r&d for tpc mpd/nica readout electronics

Click here to load reader

Upload: ivi

Post on 23-Feb-2016

32 views

Category:

Documents


0 download

DESCRIPTION

R&D FOR TPC MPD/NICA READOUT ELECTRONICS. S.Vereschagin , Yu.Zanevsky , F.Levchanovskiy S.Chernenko , G.Cheremukhina , S.Zaporozhets , A.Averyanov. Laboratory of High Energy Physics, JINR, Dubna , Russia. Varna, 2013. CONTENS. - PowerPoint PPT Presentation

TRANSCRIPT

ACQUSITION SYSTEM TPC MPD/NICA

S.Vereschagin, Yu.Zanevsky, F.LevchanovskiyS.Chernenko, G.Cheremukhina, S.Zaporozhets,A.AveryanovR&D FOR TPC MPD/NICA READOUT ELECTRONICSVarna, 2013Laboratory of High Energy Physics, JINR, Dubna, RussiaCONTENS1Introduction (general characteristics of TPC/MPD, & readout electronics requirements)FEE prototype (FEC-64) Main option FEE (FEC-128 & RCU)Conclusions General view of the MPD detector2

The Time-Projection Chamber (TPC) is the main tracking detector of the central barrel in the MPD. Its purpose is tracking of charged particles and particle identification. 3TPC/MPD3

12 ReadoutchambersHV-electrode ~28 KVField cage

beambeam~110000 readout channelsEThe Time-Projection Chamber (a heart of MPD detector) is a hybrid of drift and proportional chambers. This device is well suited for studies on colliders. A central high-voltage electrode disc of the drift cell surrounds the interaction vertex of colliding beams, makes electric field between a center and end plates and divides the drift region into two parts. At the ends of the cylinder are located multi-wire proportional chamber. Uniform electric field is produced by additional electrodes (Field Cage). The charged particle passing the TPC gas volume ionizes gas mixture atoms inside of the barrel. Generated ionized clusters start to drift along direction of electric field to the anode plane (MWPC). Magnetic field (needed for the measurement of charge particle MOMENTUM) is parallel to electric field direction and help to protect electron clusters of distortion. The clusters are drifting to readout chambers, where we can measure its X, Y and Z coordinate. TPC permits to register a lot of tracks simultaneously.

4Main parameters of the TPC4Size: 3.4m(length) x 2.8m (diameter);Drift gas: 90% Ar+10% Methane CH4 or 90%Ar+10% CO2;Drift velocity: 5.5 cm/us(Ar + CH4), 2.3 cm/us (Ar + CO2); Length of drift volume: 1.7 m;Data readout: 2x12 sectors (MWPC, cathode pad readout);Maximal event rate 5 kHz;Total number of pads ~ 110000;

Simulation results5

Central collision on TPC/MPD @ 9GeVMain parameters of the FEE TPC6Total number of channels ~ 110000Data stream from whole TPC 5 GB/sLow power consumption less then 100 mW/chFast optical transfer interfaceBased on ASIC and FPGA

7Front-End Electronics prototype7

FEC-64 channelsPASA chip 16 channels ASIC(low noise amplification of the signal)ALTRO chip16 channels ASIC(digitization and signal processing)FPGA - board control Signal to noise ratio, S/N - 30 NOISE < 1000e- (=10-20 pF) Dynamic Range - 1000 Zero suppression Buffer (4 / 8 events) FTDI USB2.0 (prototype only) Processing in PASA & ALTRO8

- FWHM 190ns- Baseline restoration after 1ms: ~ 5 % in amplifier / shaper ~ 0.1% in dig. chip PASA ALTRO

