r&d for future zeplin

31
R&D for Future ZEPLIN M.J. Carson, H. Chagani, E. Daw, V.A. Kudryavtsev, P. Lightfoot, P. Majewski, M. Robinson, N.J.C. Spooner University of Sheffield ajewski, Univ. of Sheffield Cryogenic Liquid Detectors for Future Particle Physics; LNGS, 13-14 II D.B. Cline, W.C. Ooi, F. Sergiampietri(a), H. Wang, P. Smith(b), X. Yang Physics and Astronomy, UCLA , (a) Pisa, (b) RAL&UCLA J.T. White, J. Gao, J. Maxin, G. Salinas, R. Bissit, J. Miller, J. Seifert Department of Physics, Texas A&M University T. Ferbel, U. Schroeder (Chemistry), F. Wolfs, W. Skulski, J. Toke Department of physics and Astronomy, Rochester University Y. Gao Southern Methodist University, Texas

Upload: miyo

Post on 19-Jan-2016

22 views

Category:

Documents


0 download

DESCRIPTION

R&D for Future ZEPLIN. D.B. Cline, W.C. Ooi, F. Sergiampietri(a), H. Wang, P. Smith(b), X. Yang Physics and Astronomy, UCLA , (a) Pisa, (b) RAL&UCLA. J.T. White, J. Gao, J. Maxin, G. Salinas, R. Bissit, J. Miller, - PowerPoint PPT Presentation

TRANSCRIPT

Page 1: R&D for Future ZEPLIN

R&D for Future ZEPLINM.J. Carson, H. Chagani, E. Daw, V.A. Kudryavtsev,

P. Lightfoot, P. Majewski, M. Robinson, N.J.C. Spooner

University of Sheffield

Pawel Majewski, Univ. of Sheffield Cryogenic Liquid Detectors for Future Particle Physics; LNGS, 13-14 III 2006

D.B. Cline, W.C. Ooi, F. Sergiampietri(a), H. Wang, P. Smith(b), X. Yang

Physics and Astronomy, UCLA , (a) Pisa, (b) RAL&UCLA J.T. White, J. Gao, J. Maxin, G. Salinas, R. Bissit, J. Miller, J. Seifert

Department of Physics, Texas A&M University T. Ferbel, U. Schroeder (Chemistry), F. Wolfs, W. Skulski,

J. TokeDepartment of physics and Astronomy, Rochester University

Y. GaoSouthern Methodist University, Texas

Page 2: R&D for Future ZEPLIN

Presentation outline

• Introduction• Detector geometry • Principles of operation - characteristics of an event• Light collection• Signal readout - charge gain in liquid xenon• Dark Matter limit• Program for R&D

Pawel Majewski, Univ. of Sheffield Cryogenic Liquid Detectors for Future Particle Physics; LNGS, 13-14 III 2006

Page 3: R&D for Future ZEPLIN

IntroductionOur goals:• Large mass of sensitive LXe in a scale of Tonnes• Simple detector geometry • Very low background radiation• Sensitivity to very low energy events - possibility of few photons detection - large surface photocathode - possibility of few electrons detection -> Both requires high gain in liquid

Large mass with maximum surface acting as a photocathode : SPHERICAL GEOMETRY

Pawel Majewski, Univ. of Sheffield Cryogenic Liquid Detectors for Future Particle Physics; LNGS, 13-14 III 2006

Page 4: R&D for Future ZEPLIN

LXe physical properties• Energy/scintillation photon W_ph =21.6 eV • Scintillation Absorption length > 100 cm• Energy/el-ion pair: W=15.6 eV• Saturation velocity of electrons from E=3 kV/cm: v=2.6 mm/s• Threshold electric field for proportional

scintillation: E=400-700 kV/cm• Threshold electric field for electron multiplication: E~1 MV/cm• Maximum charge gain measured 200-400

Pawel Majewski, Univ. of Sheffield Cryogenic Liquid Detectors for Future Particle Physics; LNGS, 13-14 III 2006

(table from T.Doke NIM 196 (1982) 87)

