heavy-duty • A few non-linear loads NLL ≤ 20% capacitor • Significant over-current 1.8 IN • Standard operating temperature 55°C (class D) • Significant switching frequency 7,000 / year • Long life expectancy Up to 130,000h*

    Energy Capacitor for • Significant number of non-linear loads (up to 25%) NLL ≤ 25% special conditions • Severe over-current 2.5 IN • Extreme temperature conditions 70°C • Very frequent switching 10,000 / year • Extra long life expectancy Up to 160,000h*

    Harmonic Heavy-duty, • High level of non-linear loads (up to 30%) NLL ≤ 50% HDuty harmonic rated • Significant over-current 1.8 IN capacitor + • Standard operating temperature 55°C (class D) detuned reactor • Significant switching frequency 7,000 / year • Long life expectancy Up to 130,000h*

    Harmonic Energy, • High level of non-linear loads (up to 30%) NLL ≤ 50% Energy harmonic rated • Severe over-current 2.5 IN capacitor + • Extreme temperature conditions 70°C detuned reactor • Very frequent switching 10,000 / year • Extra long life expectancy Up to 160,000h*

    Since the harmonics are caused by non-linear loads, an indicator for the magnitude of harmonics is the ratio of the total power of non-linear loads to the power supply transformer rating.

    This ratio is denoted NLL, and is also known as Gh/Sn: NLL = Total power of non-linear loads (Gh) / Installed transformer rating (Sn).

    Example: • Power supply transformer rating: Sn = 630 kVA• Total power of non-linear loads: Gh = 150 kVA• NLL = (150/630) x 100 = 24 %

    WARNING: the life expectancy will be reduced if capacitors are used in maximum working conditions.

    * The maximum life expectancy is given considering standard operating conditions: service voltage (UN), service current (IN), 35°C ambient temperature.

  • 19

    Construction of referencesPrinciple

    Power Factor Correction guideline

    CapacitorsB L R _ V B S D Y _ 1 2 5 A 4 4 _ 3 Construction Range Power Frequency Voltage Number of phases B = Box SDY SDuty E.g.: 125 = 12.5 kvar A: 50 Hz E.g.: 44 = 440 V 1: single phase C = Can HDY HDuty X00 = 100 kvar B: 60 Hz 3: three-phase ENY Energy HH1 Harmonic HDuty 5.7 or 7% HH2 Harmonic HDuty 14% HE1 Harmonic Energy 5.7 or 7% HE2 Harmonic Energy 14%

    Detuned reactorsB L R _ V D R _ 2 5 0 _ 0 5 _ B 4 0 Power Tuning Frequency Voltage Ex: 125 = 12.5 kvar 05: 5.7 % A: 50 Hz E.g.: 40 = 400 V X00 = 100 kvar 07: 7 % B: 60 Hz 14: 14 %

    Example: BLR_VBSDY_125A44_3 = VarplusBox Standard Duty, 12.5kvar, 50Hz, 440V, 3-phase. See page 52

    Example: BLR_VDR_250_05_A40 = detuned reactor, 25kvar, 5.7% relative impedance, 60Hz, 400V. See page 79.

  • 20

  • 21

    Low Voltage capacitorsContents

    Reactive Energy Management

    LV capacitor overview 22

    VarplusCan 24Standard 26

    Heavy Duty 30

    Energy 34

    Harmonic HDuty 38

    Harmonic Energy 42

    Mechanical characteristics 46

    VarplusBox 48Standard 50

    Heavy Duty 54

    Energy 58

    Harmonic HDuty 62

    Harmonic Energy 66

    Mechanical characteristics 70

  • 22

    Low Voltage capacitors Offer overview

    SDuty HDuty Energy Harmonic HDuty Harmonic Energy

    Construction Extruded aluminium can

    Voltage 230 V - 690 V 400 V - 690 V 400 V - 600 V range

    Power range 1 – 50 kvar 5 – 15 kvar 6.5 – 100 kvar 6.5 – 50 kvar (three-phase)

    Peak inrush Up to 200 x IN Up to 250 x IN Up to 350 x IN Up to 250 x IN Up to 400 x IN current

    Overvoltage 1.1 x UN 8h every 24h Overcurrent 1.5 x IN 1.8 x IN 2.5 x IN 1.8 x IN 2.5 x IN Mean life Up to 100,000 h Up to 130,000 h Up to 160,000 h Up to 130,000 h Up to 160,000 h expectancy

    Safety Self-healing + pressure-sensitive disconnector + discharge device

    Dielectric Metallized polypropylene Double metallized paper Metallized polypropylene Double metallized paper film with Zn/Al alloy + Polypropylene film film with Zn/Al alloy + Polypropylene film

    Impregnation Non-PCB, Non-PCB, sticky (dry) Non-PCB, oil Non-PCB, sticky (dry) Non-PCB, oil biodegradable resin biodegradable resin biodegradable resin

    Ambient -25/D -25/70 -25/D -25/70 temperature min.: -25°C ; max.: 55°C min.: -25°C ; max.: 70°C min.: -25°C ; max.: 55°C min.: -25°C ; max.: 70°C

    Protection IP30 (IP54 on request) indoor

    Mounting Upright Upright / Upright Upright / Upright horizontal horizontal

    Terminals • Double fast-on + cable (≤ 10 kvar) • CLAMPTITE - Three-phase terminal with electric shock protection (finger-proof)

    PE

    9013

    2

    PE

    9013

    1

    PE

    9013

    0

    +P

    E90

    154

    PE

    9013

    1

    VarplusCan

  • 23

    SDuty HDuty Energy Harmonic HDuty Harmonic Energy

    Steel sheet enclosure

    380 V - 690 V 380 V - 690 V

    2.5 – 100 kvar 6.5 – 100 kvar

    Up to 200 x IN Up to 250 x IN Up to 350 x IN Up to 250 x IN Up to 400 x IN

    1.1 x UN 8h every 24h

    1.5 x IN 1.8 x IN 2.5 x IN 1.8 x IN 2.5 x INUp to 100,000 h Up to 130,000 h Up to 160,000 h Up to 130,000 h Up to 160,000 h

    Self-healing + pressure-sensitive disconnector + discharge device

    Metallized polypropylene Double metallized paper Metallized polypropylene Double metallized paperfilm with Zn/Al alloy + Polypropylene film film with Zn/Al alloy + Polypropylene film

    Non-PCB, Non-PCB, sticky (dry) Non-PCB, oil Non-PCB, sticky (dry) Non-PCB, oilbiodegradable resin biodegradable resin biodegradable resin

    -25/D -25/70 -25/D -25/70min.: -25°C ; max.: 55°C min.: -25°C ; max.: 70°C min.: -25°C ; max.: 55°C min.: -25°C ; max.: 70°C

    IP20 (IP54 on request) indoor

    Upright Upright / Upright Upright / Upright horizontal horizontal

    Bushing terminals designed for large cable termination and direct busbar mounting for banking

    PE

    9013

    5

    PE

    9013

    6

    +

    +P

    E90

    154

    PE

    9013

    4

    PE

    9016

    4

    PE

    9013

    7

    PE

    9013

    5

    VarplusBox

  • 24

    Low Voltage capacitors VarplusCan

    Main featuresEasy installation & maintenance• Optimized design for low weight, compactness and reliability to ensure easy installation.• Unique termination system that allows maintained tightening.• 1 point for mounting and earthing.• Vertical and horizontal position.

    Safety• Self-healing.• Pressure-sensitive disconnector on all three phases.• Discharge resistors fitted.• Finger-proof CLAMPTITE terminals to reduce risk of accidental contact and to ensure firm termination (10 to 30 kvar).• Special film resistivity and metallization profile for higher thermal efficiency, lower temperature rise and enhanced life expectancy.

    Compacity• Optimized geometric design (small dimensions and low weight).• Available on request in single phase.

    For professionnals• High life expectancy up to 160,000 hours• Very high overload capabilities and good thermal and mechanical properties.• Economic benefits due to its compact size.• Easy maintenance.• Unique finger proof termination to ensure tightening.

    Aluminum can capacitors specially designed and engineered to deliver a long working life with low losses in standard, heavy-duty and severe operating conditions. Suitable for Fixed and Automatic PFC, real time compensation, detuned and tuned filters.

    VarplusCan

    PE

    9013

    1

  • 25

    SDuty HDuty Energy Harmonic HDuty Harmonic Energy

    Construction Extruded aluminium can

    Voltage 230 V - 690 V 400 V - 690 V 400 V - 600 V range

    Power range 1 – 50 kvar 5 – 15 kvar 6.5 – 100 kvar 6.5 – 50 kvar(three-phase)

    Peak inrush Up to 200 x IN Up to 250 x IN Up to 350 x IN Up to 250 x IN Up to 400 x INcurrent

    Overvoltage 1.1 x UN 8h every 24h Overcurrent 1.5 x IN 1.8 x IN 2.5 x IN 1.8 x IN 2.5 x INMean life Up to 100,000 h Up to 130,000 h Up to 160,000 h Up to 130,000 h Up to 160,000 hexpectancy

    Safety Self-healing + pressure-sensitive disconnector + discharge device

    Dielectric Metallized polypropylene Double metallized paper Metallized polypropylene Double metallized paper film with Zn/Al alloy + Polypropylene film film with Zn/Al alloy + Polypropylene film

    Impregnation Non-PCB, Non-PCB, sticky (dry) Non-PCB, oil Non-PCB, sticky (dry) Non-PCB, oil biodegradable resin biodegradable resin biodegradable resin

    Ambient -25/D -25/70 -25/D -25/70temperature min.: -25°C ; max.: 55°C min.: -25°C ; max.: 70°C min.: -25°C ; max.: 55°C min.: -25°C ; max.: 70°C

    Protection IP30 (IP54 on request) indoor

    Mounting Upright Upright / Upright Upright / Upright horizontal horizontal

    Terminals • Double fast-on + cable (≤ 10 kvar) • CLAMPTITE - Three-phase terminal with electric shock protection (finger-proof)

    PE

    9013

    2

    PE

    9013

    1

    PE

    9013

    0

    + PE

    9015

    4

    PE

    9013

    1

    VarplusCan

  • 26

    Low Voltage capacitors VarplusCan SDuty

    A safe, reliable and high-performance solution for power factor correction in standard operating conditions.