- Baseline corrections

- Tail cancellation

FWHM ~ 190nsFEE TESTING9

FEE on the TPC prototypePulse after amplification FEC-64 testing software 10

Block diagram of FEE base11RCUSwitch 1FEC 1FEC 8FEC 1FEC 8Switch 8Pad Plane ~4500 ch.128 ch.DAQ PCSlowcontrolGroup 1Group 8TriggerFEE of RoC general diagram12RCUFECgroupFECgroupFECgroupFECgroupFECgroupDAQ PCEthernetSlowControlsystemSwitchTrigger SystemSwitchSwitchSwitchSwitch5 Gb/sHLT TPCOptical interface13TPC/MPD READOUT OUTLINE13Support high data throughput & maximum parallelization;HLT (TPC), online reconstruction & events compression;Use GPU NVIDIA for computing trigger decision;Like ALICE, ATLAS & CBM experiments; DATA READOUT14PC 1PC 24HLTHLT TPCEvent builderFrom other detectorsPermanent Data StorageOnline reconstruction HLT decision to MPD central trigger processorMaximum parallelization15ROC 1TPCFEEHLT - TPCGPU BOARDPCI-E 8 Gb/s and moreMB-PCROC 24TPCFEEFEEPCI-E 1xPCI-E 1xPCI-E 1xConclusions:16Prototype card has been designed 6 prototype cards has been produced & tasted Testing software was developed (LabView & C++)Base FEE concept was developedFEE design toward final version ongoingI would like to express our gratitude for the help to17Victor Chepurnov (JINR)Stepan Razin (JINR)Alexander Moskovsky (JINR) Luciano Musa (CERN)Thank you for your attention!Final version of FEE

Basic version of FEC

Switch node

Readout Control Unit

Choice of FPGA technologySRAM, where the programmable switch is controlled by an SRAM memory cell.Flash (or EPROM/EEPROM), where the switch is a floating gate transistor that can be turned off by injecting charge onto the floating gate.Antifuse, where an electrically programmable switch forms a low resistance path between two metal layers.

0 1311 566 1634 0 1312

.MCAD 304020000 1 74 348 0

.CMD PLOTFORMAT

0 0 1 1 1 0 0 1 1

0 0 1 1 1 0 0 1 1

0 1 0 0 1 1 NO-TRACE-STRING

0 2 1 0 1 1 NO-TRACE-STRING

0 3 2 0 1 1 NO-TRACE-STRING

0 4 3 0 1 1 NO-TRACE-STRING

0 1 4 0 1 1 NO-TRACE-STRING

0 2 5 0 1 1 NO-TRACE-STRING

0 3 6 0 1 1 NO-TRACE-STRING

0 4 0 0 1 1 NO-TRACE-STRING

0 1 1 0 1 1 NO-TRACE-STRING

0 2 2 0 1 1 NO-TRACE-STRING

0 3 3 0 1 1 NO-TRACE-STRING

0 4 4 0 1 1 NO-TRACE-STRING

0 1 5 0 1 1 NO-TRACE-STRING

0 2 6 0 1 1 NO-TRACE-STRING

0 3 0 0 1 1 NO-TRACE-STRING

0 4 1 0 1 1 NO-TRACE-STRING

0 1 1 21 15 0 0 3

.CMD FORMAT rd=d ct=10 im=i et=3 zt=15 pr=3 mass length time charge temperature tr=0 vm=0

.CMD SET ORIGIN 0

.CMD SET TOL 0.001000000000000

.CMD SET PRNCOLWIDTH 8

.CMD SET PRNPRECISION 4

.CMD PRINT_SETUP 1.200000 0.979167 1.200000 1.200000 0

.CMD HEADER_FOOTER 1 1 *empty* *empty* *empty* 0 1 *empty* *empty* *empty*

.CMD HEADER_FOOTER_FONT fontID=14 family=Arial points=10 bold=0 italic=0 underline=0 colrid=-1

.CMD HEADER_FOOTER_FONT fontID=15 family=Arial points=10 bold=0 italic=0 underline=0 colrid=-1

.CMD DEFAULT_TEXT_PARPROPS 0 0 0

.CMD DEFINE_FONTSTYLE_NAME fontID=0 name=Variables

.CMD DEFINE_FONTSTYLE_NAME fontID=1 name=Constants

.CMD DEFINE_FONTSTYLE_NAME fontID=2 name=Text

.CMD DEFINE_FONTSTYLE_NAME fontID=4 name=User^1

.CMD DEFINE_FONTSTYLE_NAME fontID=5 name=User^2

.CMD DEFINE_FONTSTYLE_NAME fontID=6 name=User^3

.CMD DEFINE_FONTSTYLE_NAME fontID=7 name=User^4

.CMD DEFINE_FONTSTYLE_NAME fontID=8 name=User^5

.CMD DEFINE_FONTSTYLE_NAME fontID=9 name=User^6

.CMD DEFINE_FONTSTYLE_NAME fontID=10 name=User^7

.CMD DEFINE_FONTSTYLE fontID=0 family=Times^New^Roman points=10 bold=0 italic=0 underline=0 colrid=-1

.CMD DEFINE_FONTSTYLE fontID=1 family=Times^New^Roman points=10 bold=0 italic=0 underline=0 colrid=-1

.CMD DEFINE_FONTSTYLE fontID=2 family=Arial points=10 bold=0 italic=0 underline=0 colrid=-1

.CMD DEFINE_FONTSTYLE fontID=4 family=Arial points=10 bold=0 italic=0 underline=0 colrid=-1

.CMD DEFINE_FONTSTYLE fontID=5 family=Courier^New points=10 bold=0 italic=0 underline=0 colrid=-1

.CMD DEFINE_FONTSTYLE fontID=6 family=System points=10 bold=0 italic=0 underline=0 colrid=-1

.CMD DEFINE_FONTSTYLE fontID=7 family=Script points=10 bold=0 italic=0 underline=0 colrid=-1

.CMD DEFINE_FONTSTYLE fontID=8 family=Roman points=10 bold=0 italic=0 underline=0 colrid=-1

.CMD DEFINE_FONTSTYLE fontID=9 family=Modern points=10 bold=0 italic=0 underline=0 colrid=-1

.CMD DEFINE_FONTSTYLE fontID=10 family=Times^New^Roman points=10 bold=0 italic=0 underline=0 colrid=-1