    Operating conditions • For networks with insignificant non-linear loads: (NLL ≤ 10%).• Standard voltage disturbances.• Standard operating temperature up to 55°C.• Normal switching frequency up to 5 000 /year.• Maximum current (including harmonics) is 1.5 x IN.

    Technology Constructed internally with three single-phase capacitor elements assembled in an optimized design. Each capacitor element is manufactured with metallized polypropylene film as the dielectric having features such as heavy edge metallization and special profiles which enhance the “self-healing” properties.

    The active capacitor elements are encapsulated in a specially formulated biodegradable, non-PCB, PUR (soft) resin which ensures thermal stability and heat removal from inside the capacitor.

    The unique finger-proof CLAMPTITE termination is fully integrated with discharge resistors and allows suitable access to tightening and ensures cable termination without any loose connections. Once tightened, the design guarantees that the tightening torque is always maintained.

    For lower ratings, double fast-on terminals with wires are provided.

    Benefits • Safety:- Self-healing.- Pressure-sensitive disconnector on all three phases.- Discharge resistor.• Life expectancy up to 100,000 hours.• Economic benefits and easy installation due to its compact size and low weight.• Easy maintenance thanks to its unique finger-proof termination to ensure tightening.• Also available in single-phase and small power ratings from 1 to 5 kvar.

    PE

    9013

    1

    PE

    9013

    0

    VarplusCan SDuty

  • 27

    Technical specifications

    General characteristicsStandards IEC 60831-1/-2Voltage range 230 to 690 VFrequency 50 / 60 HzPower range 1 to 50 kvar Losses (dielectric) < 0.2 W / kvarLosses (total) < 0.5 W / kvarCapacitance tolerance - 5 %, + 10 %Voltage test Between terminals 2.15 x UN (AC), 10 s Between terminal ≤ 660 V – 3 kV(AC), 10 s & container > 660 V – 6 kV(AC), 10 sDischarge resistor Fitted, standard discharge time 60 s Discharge time 180 s on requestWorking conditionsAmbient temperature - 25 / 55°C (Class D) Humidity 95 %Altitude 2,000 m above sea levelOvervoltage 1.1 x UN 8h in every 24hOvercurrent Up to 1.5 x IN Peak inrush current 200 x INSwitching operations (max.) Up to 5 ,000 switching operations per yearMean Life expectancy Up to 100,000 hrsHarmonic content NLL ≤ 10% Installation characteristics

    Mounting position Indoor, uprightFastening

    Threaded M12 stud at the bottomEarthing Terminals CLAMPTITE - three-way terminal with electric shock protection (finger-proof) & double fast-on terminal in lower kvarSafety featuresSafety Self-healing + Pressure-sensitive disconnector + Discharge deviceProtection IP30 (IP54 on request)ConstructionCasing Extruded Aluminium CanDielectric Metallized polypropylene film with Zn/Al alloy.Impregnation Biodegradable, Non-PCB, PUR (soft) resin

  • 28

    Low Voltage capacitors VarplusCan SDuty

    Rated kvar μF IN (A) Case Part numbervoltage (x 3) codeUN (V) 230 2.5 50 6.3 HC BLR_VCSDY_025A23_3 5 100 13 LC BLR_VCSDY_050A23_3 7.5 150 19 NC BLR_VCSDY_075A23_3 10 200 25 SC BLR_VCSDY_100A23_3

    380/ 380 V 400 V 415 V 400 V 400/ 0.9 1 1.1 7 1.4 On request415 1.8 2 2.2 13 2.9 On request 2.7 3 3.2 20 4.3 On request 3.6 4 4.3 27 5.8 On request 4.5 5 5.4 33 7.2 HC BLR_VCSDY_050A40_3 6.8 7.5 8.1 50 11 HC BLR_VCSDY_075A40_3 9.0 10 10.8 66 14 RC BLR_VCSDY_100A40_3 11.3 12.5 13.5 83 18 RC BLR_VCSDY_125A40_3 13.5 15 16.1 99 22 TC BLR_VCSDY_150A40_3 18.1 20 21.5 133 29 TC BLR_VCSDY_200A40_3 22.6 25 26.9 166 36 VC BLR_VCSDY_250A40_3 27 30 32 199 43 On request 36 40 43 265 58 On request 45 50 54 332 72 On request

    440 1 5 1.3 On request 2 11 2.6 On request 3 16 3.9 On request 4 22 5.2 On request 5 27 6.6 DC BLR_VCSDY_050A44_3 7.5 41 10 HC BLR_VCSDY_075A44_3 10 55 13 LC BLR_VCSDY_100A44_3 12.5 69 16 NC BLR_VCSDY_125A44_3 15 82 20 NC BLR_VCSDY_150A44_3 20 110 26 SC BLR_VCSDY_200A44_3 25 137 33 SC BLR_VCSDY_250A44_3 30 164 39 SC BLR_VCSDY_300A44_3 40 219 52 On request 50 274 66 On request

    690 1 2 0.8 On request 2 4 1.7 On request 3 7 2.5 On request 4 9 3.3 On request 5 11 4.2 MC BLR_VCSDY_050A69_3 7.5 17 6.3 MC BLR_VCSDY_075A69_3 10 22 8.4 MC BLR_VCSDY_100A69_3 12.5 28 10 NC BLR_VCSDY_125A69_3 15 33 13 NC BLR_VCSDY_150A69_3 20 45 17 SC BLR_VCSDY_200A69_3 25 56 21 SC BLR_VCSDY_250A69_3 30 67 25 On request 40 89 33 On request

    1 2 3 4 5 7.510121520253040

    1 2 3 4 5 7.51012152025304050

    380.91.82.73.64.56.89.011131822273645

    kv 2.55 7.510

    8967564533282217119

    2 4 7

    272116

    69821113

    55412722

    5 1116

    3326191613998366503327

    7 1320

    μF(x 50101520

    33 25 21 17 13 108.46.34.23.3

    0.81.72.5

    66 52 39

    1620 26 33

    13 10 6.65.2

    1.32.63.9

    72 58 43 36 29 22 18 14 11 7.25.8

    401.42.94.3

    IN (

    6.313 19 25

    SCSCNCNCMCMCMC

    SC

    NCNCSCSC

    LCHCDC

    VCTCTCRCRCHCHC

    Caco

    HCLCNCSC

    OnOnBLBLBLBLBLBLBLOn

    OnOnOn

    OnOnBL

    BLBLBLBL

    BLBLBLOn

    OnOnOn

    OnOnOnBLBLBLBLBLBLBLOn

    OnOnOn

    Pa

    BLBLBLBL

    54433226211613108.5.4.

    411.2.3.

    50403025201512107.55 4

    401 2 3

    Available 10/2010Available 01/2011

    50 Hz

  • 29

    Rated kvar μF IN (A) Case Part numbervoltage (x 3) codeUN (V) 240 2.5 38 6.0 DC BLR_VCSDY_025B24_3 5 77 12 HC BLR_VCSDY_050B24_3 7.5 115 18 NC BLR_VCSDY_075B24_3 10 154 24 NC BLR_VCSDY_100B24_3

    380/400 380 V 400 V 400 V 0.9 1 6 1.4 On request 1.8 2 11 2.9 On request 2.7 3 17 4.3 On request 3.6 4 22 5.8 On request 4.5 5 28 7.2 DC BLR_VCSDY_050B40_3 6.8 7.5 41 11 HC BLR_VCSDY_075B40_3 9.0 10 55 14 LC BLR_VCSDY_100B40_3 11.3 12.5 69 18 MC BLR_VCSDY_125B40_3 13.5 15 83 22 NC BLR_VCSDY_150B40_3 18.1 20 111 29 SC BLR_VCSDY_200B40_3 22.6 25 138 36 SC BLR_VCSDY_250B40_3 27 30 166 43 SC BLR_VCSDY_300B44_3 36 40 221 58 On request 45 50 276 72 On request

    440/480 440 V 480 V 480 V 0.8 1 4 1.2 On request 1.7 2 8 2.4 On request 2.5 3 12 3.6 On request 3.4 4 15 4.8 On request 4.2 5 19 6.0 DC BLR_VCSDY_050B48_3 6.3 7.5 29 9.0 HC BLR_VCSDY_075B48_3 8.4 10 38 12 LC BLR_VCSDY_100B48_3 10.5 12.5 48 15 MC BLR_VCSDY_125B48_3 12.6 15 58 18 NC BLR_VCSDY_150B48_3 16.8 20 77 24 NC BLR_VCSDY_200B48_3 21 25 96 30 SC BLR_VCSDY_250B48_3 25 30 115 36 SC BLR_VCSDY_300B48_3 34 40 154 48 On request 42 50 192 60 On request