.CMD UNITS U=1

.CMD DIMENSIONS_ANALYSIS 0 0

.CMD COLORTAB_ENTRY 0 0 0

.CMD COLORTAB_ENTRY 128 0 0

.CMD COLORTAB_ENTRY 0 128 0

.CMD COLORTAB_ENTRY 128 128 0

.CMD COLORTAB_ENTRY 0 0 128

.CMD COLORTAB_ENTRY 128 0 128

.CMD COLORTAB_ENTRY 0 128 128

.CMD COLORTAB_ENTRY 128 128 128

.CMD COLORTAB_ENTRY 192 192 192

.CMD COLORTAB_ENTRY 255 0 0

.CMD COLORTAB_ENTRY 0 255 0

.CMD COLORTAB_ENTRY 255 255 0

.CMD COLORTAB_ENTRY 0 0 255

.CMD COLORTAB_ENTRY 255 0 255

.CMD COLORTAB_ENTRY 0 255 255

.CMD COLORTAB_ENTRY 255 255 255

.TXT 3 29 257 0 0

Cg a30.000000,30.000000,10

{\rtf\ansi \deff0{\colortbl;\red0\green0\blue128;}{\fonttbl{\f0

\fcharset0\fnil Arial;}}\plain\cf1\fs20 \pard {\fs28\b\ul TPC SIGNAL}}

.TXT 4 -28 239 0 0

Cg a64.000000,64.000000,10

{\rtf\ansi \deff0{\colortbl;\red0\green0\blue128;}{\fonttbl{\f0

\fcharset0\fnil Arial;}}\plain\cf1\fs20 \pard {\fs24\b\ul Variables}}

.EQN 3 0 240 0 0

{0:t}NAME:0,1;1000

.TXT 0 12 241 0 0

Cg a59.000000,59.000000,9

{\rtf\ansi \deff0{\colortbl;\red0\green0\blue128;}{\fonttbl{\f0

\fcharset0\fnil Arial;}}\plain\cf1\fs20 \pard time (ns)}

.TXT 4 -12 242 0 0

Cg a67.000000,67.000000,10

{\rtf\ansi \deff0{\colortbl;\red0\green0\blue128;}{\fonttbl{\f0

\fcharset0\fnil Arial;}}\plain\cf1\fs20 \pard {\fs24\b\ul Parameters}}

.EQN 3 0 243 0 0

{0:t0}NAME:1

.TXT 0 12 244 0 0

Cg a54.000000,54.000000,32

{\rtf\ansi \deff0{\colortbl;\red0\green0\blue128;}{\fonttbl{\f0

\fcharset0\fnil Arial;}}\plain\cf1\fs20 \pard chamber characteristic

time (ns)}

.TXT 5 -12 245 0 0

Cg a67.000000,67.000000,9

{\rtf\ansi \deff0{\colortbl;\red0\green0\blue128;}{\fonttbl{\f0

\fcharset0\fnil Arial;}}\plain\cf1\fs20 \pard {\fs24\b\ul Functions}}

.EQN 4 0 246 0 0

{0:f}NAME({0:t}NAME):{0:if}NAME({0:t}NAME0:t0}NAME,({0:t}NAME)/({0:t0}NAME),(2)/(1+({0:t}NAME)/({0:t0}NAME)))

.TXT 0 19 247 0 0

Cg a54.000000,54.000000,139

{\rtf\ansi \deff0{\colortbl;\red0\green0\blue128;}{\fonttbl{\f0

\fcharset0\fnil Arial;}}\plain\cf1\fs20 \pard Approximation for the

current signal (normalized) arising from a point ionization entering

the avalanche region of the proportional counter}

.TXT 9 10 248 0 0

Cg a39.000000,39.000000,69

{\rtf\ansi \deff0{\colortbl;\red0\green0\blue128;}{\fonttbl{\f0

\fcharset0\fnil Arial;}}\plain\cf1\fs20 \pard Chamber signal fitted by

the sum of 3 exponentials f(t)\par \tab \tab (STAR TPC) }

.EQN 2 -30 249 0 0

{0:l}NAME({0:t}NAME):(26.8*({0:e}NAME)^((-{0:t}NAME)/(20.9))+({0:e}NAME)^((-{0:t}NAME)/(287))+0.1*({0:e}NAME)^((-{0:t}NAME)/(2280)))*(1)/(27.9)

.EQN 7 1 250 0 0

{0:g}NAME({0:t}NAME):({0:f}NAME({0:t}NAME)-{0:l}NAME({0:t}NAME))*{0:\F}NAME({0:t0}NAME)

.TXT 0 29 251 0 0

Cg a39.000000,39.000000,48

{\rtf\ansi \deff0{\colortbl;\red0\green0\blue128;}{\fonttbl{\f0

\fcharset0\fnil Arial;}}\plain\cf1\fs20 \pard Difference between

signal and its approximation }

.EQN 6 -29 252 0 0

1.2&&(_n_u_l_l_&_n_u_l_l_)&{0:f}NAME({0:t}NAME),{0:l}NAME({0:t}NAME)@250&0&(_n_u_l_l_&_n_u_l_l_)&{0:t}NAME

0 1 1 1 1 0 0 1 1 time(ns)

0 1 1 1 1 0 0 1 1 chamber current, appr. with 3 expon.