    600 1 2 1.0 On request 2 5 1.9 On request 3 7 2.9 On request 4 10 3.8 On request 5 12 4.8 HC BLR_VCSDY_050B60_3 7.5 18 7.2 MC BLR_VCSDY_075B60_3 10 25 9.6 RC BLR_VCSDY_100B60_3 12.5 31 12 TC BLR_VCSDY_125B60_3 15 37 14 TC BLR_VCSDY_150B60_3 20 49 19 TC BLR_VCSDY_200B60_3 25 61 24 VC BLR_VCSDY_250B60_3 30 74 29 On request 40 98 38 On request 50 123 48 On request

    1 2 3 4 5 7.51012152025304050

    440.81.72.53.44.26.38.410121621253442

    380.91.82.73.64.56.89.011131822273645

    kv 2.55 7.510

    12987461493731251812107 5 2

    19

    1115

    967758

    3848

    291915128

    4

    272216131183695541282217

    6 11

    μF(x

    38771115

    50403025201512107.55 4 3

    401 2

    50

    3040

    252015

    1012

    7.55 4 3 2

    481

    IN

    6.0121824

    401.42.94.35.87.2111418222936435872

    481.22.43.64.86.09.01215182430364860

    1.01.92.93.84.87.29.612141924293848

    Caco

    DCHCNCNC

    DCHCLCMCNCSCSCSC

    DCHCLCMCNCNCSCSC

    HCMCRCTCTCTCVC

    Pa

    BLBLBLBL

    OnOnOnOnBLBLBLBLBLBLBLBLOnOn

    OnOnOnOnBLBLBLBLBLBLBLBLOnOn

    OnOnOnOnBLBLBLBLBLBLBLOnOnOn

    Available 10/2010Available 01/2011

    60 Hz

  • 30

    Low Voltage capacitors VarplusCan HDuty

    A safe, reliable and high-performance solution for power factor correction in heavy-duty operating conditions.

    Operating conditions • For networks with significant non-linear loads: (NLL < 20%).• Significant voltage disturbances.• Standard operating temperature up to 55°C.• Normal switching frequency up to 7,000/year.• Maximum current (including harmonics) is 1.8 x IN.

    Technology Constructed internally with three single-phase capacitor elements. Each capacitor element is manufactured with metallized polypropylene film as the dielectric, having features such as heavy edge, slope metallization and wave-cut profile to ensure increased current handling capacity and reduced temperature rise.

    The active capacitor elements are coated with specially formulated sticky resin which ensures high overload capabilities and good thermal and mechanical properties

    The unique finger-proof CLAMPTITE termination is fully integrated with discharge resistors, allowing suitable access for tightening and ensuring cable termination without any loose connections.

    For lower ratings, double fast-on terminals with wires are provided.

    Benefits • Total safety:- Self-healing;- Pressure sensitive disconnector;- Discharge resistor.• Long life expectancy (up to 130,000 hours).• Installation in any position.• Optimized geometric design for improved thermal performance.• Special resistivity and metallisation profile will enhance life and will give higher thermal efficiency with lower temperature rise.• Unique finger-proof termination that ensures tightening for CLAMPITE terminals.• Available in single-phase version and with low power ratings from 1 to 5 kvar.

    PE

    9013

    1

    PE

    9013

    0

    VarplusCan HDuty

  • 31

    Technical specifications

    General characteristicsStandards IEC 60831-1/-2Voltage range 230 to 690 VFrequency 50 / 60 HzPower range 1 to 50 kvar Losses (dielectric) < 0.2 W / kvarLosses (total) < 0.5 W / kvarCapacitance tolerance - 5 %, + 10 %Voltage test Between terminals 2.15 x UN (AC), 10 s Between terminal ≤ 660 V – 3 kV(AC), 10 s & container > 660 V – 6 kV(AC), 10 sDischarge resistor Fitted, standard discharge time 60 s Discharge time 180 s on requestWorking conditionsAmbient temperature - 25 / 55°C (Class D) Humidity 95 %Altitude 2,000 m above sea levelOvervoltage 1.1 x UN 8h in every 24hOvercurrent Up to 1.8 x INPeak inrush current 250 x INSwitching operations (max.) Up to 7,000 switching operations per yearMean Life expectancy Up to 130,000 hrsHarmonic content NLL ≤ 20% Installation characteristics

    Mounting position Indoor, upright & horizontalFastening

    Threaded M12 stud at the bottomEarthing Terminals CLAMPTITE - three-way terminal with electric shock protection (finger-proof) & double fast-on terminal in lower kvarSafety featuresSafety Self-healing + Pressure-sensitive disconnector + Discharge deviceProtection IP30 (IP54 on request)ConstructionCasing Extruded Aluminium CanDielectric Metallized polypropylene film with Zn/Al alloy. Special resistivity & profile, special edge (wave-cut)Impregnation Non-PCB, PUR sticky resin (Dry)

  • 32

    Low Voltage capacitors VarplusCan HDuty

    Available 10/2010Available 01/2011

    50 Hz

    Rated kvar μF IN (A) Case Part numbervoltage (x 3) codeUN (V) 230 2.5 50 6.3 HC BLR_VCHDY_025A23_3 5 100 12.6 LC BLR_VCHDY_050A23_3 7.5 151 19 RC BLR_VCHDY_075A23_3 10 201 25 TC BLR_VCHDY_100A23_3

    380/ 380 V 400 V 415 V 400 V 400/ 0.9 1 1.1 7 1.4 On request415 1.8 2 2.2 13 2.9 On request 2.7 3 3.2 20 4.3 On request 3.6 4 4.3 27 5.8 On request 4.5 5 5.4 33 7.2 HC BLR_VCHDY_050A40_3 6.8 7.5 8.1 50 11 HC BLR_VCHDY_075A40_3 9.0 10 10.8 66 14 MC BLR_VCHDY_100A40_3 11.3 12.5 13.5 83 18 RC BLR_VCHDY_125A40_3 13.5 15 16.1 99 22 RC BLR_VCHDY_150A40_3 18.1 20 21.5 133 29 TC BLR_VCHDY_200A40_3 22.6 25 26.9 166 36 TC BLR_VCHDY_250A40_3 27 30 32 199 43 VC BLR_VCHDY_300A40_3 36 40 43 265 58 On request 45 50 54 332 72 On request

    440 1 5 1.3 On request 2 11 2.6 On request 3 16 3.9 On request 4 22 5.2 On request 5 27 6.6 HC BLR_VCHDY_050A44_3 7.5 41 10 HC BLR_VCHDY_075A44_3 10 55 13 MC BLR_VCHDY_100A44_3 12.5 69 16 RC BLR_VCHDY_125A44_3 15 82 20 RC BLR_VCHDY_150A44_3 20 110 26 TC BLR_VCHDY_200A44_3 25 137 33 TC BLR_VCHDY_250A44_3 30 164 39 VC BLR_VCHDY_300A44_3 40 219 52 On request 50 274 66 On request

    690 1 2 0.8 On request 2 4 1.7 On request 3 7 2.5 On request 4 9 3.3 On request 5 11 4.2 MC BLR_VCHDY_050A69_3 7.5 17 6.3 MC BLR_VCHDY_075A69_3 10 22 8.4 RC BLR_VCHDY_100A69_3 12.5 28 10 RC BLR_VCHDY_125A69_3 15 33 13 TC BLR_VCHDY_150A69_3 20 45 17 TC BLR_VCHDY_200A69_3 25 56 21 VC BLR_VCHDY_250A69_3 30 67 25 VC BLR_VCHDY_300A69_3 40 89 33 On request 50 111 42 On request

    A

    1 2 3 4 5 7.51012152025304050

    1 2 3 4 5 7.51012152025304050

    380.91.82.73.64.56.89.011131822273645

    2.55 7.510

    kv

    17119 7 4 2

    2228334556678911

    272116131182695541272216115

    332619161399836650332720137

    20151050

    μF(x

    6.34.23.32.51.70.8

    8.410131721253342

    6652393326201613106.65.23.92.61.3

    7258433629221814117.25.84.32.91.440

    2519126.3

    IN

    MCMC

    RCRCTCTCVCVC

    VCTCTCRCRCMCHCHC

    VCTCTCRCRCMCHCHC

    TCRCLCHC

    Caco

    BLBLOnOnOnOn

    BLBLBLBLBLBLOnOn

    OnOnBLBLBLBLBLBLBLBLOnOnOnOn

    OnOnBLBLBLBLBLBLBLBLOnOnOnOn

    BLBLBLBL

    Pa

    50403025201512107.55 4 3 2 1 40

    54433226211613108.15.44.33.22.21.141

  • 33

    Available 10/2010Available 01/2011

    60 Hz

    Rated kvar μF IN (A) Case Part numbervoltage (x 3) codeUN (V) 240 2.5 38 6.0 DC BLR_VCHDY_025B24_3 5 77 12 HC BLR_VCHDY_050B24_3 7.5 115 18 RC BLR_VCHDY_075B24_3 10 154 24 RC BLR_VCHDY_100B24_3

    380/400 380 V 400 V 400 V 0.9 1 6 1.4 On request 1.8 2 11 2.9 On request 2.7 3 17 4.3 On request 3.6 4 22 5.8 On request 4.5 5 28 7.2 DC BLR_VCHDY_050B40_3 6.8 7.5 41 11 HC BLR_VCHDY_075B40_3 9.0 10 55 14 LC BLR_VCHDY_100B40_3 11.3 12.5 69 18 MC BLR_VCHDY_125B40_3 13.5 15 83 22 RC BLR_VCHDY_150B40_3 18.1 20 111 29 TC BLR_VCHDY_200B40_3 22.6 25 138 36 TC BLR_VCHDY_250B40_3 27 30 166 43 TC BLR_VCHDY_300B40_3 36 40 221 58 On request 45 50 276 72 On request