0 1 0 0 1 1 NO-TRACE-STRING

0 1 1 0 1 1 NO-TRACE-STRING

0 1 5 0 1 1 NO-TRACE-STRING

0 4 3 0 1 1 NO-TRACE-STRING

0 1 4 0 1 1 NO-TRACE-STRING

0 2 5 0 1 1 NO-TRACE-STRING

0 3 6 0 1 1 NO-TRACE-STRING

0 4 0 0 1 1 NO-TRACE-STRING

0 1 1 0 1 1 NO-TRACE-STRING

0 2 2 0 1 1 NO-TRACE-STRING

0 3 3 0 1 1 NO-TRACE-STRING

0 4 4 0 1 1 NO-TRACE-STRING

0 1 5 0 1 1 NO-TRACE-STRING

0 2 6 0 1 1 NO-TRACE-STRING

0 3 0 0 1 1 NO-TRACE-STRING

0 4 1 0 1 1 NO-TRACE-STRING

0 1 1 60 25 10 0 3 Avalanche for a point ionization

.EQN 36 0 190 0 0

0.1&-0.5&(_n_u_l_l_&_n_u_l_l_)&{0:g}NAME({0:t}NAME)@250&1&(_n_u_l_l_&_n_u_l_l_)&{0:t}NAME

0 1 1 1 0 10 0 1 1 time (ns)

0 1 1 1 0 4 0 1 1 f(t) - g(t)

0 1 0 0 1 1 NO-TRACE-STRING

0 2 1 0 1 1 NO-TRACE-STRING

0 3 2 0 1 1 NO-TRACE-STRING

0 4 3 0 1 1 NO-TRACE-STRING

0 1 4 0 1 1 NO-TRACE-STRING

0 2 5 0 1 1 NO-TRACE-STRING

0 3 6 0 1 1 NO-TRACE-STRING

0 4 0 0 1 1 NO-TRACE-STRING

0 1 1 0 1 1 NO-TRACE-STRING

0 2 2 0 1 1 NO-TRACE-STRING

0 3 3 0 1 1 NO-TRACE-STRING

0 4 4 0 1 1 NO-TRACE-STRING

0 1 5 0 1 1 NO-TRACE-STRING

0 2 6 0 1 1 NO-TRACE-STRING

0 3 0 0 1 1 NO-TRACE-STRING

0 4 1 0 1 1 NO-TRACE-STRING

0 1 1 61 15 10 0 3 real signal - expon. approximation

.TXT 29 0 259 0 0

Cg a69.000000,69.000000,10

{\rtf\ansi \deff0{\colortbl;\red0\green0\blue128;}{\fonttbl{\f0

\fcharset0\fnil Arial;}}\plain\cf1\fs20 \pard {\fs24\b\ul Parameters}}

.EQN 3 0 260 0 0

{0:i}NAME:0;9

.TXT 0 15 293 0 0

Cg a62.000000,62.000000,62

{\rtf\ansi \deff0{\colortbl;\red0\green0\blue128;}{\fonttbl{\f0

\fcharset0\fnil Arial;}}\plain\cf1\fs20 \pard Number of primary

electrons entering the multiplication region}

.EQN 3 -15 312 0 0

{0:T0}NAME:50

.TXT 0 15 313 0 0

Cg a57.000000,57.000000,10

{\rtf\ansi \deff0{\colortbl;\red0\green0\blue128;}{\fonttbl{\f0

\fcharset0\fnil Arial;}}\plain\cf1\fs20 \pard Event time}

.EQN 4 -15 301 0 0

{0:Tmean}NAME:15.6

.TXT 0 15 302 0 0

Cg a44.000000,44.000000,46

{\rtf\ansi \deff0{\colortbl;\red0\green0\blue128;}{\fonttbl{\f0

\fcharset0\fnil Arial;}}\plain\cf1\fs20 \pard mean time between

consecutive primay electrons}

.EQN 4 -15 303 0 0

{0:T}NAME:({1,10})

.TXT 0 26 304 0 0

Cg a44.000000,44.000000,35

{\rtf\ansi \deff0{\colortbl;\red0\green0\blue128;}{\fonttbl{\f0

\fcharset0\fnil Arial;}}\plain\cf1\fs20 \pard primary electron arrival

time array}

.EQN 4 -26 305 0 0

{0:A}NAME:({1,10}2748619285)