    440/480 440 V 480 V 480 V 0.8 1 4 1.2 On request 1.7 2 8 2.4 On request 2.5 3 12 3.6 On request 3.4 4 15 4.8 On request 4.2 5 19 6.0 DC BLR_VCHDY_050B48_3 6.3 7.5 29 9.0 HC BLR_VCHDY_075B48_3 8.4 10 38 12 LC BLR_VCHDY_100B48_3 10.5 12.5 48 15 MC BLR_VCHDY_125B48_3 12.6 15 58 18 RC BLR_VCHDY_150B48_3 16.8 20 77 24 RC BLR_VCHDY_200B48_3 21 25 96 30 TC BLR_VCHDY_250B48_3 25 30 115 36 TC BLR_VCHDY_300B48_3 34 40 154 48 On request 42 50 192 60 On request

    600 1 2 1.0 On request 2 5 1.9 On request 3 7 2.9 On request 4 10 3.8 On request 5 12 4.8 HC BLR_VCHDY_050B60_3 7.5 18 7.2 NC BLR_VCHDY_075B60_3 10 25 9.6 RC BLR_VCHDY_100B60_3 12.5 31 12 TC BLR_VCHDY_125B60_3 15 37 14 TC BLR_VCHDY_150B60_3 20 49 19 VC BLR_VCHDY_200B60_3 25 61 24 VC BLR_VCHDY_250B60_3 30 74 29 On request 40 98 38 On request 50 123 48 On request

    1 2 3 4 5 7.51012152025304050

    440.81.72.53.44.26.38.410121621253442

    380.91.82.73.64.56.89.011131822273645

    kv 2.55 7.510

    12987461493731251812107 5 2

    1915119677

    384858

    291915128

    4

    2227

    16131183695541282217

    6 11

    μF(x

    38771115

    483829241914129.67.24.83.82.91.91.0

    6048363024

    121518

    9.06.04.83.62.4

    481.2

    5872

    433629221814117.25.84.3

    401.42.9

    IN

    6.0121824

    VCVCTCTCRCNCHC

    TCTCRC

    LCMCRC

    HCDC

    TCTCTCRCMCLCHCDC

    Caco

    DCHCRCRC

    OnOnOnBLBLBLBLBLBLBLOnOnOnOn

    OnOnBLBLBL

    BLBLBL

    BLBLOnOnOnOn

    OnOn

    BLBLBLBLBLBLBLBLOnOn

    OnOn

    Pa

    BLBLBLBL

    4050

    3025201512107.5 4 3

    401 2

    5040302520

    101215

    7.5 4 3 2

    481

  • 34

    Low Voltage capacitors VarplusCan Energy

    A safe, reliable and high-performance solution for Power Factor Correction for severe operating conditions.

    Operating conditions • For networks with significant non-linear loads: (NLL < 25 %).• Severe voltage disturbances.• Highest operating temperature (up to 70°C).• High switching frequency up to 10,000 /year.• Maximum current withstand 2.5 x IN.

    Technology Constructed internally with three single-phase capacitor elements. This is the only technology which is capable of giving the longest life, highest overload limits and the highest operating ambient temperature due to use of the combination of polypropylene film and metallized paper.

    The presence of the paper ensures high-quality impregnation which is critical for increasing dielectric strength.

    Further, this quality of oil-impregnated dielectric system has far superior capabilities in terms of partial discharge behaviour and heat conduction.

    Benefits • Safety:- Self-healing;- Pressure-sensitive disconnector;- Discharge resistor.• Extra long life expectancy (up to 160,000 hours).• Very high overload capabilities and good thermal and mechanical properties. • Overcurrent withstand capabilities up to 2.5 x IN.• Highest operating temperature (up to 70°C).

    PE

    9013

    1

    VarplusCan Energy

  • 35

    Technical specifications

    General characteristicsStandards IEC 60831-1/-2Voltage range 380 to 690 VFrequency 50 / 60 HzPower range 5 to 15 kvar Losses (dielectric) < 0.2 W / kvarLosses (total) < 0.5 W / kvarCapacitance tolerance - 5 %, + 10 %Voltage test Between terminals 2.15 x UN (AC), 10 s Between terminal ≤ 660 V – 3 kV(AC), 10 s & container > 660 V – 6 kV(AC), 10 sDischarge resistor Fitted, standard discharge time 60 s Discharge time 180 s on requestWorking conditionsAmbient temperature - 25 / 70°C Humidity 95 %Altitude 2,000 m above sea levelOvervoltage 1.1 x UN 8h in every 24hOvercurrent Up to 2.5 x INPeak inrush current 350 x INSwitching operations (max.) Up to 10 ,000 switching operations per yearMean Life expectancy Up to 160,000 hrsHarmonic content NLL ≤ 25% Installation characteristics

    Mounting position Indoor, uprightFastening

    Threaded M12 stud at the bottomEarthing Terminals CLAMPTITE - three-way terminal with electric shock protection (finger-proof) & double fast-on terminal in lower kvarSafety featuresSafety Self-healing + Pressure-sensitive disconnector + Discharge deviceProtection IP30 (IP54 on request)ConstructionCasing Extruded Aluminium CanDielectric Double metallized paper + Polypropylene film Impregnation Non-PCB, oil

  • 36

    Low Voltage capacitors VarplusCan Energy

    50 Hz

    Rated kvar μF IN (A) Case Part numbervoltage (x 3) codeUN (V) 380/ 380 V 400 V 415 V 400 V 400/ 4.5 5 5.4 33 7.2 NC BLR_VCENY_050A40_3415 6.8 7.5 8.1 50 11 SC BLR_VCENY_075A40_3 9.0 10 10.8 66 14 SC BLR_VCENY_100A40_3 11.3 12.5 13.5 83 18 UC BLR_VCENY_125A40_3 13.5 15 16.1 99 22 UC BLR_VCENY_150A40_3

    440 5 28 6.6 NC BLR_VCENY_050A44_3 7.5 41 10 NC BLR_VCENY_075A44_3 10 55 13 SC BLR_VCENY_100A44_3 12.5 69 16 SC BLR_VCENY_125A44_3 15 83 20 VC BLR_VCENY_150A44_3

    690 5 11 4.2 NC BLR_VCENY_050A69_3 7.5 17 6.3 NC BLR_VCENY_075A69_3 10 22 8.4 SC BLR_VCENY_100A69_3 12.5 28 10 SC BLR_VCENY_125A69_3 15 33 13 UC BLR_VCENY_150A69_3

    5 7.5101215

    5 7.5101215

    kv 384.56.89.01113

    405 7.5101215

    415.48.1101316

    3328221711

    8369554128

    μF(x 3350668399

    BLBLBLBLBL

    BLBLBLBLBL

    Pa

    BLBLBLBLBL

    13108.46.34.2

    201613106.6

    IN

    407.211141822

    UCSCSCNCNC

    VCSCSCNCNC

    Caco

    NCSCSCUCUC

    Available 02/2011

  • 37

    60 Hz

    Available 02/2011

    Rated kvar μF IN (A) Case Part numbervoltage (x 3) codeUN (V) 380/400 380 V 400 V 400 V 4.5 5 28 7.2 NC BLR_VCENY_050B40_3 6.8 7.5 41 11 NC BLR_VCENY_075B40_3 9.0 10 55 14 SC BLR_VCENY_100B40_3 11.3 12.5 69 18 SC BLR_VCENY_125B40_3 13.5 15 83 22 UC BLR_VCENY_150B40_3

    440/480 440 V 480 V 480 V 4.2 5 19 6 NC BLR_VCENY_050B48_3 6.3 7.5 29 9 NC BLR_VCENY_075B48_3 8.4 10 38 12 NC BLR_VCENY_100B48_3 10.5 12.5 48 15 SC BLR_VCENY_125B48_3 12.6 15 58 18 UC BLR_VCENY_150B48_3

    600 5 12 4.8 NC BLR_VCENY_050B60_3 7.5 18 7.2 NC BLR_VCENY_075B60_3 10 25 9.6 SC BLR_VCENY_100B60_3 12.5 31 12 SC BLR_VCENY_125B60_3 15 37 14 SC BLR_VCENY_150B60_3

    5 7.5101215

    444.26.38.41012

    384.56.89.01113

    kv

    1512107.5 40

    1512107.5 48

  • 38

    Low Voltage capacitors VarplusCan Harmonic HDuty

    This harmonic rated range of capacitors is dedicated to applications where a high number of non-linear loads are present (NLL up to 30%). These capacitors are designed for use with detuned reactors, based on the Heavy Duty technology.

    Operating conditions • For networks with a large number of non-linear loads (NLL < 50%).• Heavy-duty, harmonic rated capacitors. For use with detuned reactors.• Significant voltage disturbances.• Significant switching frequency up to 7,000/year.

    Rated voltage In a detuned filter application, the voltage across the capacitors is higher than the network service voltage (US). Then, capacitors must be designed to withstand higher voltages.

    Depending on the selected tuning frequency, part of the harmonic currents are absorbed by the detuned capacitor bank. Then, capacitors must be designed to withstand higher currents, combining fundamental and harmonic currents.

    The rated voltage of VarplusCan Harmonic HDuty capacitors is given in the table below, for different values of network service voltage and relative impedance.

    In the following pages, the reactive power (kvar) given in the tables is the reactive power provided by the combination of capacitors and reactors.

    VarplusCan HDutyDetuned reactor

    +

    PE

    9015

    4

    PE

    9013

    1

    Rated voltage UN (V) Network service voltage (US) 50Hz 60Hz 400 690 400 480 600Relative impedance (%) 5.7 440 800 440 525 690 7 14 480 480

  • 39

    Technical specifications

    General characteristicsStandards IEC 60831-1/-2Network voltage range 380 to 690 VFrequency 50 / 60 HzPower range 6.5 to 25 kvar Losses (dielectric) < 0.2 W / kvarLosses (total) < 0.5 W / kvarCapacitance tolerance - 5 %, + 10 %Voltage test Between terminals 2.15 x UN (AC), 10 s Between terminal ≤ 660 V – 3 kV(AC), 10 s & container > 660 V – 6 kV(AC), 10 sDischarge resistor Fitted, standard discharge time 60 s Discharge time 180 s on requestWorking conditionsAmbient temperature - 25 / 55°C (Class D) Humidity 95 %Altitude 2,000 m above sea levelOvervoltage 1.1 x UN 8h in every 24hOvercurrent Up to 1.8 x INPeak inrush current 250 x INSwitching operations (max.) Up to 7,000 switching operations per yearMean Life expectancy Up to 130,000 hrsHarmonic content NLL ≤ 20% Installation characteristicsMounting position Indoor, upright & horizontalFastening

    Threaded M12 stud at the bottomEarthing Terminals CLAMPTITE - three-way terminal with electric shock protection (finger-proof) & double fast-on terminal in lower kvarSafety featuresSafety Self-healing + Pressure-sensitive disconnector + Discharge deviceProtection IP30 (IP54 on request)ConstructionCasing Extruded Aluminium CanDielectric Metallized polypropylene film with Zn/Al alloy. Special resistivity & profile, special edge (wave-cut)Impregnation Non-PCB, PUR sticky resin (Dry)

  • 40

    Low Voltage capacitors VarplusCan Harmonic HDuty

    50 Hz

    Network Relative kvar μF Capacitor Case D.R. voltage impe- (x3) part number code part numberUS (V) dance 380/400/ 400 V 415 5.7 6.5 41 BLR_VCHH1_065A40_3 HC 51573 12.5 78 BLR_VCHH1_125A40_3 RC 52404 25 156 BLR_VCHH1_250A40_3 VC 52405 50* 2x156 2 x BLR_VCHH1_250A40_3 VC 52406 100 4x156 4 x BLR_VCHH1_250A40_3 VC 52407 7 6.5 41 BLR_VCHH1_065A40_3 HC 51568 12.5 78 BLR_VCHH1_125A40_3 RC 52352 25 156 BLR_VCHH1_250A40_3 VC 52353 50* 2x156 2 x BLR_VCHH1_250A40_3 VC 52354 100 4x156 4 x BLR_VCHH1_250A40_3 VC 51569 14 6.5 37 BLR_VCHH2_065A40_3 HC 51563 12.5 72 BLR_VCHH2_125A40_3 RC 51564 25 143 BLR_VCHH2_250A40_3 VC 51565 50* 2x143 2 x BLR_VCHH2_250A40_3 VC 51566 100 4x143 4 x BLR_VCHH2_250A40_3 VC 51567

    690 5.7 6.5 13 BLR_VCHH1_065A69_3 RC BLR_VDR_065_05_A69 10 21 BLR_VCHH1_100A69_3 TC BLR_VDR_100_05_A69 12.5 26 BLR_VCHH1_125A69_3 VC BLR_VDR_125_05_A69 20 42 BLR_VCHH1_200A69_3 VC BLR_VDR_200_05_A69 25 2x26 2 x BLR_VCHH1_125A69_3 VC BLR_VDR_250_05_A69 50 4x26 4 x BLR_VCHH1_125A69_3 VC BLR_VDR_500_05_A69 7 6.5 13 BLR_VCHH1_065A69_3 RC BLR_VDR_065_07_A69 10 21 BLR_VCHH1_100A69_3 TC BLR_VDR_100_07_A69 12.5 26 BLR_VCHH1_125A69_3 VC BLR_VDR_125_07_A69 20 42 BLR_VCHH1_200A69_3 VC BLR_VDR_200_07_A69 25 2x26 2 x BLR_VCHH1_125A69_3 VC BLR_VDR_250_07_A69 50 4x26 4 x BLR_VCHH1_125A69_3 VC BLR_VDR_500_07_A694x

    2x422621134x2x42262113

    4x2x1472374x2x1578414x2x157841

    μF(x3

    Capa

    BLBLBL2 x4 xBLBLBL2 x4 xBLBLBL2 x4 x

    BLBLBLBL2 x4 xBLBLBLBL2 x4 x

    kv

    406.5122550106.5122550106.512255010

    6.510122025506.51012202550

    Caco

    HCRCVCVCVCHCRCVCVCVCHCRCVCVCVC

    RCTCVCVCVCVCRCTCVCVCVCVC

    Rimda 5. 7 14

    5. 7

    D.pa

    515252525251525252515151515151

    BLBLBLBLBLBLBLBLBLBLBLBL

    * 50kvar single unit is available on request

    Available 01/2011

  • 41

    60 Hz

    * 50kvar single unit is available on request

    Network Relative kvar μF Capacitor Case D.R. voltage impe- (x3) part number code part numberUS (V) dance 380/400/ 380 V 400 V 5.7 9.0 10 52 BLR_VCHH1_100B40_3 LC BLR_VDR_100_05_ B40 11.3 12.5 65 BLR_VCHH1_125B40_3 RC BLR_VDR_125_05_ B40 18.1 20 104 BLR_VCHH1_200B40_3 TC BLR_VDR_200_05_ B40 22.6 25 130 BLR_VCHH1_250B40_3 TC BLR_VDR_250_05_ B40 45 50* 2x130 2 x BLR_VCHH1_250B40_3 TC BLR_VDR_500_05_ B40 90 100 4x130 4 x BLR_VCHH1_250B40_3 TC BLR_VDR_X00_05_ B40 7 9.0 10 52 BLR_VCHH1_100B40_3 LC BLR_VDR_100_07_ B40 11.3 12.5 65 BLR_VCHH1_125B40_3 RC BLR_VDR_125_07_ B40 18.1 20 104 BLR_VCHH1_200B40_3 TC BLR_VDR_200_07_ B40 22.6 25 130 BLR_VCHH1_250B40_3 TC BLR_VDR_250_07_ B40 45 50* 2x130 2 x BLR_VCHH1_250B40_3 TC BLR_VDR_500_07_ B40 90 100 4x130 4 x BLR_VCHH1_250B40_3 TC BLR_VDR_X00_07_ B40 14 9.0 10 48 BLR_VCHH2_100B40_3 MC BLR_VDR_100_14_ B40 11.3 12.5 60 BLR_VCHH2_125B40_3 RC BLR_VDR_125_14_ B40 18.1 20 95 BLR_VCHH2_200B40_3 TC BLR_VDR_200_14_ B40 22.6 25 119 BLR_VCHH2_250B40_3 TC BLR_VDR_250_14_ B40 45 50* 2x119 2 x BLR_VCHH2_250B40_3 TC BLR_VDR_500_14_ B40 90 100 4x119 4 x BLR_VCHH2_250B40_3 TC BLR_VDR_X00_14_ B40

    440/480 440 V 480 V 5.7 8.4 10 43 BLR_VCHH1_100B48_3 LC BLR_VDR_100_05_ B48 10.5 12.5 54 BLR_VCHH1_125B48_3 RC BLR_VDR_125_05_ B48 16.8 20 86 BLR_VCHH1_200B48_3 TC BLR_VDR_200_05_ B48 21 25 108 BLR_VCHH1_250B48_3 TC BLR_VDR_250_05_ B48 42 50* 2x108 2 x BLR_VCHH1_250B48_3 TC BLR_VDR_500_05_ B48 44 100 4x108 4 x BLR_VCHH1_250B48_3 TC BLR_VDR_X00_05_ B48

    600 5.7 10 23 BLR_VCHH1_100B60_3 RC BLR_VDR_100_05_ B60 12.5 29 BLR_VCHH1_125B60_3 RC BLR_VDR_125_05_ B60 20 46 BLR_VCHH1_200B60_3 TC BLR_VDR_200_05_ B60 25 58 BLR_VCHH1_250B60_3 VC BLR_VDR_250_05_ B60 50 2x58 2 x BLR_VCHH1_250B60_3 VC BLR_VDR_500_05_ B60 100 4x58 4 x BLR_VCHH1_250B60_3 VC BLR_VDR_X00_05_ B60

    t

    4x2x5846

    4x

    2329

    2x10

    5486

    43

    112x4x

    9560484x2x131065524x2x13106552

    μF(x3

    4 x2 xBLBL

    4 x

    BLBL

    2 xBL

    BLBL

    BL

    BL2 x4 x

    BLBLBL4 x2 xBLBLBLBL4 x2 xBLBLBLBL

    Capa

    40101220255010101220255010101220255010

    4810 1220 25 5010

    il b

    kv 389.011182245909.011182245909.01118224590

    448.41016214244

    101220255010

    Caco

    LCRCTCTCTCTCLCRCTCTCTCTCMRCTCTCTCTC

    LCRCTCTCTCTC

    RCRCTCVCVCVC

    l

    Rimda 5. 7 14

    5.

    5.

    D.pa

    BLBLBLBLBLBLBLBLBLBLBLBLBLBLBLBLBLBL

    BLBLBLBLBLBL

    BLBLBLBLBLBL

    Available 12/2010Available 07/2011

  • 42

    Low Voltage capacitors VarplusCan Harmonic Energy

    This harmonic rated range of capacitors is dedicated to applications where a high number of non-linear loads are present (NLL up to 30%). These capacitors are designed for use with detuned reactors, based on the Energy technology.

    Operating conditions • For networks with a large number of non-linear loads (NLL < 50%).• Energy, harmonic rated capacitors. For use with detuned reactors.• Significant voltage disturbances.• Severe temperature conditions up to 70°C.• Very frequent switching operations up to 10,000/year.