.TXT 0 37 306 0 0

Cg a44.000000,44.000000,25

{\rtf\ansi \deff0{\colortbl;\red0\green0\blue128;}{\fonttbl{\f0

\fcharset0\fnil Arial;}}\plain\cf1\fs20 \pard avalanche amplitude array}

.TXT 6 -37 307 0 0

Cg a69.000000,69.000000,9

{\rtf\ansi \deff0{\colortbl;\red0\green0\blue128;}{\fonttbl{\f0

\fcharset0\fnil Arial;}}\plain\cf1\fs20 \pard {\fs24\b\ul Functions}}

.EQN 4 1 308 0 0

{0:d}NAME({0:t}NAME,{0:i}NAME):({0:A}NAME)[(0,{0:i}NAME)*{0:f}NAME({0:t}NAME-({0:i}NAME*{0:Tmean}NAME*({0:T}NAME)[(0,{0:i}NAME)+{0:T0}NAME))*{0:\F}NAME({0:t}NAME-({0:i}NAME*{0:Tmean}NAME*({0:T}NAME)[(0,{0:i}NAME)+{0:T0}NAME))

.TXT 0 50 318 0 0

Cg a32.000000,32.000000,40

{\rtf\ansi \deff0{\colortbl;\red0\green0\blue128;}{\fonttbl{\f0

\fcharset0\fnil Arial;}}\plain\cf1\fs20 \pard avalanche produced \par

by the i-th electron}

.EQN 8 -51 310 0 0

{0:D}NAME({0:t}NAME):((0,9,{0:i}NAME,{0:d}NAME({0:t}NAME,{0:i}NAME)){64})

.TXT 0 24 311 0 0

Cg a32.000000,32.000000,10

{\rtf\ansi \deff0{\colortbl;\red0\green0\blue128;}{\fonttbl{\f0

\fcharset0\fnil Arial;}}\plain\cf1\fs20 \pard TPC signal}

.EQN 13 -25 279 0 0

&&(_n_u_l_l_&_n_u_l_l_)&{0:D}NAME({0:t}NAME)@400&&(_n_u_l_l_&_n_u_l_l_)&{0:t}NAME

0 1 1 1 1 0 0 1 1

0 1 1 1 1 0 0 1 1

0 1 1 0 1 1 NO-TRACE-STRING

0 2 1 0 1 1 NO-TRACE-STRING

0 3 2 0 1 1 NO-TRACE-STRING

0 4 3 0 1 1 NO-TRACE-STRING

0 1 4 0 1 1 NO-TRACE-STRING

0 2 5 0 1 1 NO-TRACE-STRING

0 3 6 0 1 1 NO-TRACE-STRING

0 4 0 0 1 1 NO-TRACE-STRING

0 1 1 0 1 1 NO-TRACE-STRING

0 2 2 0 1 1 NO-TRACE-STRING

0 3 3 0 1 1 NO-TRACE-STRING

0 4 4 0 1 1 NO-TRACE-STRING

0 1 5 0 1 1 NO-TRACE-STRING

0 2 6 0 1 1 NO-TRACE-STRING

0 3 0 0 1 1 NO-TRACE-STRING

0 4 1 0 1 1 NO-TRACE-STRING

0 1 1 60 33 10 0 3 TPC Signal

.TXT 62 1 321 0 0

Cg a69.000000,69.000000,43

{\rtf\ansi \deff0{\colortbl;\red0\green0\blue128;}{\fonttbl{\f0

\fcharset0\fnil Arial;}}\plain\cf1\fs20 \pard {\fs24\b\ul Charge

Sensitive Amplifier (CSA) parameters}}

.EQN 4 1 322 0 0

{0:Cf}NAME:0.2*(10)^(-3)