    Rated voltage In a detuned filter application, the voltage across the capacitors is higher than the network service voltage (US). Then, capacitors must be designed to withstand higher voltages.

    Depending on the selected tuning frequency, part of the harmonic currents is absorbed by the detuned capacitor bank. Then, capacitors must be designed to withstand higher currents, combining fundamental and harmonic currents.

    The rated voltage of VarplusCan Harmonic Energy capacitors is given in the table below, for different values of network service voltage and relative impedance.

    VarplusCan HDutyDetuned reactor

    +

    PE

    9015

    4

    PE

    9013

    1

    In the following pages, the reactive power (kvar) given in the tables is the reactive power provided by the combination of capacitors and reactors.

    Rated voltage UN (V) Network service voltage (US) 50Hz 60Hz 400 690 400 480 600Relative impedance (%) 5.7 440 800 440 525 690 7 14 480 480

  • 43

    Technical specifications

    General characteristicsStandards IEC 60831-1/-2Network voltage range 380 to 690 VFrequency 50 / 60 HzPower range 5 to 15 kvar Losses (dielectric) < 0.2 W / kvarLosses (total) < 0.5 W / kvarCapacitance tolerance - 5 %, + 10 %Voltage test Between terminals 2.15 x UN (AC), 10 s Between terminal ≤ 660 V – 3 kV(AC), 10 s & container > 660 V – 6 kV(AC), 10 sDischarge resistor Fitted, standard discharge time 60 s Discharge time 180 s on requestWorking conditionsAmbient temperature - 25 / 70°C Humidity 95 %Altitude 2,000 m above sea levelOvervoltage 1.1 x UN 8h in every 24hOvercurrent Up to 2.5 x INPeak inrush current 350 x INSwitching operations (max.) Up to 10 ,000 switching operations per yearMean Life expectancy Up to 160,000 hrsHarmonic content NLL ≤ 25% Installation characteristicsMounting position Indoor, uprightFastening

    Threaded M12 stud at the bottomEarthing Terminals CLAMPTITE - three-way terminal with electric shock protection (finger-proof) & double fast-on terminal in lower kvarSafety featuresSafety Self-healing + Pressure-sensitive disconnector + Discharge deviceProtection IP30 (IP54 on request)ConstructionCasing Extruded Aluminium CanDielectric Double metallized paper + Polypropylene film Impregnation Non-PCB, oil

  • 44

    Low Voltage capacitors VarplusCan Harmonic Energy

    50 Hz

    Network Relative kvar μF Capacitor Case D.R. voltage impe- (x3) part number code part numberUS (V) dance 380/400/ 400 V 415 5.7 6.5 41 BLR_VCHE1_065A40_3 NC 51573 12.5 78 BLR_VCHE1_125A40_3 UC 52404 25 2x78 2 x BLR_VCHE1_125A40_3 UC 52405 50 4x78 4 x BLR_VCHE1_125A40_3 UC 52406 7 6.5 41 BLR_VCHE1_065A40_3 NC 51568 12.5 78 BLR_VCHE1_125A40_3 UC 52352 25 2x78 2 x BLR_VCHE1_125A40_3 UC 52353 50 4x78 4 x BLR_VCHE1_125A40_3 UC 52354 14 6.5 37 BLR_VCHE2_065A40_3 NC 51563 12.5 72 BLR_VCHE2_125A40_3 UC 51564 25 2x72 2 x BLR_VCHE2_125A40_3 UC 51565 50 4x72 4 x BLR_VCHE2_125A40_3 UC 52566

    690 5.7 10 21 BLR_VCHE1_100A69_3 SC BLR_VDR_100_05_A69 12.5 26 BLR_VCHE1_125A69_3 UC BLR_VDR_125_05_A69 25 2x26 2 x BLR_VCHE1_125A69_3 UC BLR_VDR_250_05_A69 50 4x26 4 x BLR_VCHE1_125A69_3 UC BLR_VDR_500_05_A69 7 10 21 BLR_VCHE1_100A69_3 SC BLR_VDR_100_07_A69 12.5 26 BLR_VCHE1_125A69_3 UC BLR_VDR_125_07_A69 25 2x26 2 x BLR_VCHE1_125A69_3 UC BLR_VDR_250_07_A69 50 4x26 4 x BLR_VCHE1_125A69_3 UC BLR_VDR_500_07_A694x

    2x26214x2x2621

    4x2x72374x2x78414x2x7841

    μF(x3

    4 x2 xBLBL4 x2 xBLBL

    4 x2 xBLBL4 x2 xBLBL4 x2 xBLBL

    Capa

    5025121050251210

    5025126.55025126.55025126.540

    kv

    UCUCUC

    UCUCUCSC

    UCUCUCNCUCUCUCNCUCUCUCNC

    Caco

    SC

    5. 7

    5. 7 14

    Rimda

    BL

    BLBL

    BLBLBLBL

    525151515252525152525251

    D.pa

    BL

    Available 02/2011

  • 45

    60 Hz

    Network Relative kvar μF Capacitor Case D.R. voltage impe- (x3) part number code part numberUS (V) dance 380/400 (400 V) 5.7 10 52 BLR_VCHE1_100B40_3 SC BLR_VDR_100_05_B40 12.5 65 BLR_VCHE1_125B40_3 SC BLR_VDR_125_05_B40 25 2x65 2 x BLR_VCHE1_125B40_3 SC BLR_VDR_250_05_B40 50 4x65 4 x BLR_VCHE1_125B40_3 SC BLR_VDR_500_05_B40 7 10 52 BLR_VCHE1_100B40_3 SC BLR_VDR_100_07_B40 12.5 65 BLR_VCHE1_125B40_3 SC BLR_VDR_125_07_B40 25 2x65 2 x BLR_VCHE1_125B40_3 SC BLR_VDR_250_07_B40 50 4x65 4 x BLR_VCHE1_125B40_3 SC BLR_VDR_500_07_B40 14 10 48 BLR_VCHE2_100B40_3 SC BLR_VDR_100_14_B40 12.5 60 BLR_VCHE2_125B40_3 UC BLR_VDR_125_14_B40 25 2x60 2 x BLR_VCHE2_125B40_3 UC BLR_VDR_250_14_B40 50 4x60 4 x BLR_VCHE2_125B40_3 UC BLR_VDR_500_14_B40

    440/480 5.7 10 43 BLR_VCHE1_100B48_3 SC BLR_VDR_100_05_B48 12.5 54 BLR_VCHE1_125B48_3 SC BLR_VDR_125_05_B48 25 2x54 2 x BLR_VCHE1_125B48_3 SC BLR_VDR_250_05_B48 50 4x54 4 x BLR_VCHE1_125B48_3 SC BLR_VDR_500_05_B48

    600 5.7 10 23 BLR_VCHE1_100B60_3 SC BLR_VDR_100_05_B60 12.5 29 BLR_VCHE1_125B60_3 SC BLR_VDR_125_05_B60 25 2x29 2 x BLR_VCHE1_125B60_3 SC BLR_VDR_250_05_B60 50 4x29 4 x BLR_VCHE1_125B60_3 SC BLR_VDR_500_05_B604x

    2x29

    4x

    23

    2x5443

    4x2x60484x2x65524x2x6552

    μF(x3

    4 2 B

    4

    B

    2 BB

    4 2 BB4 2 BB4 2 BB

    Cpa

    502512

    50

    10

    251210

    502512105025121050251210(40

    kv

    SCSCSC

    SC

    SC

    SCSCSC

    UCUCUCSCSCSCSCSCSCSCSCSC

    Caco

    5.

    5. 7 14

    Rimda

    5. BL

    BLBL

    BL

    BL

    BLBLBL

    BLBLBLBLBLBLBLBLBLBLBLBL

    D.pa

    Available 12/2010Available 02/2011Available 07/2011

  • 46

    Low Voltage capacitors VarplusCan mechanical characteristics

    Case Code: DC, HC & LC

    Case Code: MC, NC, RC & SC

    Creepage distance 16 mmClearance 16 mmExpansion (a) max. 10 mm

    Mounting details (for M10/M12 mounting stud)Torque T = 10 NmToothed washer M10/M12Hex nut M10/M12Terminal screw M5Terminal assembly Ht. (t) 50 mm

    Size (d) TS TH Ø 50 M10 10 mmØ 63 M12 13 mmØ 70 M12 16 mm

    Case Diameter d Height h Height h+t Weight code (mm) (mm) (mm) (kg)MC 75 203 233 1.2NC 75 278 308 1.3RC 90 212 242 1.6SC 90 278 308 2.3

    Case Diameter d Height h Height h+t Weight code (mm) (mm) (mm) (kg)DC 50 195 245 0.7HC 63 195 245 0.9LC 70 195 245 1.1

    Creepage distance 13 mmClearance 13 mmExpansion (a) max. 12 mm

    Mounting details (for M12 mounting stud)

    Torque T = 10 NmToothed washer J12.5 DIN 6797Hex nut BM12 DIN 439Terminal screw M5Terminal assembly Ht. (t) 30 mm

    Termination cable

    Toothed washerTS T

    H19

    � 0.

    5 + a

    h �

    2

    d � 1 h �

    2 +

    t

    Hex nut

    FAST-ON Terminal 6.35 x 0.8

    VarplusCan DC, HC & LC

    M12

    16 +

    1

    Tightening Torque = 2.5 Nm

    Finger proof CLAMPTITE terminalIn-built resistor type

    Toothed washerHex nut

    VarplusCan MC, NC, RC & SC

    16

    M1M 2M1

    6+

    16

    + 1 MMMM

    h �

    3h

    � 3

    + a

    (exp

    ansi

    on)

    (t)

    h �

    3 +

    t

    d � 1

    d � 1 + 5

    1515155

  • 47

    Case Code: TC, UC & VC

    Creepage distance 13 mmClearance 13 mmExpansion (a) max. 12 mm

    Mounting details (for M12 mounting stud)Torque T = 10 NmToothed washer J12.5 DIN 6797Hex nut BM12 DIN 439Terminal screw M5Terminal assembly Ht. (t) 30 mm

    Case Diameter d Height h Height h+t Weight code (mm) (mm) (mm) (kg)TC 116 212 242 2.5UC 116 278 308 3.5VC 136 212 242 3.2

    Toothed washerM12

    16 +

    1

    Finger proof CLAMPTITE terminalIn-built resistor type

    Tightening Torque = 2.5 Nm

    Hex nut16

    M1M 2M1M

    FC

    +1

    + 1 MM

    h �

    3h

    � 3

    + a

    (exp

    ansi

    on)

    (t)h

    � 3

    + t

    d � 1

    d � 1 + 5

    VarplusCan TC, UC & VC

    1515155

  • 48

    Low Voltage capacitors VarplusBox capacitor

    Main featuresRobustness• Double metallic protection.• Mechanically well suited for “stand-alone” installations.

    Safety• Its unique safety feature electrically disconnects the capacitors safely at the end of their useful life. • The disconnectors are installed on each phase, which makes the capacitors very safe, in addition to the protective steel enclosure.

    Flexibility• These capacitors can be easily mounted inside panels or in a stand-alone configuration.• Suitable for flexible bank configuration.

    For professionnals• Metal box enclosure. • High power ratings up to 100 kvar.• Easy repair and maintenance.• Up to 70°C temperature.• High inrush current withstand up to 400 x IN.• Stand-alone PFC equipment.• Direct connection to a machine, in harsh environmental conditions.

    VarplusBox capacitors deliver reliable performance in the most severe application conditions, in Fixed & Automatic PFC systems, in networks with frequently switched loads and harmonic disturbances.

    VarplusBox

    PE

    9013

    5

  • 49

    SDuty HDuty Energy Harmonic HDuty Harmonic Energy

    Construction Steel sheet enclosure

    Voltage 380 V - 690 V 380 V - 690 V range

    Power range 2.5 – 100 kvar 6.5 – 100 kvar(three-phase)

    Peak inrush Up to 200 x IN Up to 250 x IN Up to 350 x IN Up to 250 x IS Up to 400 x IScurrent

    Overvoltage 1.1 x UN 8h every 24h

    Overcurrent 1.5 x IN 1.8 x IN 2.5 x IN 1.8 x IN 2.5 x INMean life Up to 100,000 h Up to 130,000 h Up to 160,000 h Up to 130,000 h Up to 160,000 hexpectancy

    Safety Self-healing + pressure-sensitive disconnector + discharge device

    Dielectric Metallized polypropylene Double metallized paper Metallized polypropylene Double metallized paper film with Zn/Al alloy + Polypropylene film film with Zn/Al alloy + Polypropylene film

    Impregnation Non-PCB, Non-PCB, sticky (dry) Non-PCB, oil Non-PCB, sticky (dry) Non-PCB, oil biodegradable resin biodegradable resin biodegradable resin

    Ambient -25/D -25/70 -25/D -25/70temperature min.: -25°C ; max.: 55°C min.: -25°C ; max.: 70°C min.: -25°C ; max.: 55°C min.: -25°C ; max.: 70°C

    Protection IP20 (IP54 on request) indoor

    Mounting Upright Upright / Upright Upright / Upright horizontal horizontal

    Terminals Bushing terminals designed for large cable termination and direct busbar mounting for banking

    +P

    E90

    154

    PE

    9013

    4

    PE

    9016

    4

    PE

    9013

    7

    PE

    9013

    5

    VarplusBox

  • 50

    Low Voltage capacitors VarplusBox SDuty

    A safe, reliable and high-performance solution for Power Factor Correction in standard operating conditions.

    Operating conditions • For networks with insignificant non-linear loads: (NLL ≤ 10%).• Standard voltage disturbances.• Standard operating temperature up to 55°C.• Normal switching frequency up to 5 000 /year.• Maximum current withstand 1.5 x IN.

    Technology Constructed internally with three single-/three-phase capacitor elements.

    The design is specially adapted for mechanical stability. The enclosures of the units are designed to ensure that the capacitors operate reliably in hot and humid tropical conditions, without the need of any additional ventilation louvres (see technical specifications).

    Special attention is paid to equalization of temperatures within the capacitor enclosures since this gives better overall performance.

    Benefits • Mechanically well suited for “stand-alone” installations • Safety:- Self-healing;- Pressure-sensitive disconnector on all three phases;- Discharge resistor.• These capacitors can be easily mounted inside panels or in a stand-alone configuration. • Availability on power ratings up to 100 kvar.• Suitable for flexible banking.

    PE

    9013

    5

    VarplusBox SDuty

    PE

    9013

    4

  • 51

    Technical specifications

    General characteristicsStandards IEC 60831-1/-2Voltage range 380 to 690 VFrequency 50 / 60 HzPower range 7.5 to 100 kvar Losses (dielectric) < 0.2 W / kvarLosses (total) < 0.5 W / kvarCapacitance tolerance - 5 %, + 10 %Voltage test Between terminals 2.15 x UN (AC), 10 s Between terminal ≤ 660 V – 3 kV(AC), 10 s & container > 660 V – 6 kV(AC), 10 sDischarge resistor Fitted, standard discharge time 60 s Discharge time 180 s on requestWorking conditionsAmbient temperature - 25 / 55°C (Class D) Humidity 95 %Altitude 2,000 m above sea levelOvervoltage 1.1 x UN 8h in every 24hOvercurrent Up to 1.5 x INPeak inrush current 150 x INSwitching operations (max.) Up to 5,000 switching operations per yearMean Life expectancy Up to 100,000 hrsHarmonic content NLL ≤ 10% Installation characteristicsMounting position Indoor, uprightFastening

    Mounting cleatsEarthing Terminals Bushing terminals designed for large cable termination and direct busbar mounting for bankingSafety featuresSafety Self-healing + Pressure-sensitive disconnector for each phase + Discharge deviceProtection IP20 (IP54 on request)ConstructionCasing Sheet steel enclosureDielectric Metallized polypropylene film with Zn/Al alloy.Impregnation Biodegradable, Non-PCB, PUR (soft) resin

  • 52

    Low Voltage capacitors VarplusBox SDuty

    Network kvar μF IN (A) Case Part numbervoltage (x 3) codeUN (V) 380/ 380 V 400 V 415 V 400 V 400/ 0.9 1 1.1 7 1.4 On request415 1.8 2 2.2 13 2.9 On request 2.7 3 3.2 20 4.3 On request 3.6 4 4.3 27 5.8 On request 4.5 5 5.4 33 7.2 On request 6.8 7.5 8.1 50 11 EB BLR_VBSDY_075A40_3 9.0 10 10.8 66 14 EB BLR_VBSDY_100A40_3 11.3 12.5 13.5 83 18 EB BLR_VBSDY_125A40_3 13.5 15 16.1 99 22 DB BLR_VBSDY_150A40_3 18.1 20 21.5 133 29 DB BLR_VBSDY_200A40_3 22.6 25 27 166 36 FB BLR_VBSDY_250A40_3 45 50 54 332 72 HB BLR_VBSDY_500A40_3 68 75 81 497 108 RB BLR_VBSDY_750A40_3 90 100 108 663 144 SB BLR_VBSDY_X00A40_3

    440 1 5 1.3 On request 2 11 2.6 On request 3 16 3.9 On request 4 22 5.2 On request 5 27 6.6 On request 7.5 41 10 EB BLR_VBSDY_075A44_3 10 55 13 EB BLR_VBSDY_100A44_3 12.5 69 16 EB BLR_VBSDY_125A44_3 15 82 20 DB BLR_VBSDY_150A44_3 20 110 26 DB BLR_VBSDY_200A44_3 25 137 33 DB BLR_VBSDY_250A44_3 50 274 66 HB BLR_VBSDY_500A44_3 75 411 98 RB BLR_VBSDY_750A44_3 100 548 131 SB BLR_VBSDY_X00A44_3

    690 1 2 0.8 On request 2 4 1.7 On request 3 7 2.5 On request 4 9 3.3 On request 5 11 4.2 On request 7.5 17 6.3 FB BLR_VBSDY_075A69_3 10 22 8.4 FB BLR_VBSDY_100A69_3 12.5 28 10 FB BLR_VBSDY_125A69_3 15 33 13 FB BLR_VBSDY_150A69_3 20 45 17 FB BLR_VBSDY_200A69_3 25 56 21 FB BLR_VBSDY_250A69_3 50 111 42 HB BLR_VBSDY_500A69_3 75 167 63 RB BLR_VBSDY_750A69_3 100 223 84 SB BLR_VBSDY_X00A69_3