.TXT 0 14 325 0 0

Cg a56.000000,56.000000,23

{\rtf\ansi \deff0{\colortbl;\red0\green0\blue128;}{\fonttbl{\f0

\fcharset0\fnil Arial;}}\plain\cf1\fs20 \pard feedback capacitor (nF)}

.EQN 3 -14 323 0 0

{0:Rf}NAME:500*(10)^(3)

.TXT 0 14 327 0 0

Cg a56.000000,56.000000,21

{\rtf\ansi \deff0{\colortbl;\red0\green0\blue128;}{\fonttbl{\f0

\fcharset0\fnil Arial;}{\f1\fcharset2\fnil Symbol;}}\plain\cf1\fs20

\pard feedback resistor ({\f1 W})}

.TXT 6 -15 330 0 0

Cg a69.000000,69.000000,21

{\rtf\ansi \deff0{\colortbl;\red0\green0\blue128;}{\fonttbl{\f0

\fcharset0\fnil Arial;}}\plain\cf1\fs20 \pard {\fs24\b\ul CSA Transfer

function}}

.EQN 4 0 332 0 0

{0:H}NAME({0:s}NAME):(1)/({0:Cf}NAME)*(1)/(((1)/({0:Rf}NAME*{0:Cf}NAME))+{0:s}NAME)

.TXT 10 0 335 0 0

Cg a69.000000,69.000000,31

{\rtf\ansi \deff0{\colortbl;\red0\green0\blue128;}{\fonttbl{\f0

\fcharset0\fnil Arial;}}\plain\cf1\fs20 \pard {\fs24\b\ul CSA

Impulsive Response function}}

.EQN 6 0 337 0 0

{0:h}NAME({0:t}NAME):{0:exp}NAME(-(({0:t}NAME)/({0:Rf}NAME*{0:Cf}NAME)))*{0:\F}NAME({0:t}NAME)

.TXT 8 0 339 0 0

Cg a69.000000,69.000000,39

{\rtf\ansi \deff0{\colortbl;\red0\green0\blue128;}{\fonttbl{\f0

\fcharset0\fnil Arial;}}\plain\cf1\fs20 \pard {\fs24\b\ul CSA Response

function to the TPC signal}}

.EQN 4 0 340 0 0

{0:x}NAME:0,10;1000

.EQN 2 0 343 0 0

{0:y}NAME:0,10;1000

.EQN 7 0 345 0 0

{0:u}NAME({0:y}NAME):(0&{0:y}NAME`{0:h}NAME({0:y}NAME-{0:x}NAME)*{0:D}NAME({0:x}NAME)&{0:x}NAME)

.EQN 10 0 348 0 0

_n_u_l_l_&_n_u_l_l_&(_n_u_l_l_&_n_u_l_l_)&{0:u}NAME({0:y}NAME)@_n_u_l_l_&_n_u_l_l_&(_n_u_l_l_&_n_u_l_l_)&{0:y}NAME

0 1 1 1 1 0 0 1 1

0 1 1 1 1 0 0 1 1

0 1 0 0 1 1 NO-TRACE-STRING

0 2 1 0 1 1 NO-TRACE-STRING

0 3 2 0 1 1 NO-TRACE-STRING

0 4 3 0 1 1 NO-TRACE-STRING

0 1 4 0 1 1 NO-TRACE-STRING

0 2 5 0 1 1 NO-TRACE-STRING

0 3 6 0 1 1 NO-TRACE-STRING

0 4 0 0 1 1 NO-TRACE-STRING

0 1 1 0 1 1 NO-TRACE-STRING

0 2 2 0 1 1 NO-TRACE-STRING

0 3 3 0 1 1 NO-TRACE-STRING

0 4 4 0 1 1 NO-TRACE-STRING

0 1 5 0 1 1 NO-TRACE-STRING

0 2 6 0 1 1 NO-TRACE-STRING

0 3 0 0 1 1 NO-TRACE-STRING

0 4 1 0 1 1 NO-TRACE-STRING

0 1 1 60 26 10 0 3 CSA RESPONSE TO THE TPC SIGNAL