    1 2 3 4 5 7.51012152025507510

    1 2 3 4 5 7.51012152025507510

    k kv 380.91.82.73.64.56.89.011131822456890

    2216115645

    17222833

    119 7

    2 4

    5441271311

    2741556982

    1622

    115

    6649331613

    273350668399

    μF(x 7 1320

    1075502520

    4 5 7.5101215

    401 2 3

    1081542721

    4.35.48.101316

    411.2.23.2

    8463422117

    6.38.41013

    4.23.32.5

    0.81.7

    1398663326

    6.610131620

    3.95.2

    2.61.3

    1410723629

    5.87.211141822

    IN

    401.42.94.3

    SBRBHBFBFB

    FBFBFBFB

    SBRBHBDBDB

    EBEBEBDB

    SBRBHBFBDB

    EBEBEBDB

    Caco

    BLBLBLBLBL

    BLBLBLBL

    OnOnOn

    OnOn

    BLBLBLBLBL

    OnBLBLBLBL

    OnOn

    OnOn

    BLBLBLBLBL

    OnOnBLBLBLBL

    Pa

    OnOnOn

    Available 11/2010

    50 Hz

  • 53

    Available 11/2010

    60 Hz

    Rated kvar μF IN (A) Case Part numbervoltage (x 3) codeUN (V) 380/400 (380 V) (400 V) (400 V) 0.9 1 6 1.4 On request 1.8 2 11 2.9 On request 2.7 3 17 4.3 On request 3.6 4 22 5.8 On request 4.5 5 28 7.2 On request 6.8 7.5 41 11 EB BLR_VBSDY_075B40_3 9.0 10 55 14 EB BLR_VBSDY_100B40_3 11.3 12.5 69 18 EB BLR_VBSDY_125B40_3 13.5 15 83 22 DB BLR_VBSDY_150B40_3 18.1 20 111 29 DB BLR_VBSDY_200B40_3 22.6 25 138 36 DB BLR_VBSDY_250B40_3 45 50 276 72 HB BLR_VBSDY_500B40_3 68 75 414 108 RB BLR_VBSDY_750B40_3 90 100 553 144 SB BLR_VBSDY_X00B40_3

    440/480 440 V 480 V 480 V 0.8 1 4 1.2 On request 1.7 2 8 2.4 On request 2.5 3 12 3.6 On request 3.4 4 15 4.8 On request 4.2 5 19 6 On request 6.3 7.5 29 9 EB BLR_VBSDY_075B48_3 8.4 10 38 12 EB BLR_VBSDY_100B48_3 10.5 12.5 48 15 EB BLR_VBSDY_125B48_3 12.6 15 58 18 DB BLR_VBSDY_150B48_3 16.8 20 77 24 DB BLR_VBSDY_200B48_3 21.0 25 96 30 DB BLR_VBSDY_250B48_3 42 50 192 60 HB BLR_VBSDY_500B48_3 63 75 288 90 RB BLR_VBSDY_750B48_3 84 100 384 120 SB BLR_VBSDY_X00B48_3

    600 1 2 1.0 On request 2 5 1.9 On request 3 7 2.9 On request 4 10 3.8 On request 5 12 4.8 On request 7.5 18 7.2 DB BLR_VBSDY_075B60_3 10 25 9.6 DB BLR_VBSDY_100B60_3 12.5 31 12.0 DB BLR_VBSDY_125B60_3 15 37 14.4 DB BLR_VBSDY_150B60_3 20 49 19.2 GB BLR_VBSDY_200B60_3 25 61 24 GB BLR_VBSDY_250B60_3 50 123 48 JB BLR_VBSDY_500B60_3 75 184 72 KB BLR_VBSDY_750B60_3 100 246 96 LB BLR_VBSDY_X00B60_3

    1 2 3 4 5 7.51012152025507510

    440.81.72.53.44.26.38.410121621426384

    kv (380.91.82.73.64.56.89.011131822456890

    241812614937

    12182531

    107 5 2

    192838

    96775848

    15192938

    128 4

    554127131183

    μF(x

    6 11172228415569

    967248241914

    4.87.29.612

    3.82.91.91.0

    609012

    30241815

    4.86 912

    3.62.41.248

    141072362922

    IN

    (401.42.94.35.87.2111418

    LBKBJBGBGBDB

    DBDBDB

    HBRBSB

    DBDBDBEB

    EBEB

    SBRBHBDBDBDB

    Caco

    ) EBEBEB

    BLBLBLBLBLBL

    OnBLBLBL

    OnOnOnOn

    BLBLBL

    BLBLBLBL

    OnOnBLBL

    OnOnOn

    BLBLBLBLBLBL

    Pa

    OnOnOnOnOnBLBLBL

    107550252015

    (41 2 3 4 5 7.1012

    507510

    25201512

    4 5 7.10

    3 2 1 48

  • 54

    Low Voltage capacitors VarplusBox HDuty

    A safe, reliable and high-performance solution for power factor correction in heavy-duty operating conditions.

    Operating conditions • For networks with significant non-linear loads: (NLL ≤ 20%).• Standard voltage disturbances.• Standard operating temperature up to 55°C.• Significant number of switching operations up to 7,000/year.• Long life expectancy up to 130,000 hours.

    Technology Constructed internally with three single-phase capacitor elements.

    The design is specially adapted for mechanical stability. The enclosures of the units are designed to ensure that the capacitors operate reliably in hot and humid tropical conditions, without the need of any additional ventilation louvres (see technical specifications).

    Special attention is paid to equalization of temperatures within the capacitor enclosures since this gives better overall performance.

    Special design for total modularity and easy assembly with VarplusBox HDuty "Compact".

    Accessory for VarplusBox HDuty Compact One set of 3-phase copper bars and assembly of 2 and 3 capacitors: ref. 51459.

    Benefits • High performance- Heavy edge metallization/wave-cut edge to ensure high inrush current capabilities.- Special resistivity and profile metallization for better self-healing & enhanced life.• Safety- Its unique safety feature electrically disconnects the capacitors safely at the end of their useful life. - The disconnectors are installed on each phase, which makes the capacitors very safe, in addition to its protective steel enclosure.• Flexibility- Special "compact" case with small footprint to be easily mounted and assembled.- Availability on power ratings up to 100 kvar with parallel connection.

    VarplusBox HDuty "Compact"

    PE

    9013

    7

    VarplusBox

    PE

    9013

    5

  • 55

    Technical specifications

    General characteristicsStandards IEC 60831-1/-2Voltage range 380 to 690 VFrequency 50 / 60 HzPower range 2.5 to 100 kvar (from 2.5 to 20 kvar: unique footprint for easy assembly)Losses (dielectric) < 0.2 W / kvarLosses (total) < 0.5 W / kvarCapacitance tolerance - 5 %, + 10 %Voltage test Between terminals 2.15 x UN (AC), 10 s Between terminal ≤ 660 V – 3 kV(AC), 10 s & container > 660 V – 6 kV(AC), 10 sDischarge resistor Fitted, standard discharge time 60 s Discharge time 180 s on requestWorking conditionsAmbient temperature - 25 / 55°C (Class D) Humidity 95 %Altitude 2,000 m above sea levelOvervoltage 1.1 x UN 8h in every 24hOvercurrent Up to 1.8 x INPeak inrush current 250 x INSwitching operations (max.) Up to 7,000 switching operations per yearMean Life expectancy Up to 130,000 hrsHarmonic content NLL ≤ 20% Installation characteristicsMounting position Indoor, upright & horizontalFastening

    Mounting cleatsEarthing Terminals Bushing terminals designed for large cable termination and direct busbar mounting for bankingSafety featuresSafety Self-healing + Pressure-sensitive disconnector for each phase + Discharge deviceProtection IP20 (IP54 on request)ConstructionCasing Sheet steel enclosureDielectric Metallized polypropylene film with Zn/Al alloy, special resistivity & profile. Special edge (wave-cut)Impregnation Non-PCB, PUR sticky resin (Dry)

  • 56

    Low Voltage capacitors VarplusBox HDuty

    50 Hz

    VarplusBox HDuty "compact"

    Available 11/2010

    Rated kvar μF IN (A) Case Part numbervoltage (x 3)UN (V) 380/ 380 V 400 V 415 V 400 V 400/ 2.3 2.5 2.7 17 3.6 AB BLR_VBHDY_025A40_3415 4.5 5 5.4 33 7.2 AB BLR_VBHDY_050A40_3 5.6 6.2 6.7 41 9 AB BLR_VBHDY_062A40_3 6.8 7.5 8.1 50 11 AB BLR_VBHDY_075A40_3 9.0 10 10.8 66 14 AB BLR_VBHDY_100A40_3 11.3 12.5 13.5 83 18 AB BLR_VBHDY_125A40_3 13.5 15 16.1 99 22 AB BLR_VBHDY_150A40_3 18.1 20 21.5 133 29 AB BLR_VBHDY_200A40_3 22.6 25 27 166 36 GB BLR_VBHDY_250A40_3 27.1 30 32 199 43 IB BLR_VBHDY_300A40_3 36.1 40 43 265 58 IB BLR_VBHDY_400A40_3 45 50 54 332 72 IB BLR_VBHDY_500A40_3 68 75 81 498 108 KB BLR_VBHDY_750A40_3 90 100 108 663 144 LB BLR_VBHDY_X00A40_3

    440 5 27 6.6 AB BLR_VBHDY_050A44_3 7.5 41 10 AB BLR_VBHDY_075A44_3 10 55 13 AB BLR_VBHDY_100A44_3 12.5 69 16 AB BLR_VBHDY_125A44_3 15 82 20 AB BLR_VBHDY_150A44_3 20 110 26 AB BLR_VBHDY_200A44_3 25 137 33 GB BLR_VBHDY_250A44_3 30 164 39 IB BLR_VBHDY_300A44_3 40 219 52 IB BLR_VBHDY_400A44_3 50 274 66 IB BLR_VBHDY_500A44_3 75 411 98 KB BLR_VBHDY_750A44_3 100 548 131 LB BLR_VBHDY_X00A44_3

    690 5 11 4.2 AB BLR_VBHDY_050A69_3 7.5 17 6.3 AB BLR