Page 5: R&D for Future ZEPLIN

Spherical TPC filled with LXe

Outer sphere

Photocathode coated with CsI

Central ball with charge readout Field shaping rings

Pawel Majewski, Univ. of Sheffield Cryogenic Liquid Detectors for Future Particle Physics; LNGS, 13-14 III 2006

Page 6: R&D for Future ZEPLIN

Detector structure

Central ball 4 covered with charge collecting and amplifying micro-structure

•Sensitivity to single electron•High readout segmentation for position information

Requirements:

Pawel Majewski, Univ. of Sheffield Cryogenic Liquid Detectors for Future Particle Physics; LNGS, 13-14 III 2006

Page 7: R&D for Future ZEPLIN

Electric field distributionCan detector operate with a non uniform

field ?

Electron drift velocity = f (E)

3 kV/cm

(L.S.Miller at al. Phys. Rev. Vol. 166, 1967)

Pawel Majewski, Univ. of Sheffield Cryogenic Liquid Detectors for Future Particle Physics; LNGS, 13-14 III 2006

Page 8: R&D for Future ZEPLIN

Charge and light yield = f (E)

Measured charge and light yield for E<5 kV/cm

Extrapolation to E<75 kV/cm(Thomas-Imel model Phys.Rev A 38 (1998)

5793) (T.Doke et al. Jpn.J.Appl.Phys. 41 (2002) 1538)

Pawel Majewski, Univ. of Sheffield Cryogenic Liquid Detectors for Future Particle Physics; LNGS, 13-14 III 2006

(E.Aprile et al. astr-ph/0601552)E= 3 kV/cm

5e/keVr@ 2KV/cm

Page 9: R&D for Future ZEPLIN

Charge and light readout

• Scintillation light photons converted into photoelectrons from the CsI photocathode

- CsI QE ~ 30 % @ E>3 kV/cm (E.Aprile et al. NIM A 343, 1994) - 4 coverage except shadowing

• Ionisation electrons and photoelectrons readout with segmented charge amplifying device delivering energy and position information

- low primary charge sensitivity with charge gain

Pawel Majewski, Univ. of Sheffield Cryogenic Liquid Detectors for Future Particle Physics; LNGS, 13-14 III 2006

Page 10: R&D for Future ZEPLIN

Charge amplification in LXE

Conditions for electron multiplication and secondary scintillation in liquid xenon :

Electric field threshold for avalanche development : ~ 1MV/cm

Electric field threshold for proportional light: 100-150 kV/cm (B.A. Dolgoshein et al. JETP Lett. Vol. 6, 1967)

400-700 kV/cm (K.Masuda et al. NIM 160, 1979)

Pawel Majewski, Univ. of Sheffield Cryogenic Liquid Detectors for Future Particle Physics; LNGS, 13-14 III 2006

H.Wang 1991, gain : 40

Page 11: R&D for Future ZEPLIN

Event generation (1)

Pawel Majewski, Univ. of Sheffield Cryogenic Liquid Detectors for Future Particle Physics; LNGS, 13-14 III 2006

Page 12: R&D for Future ZEPLIN

Event generation (2)

Interaction in the sensitive volume

Pawel Majewski, Univ. of Sheffield Cryogenic Liquid Detectors for Future Particle Physics; LNGS, 13-14 III 2006

Page 13: R&D for Future ZEPLIN

Event generation (3)

Simultaneous creation of scintillation UV light and …

Pawel Majewski, Univ. of Sheffield Cryogenic Liquid Detectors for Future Particle Physics; LNGS, 13-14 III 2006

Page 14: R&D for Future ZEPLIN

Event generation (4)

… creation of ionisation charge

Pawel Majewski, Univ. of Sheffield Cryogenic Liquid Detectors for Future Particle Physics; LNGS, 13-14 III 2006

Page 15: R&D for Future ZEPLIN

Event generation (5)

Scintillation UV photons converted into photoelectrons

Pawel Majewski, Univ. of Sheffield Cryogenic Liquid Detectors for Future Particle Physics; LNGS, 13-14 III 2006

Page 16: R&D for Future ZEPLIN

Event generation (6)

First pulse generated

Pawel Majewski, Univ. of Sheffield Cryogenic Liquid Detectors for Future Particle Physics; LNGS, 13-14 III 2006

Page 17: R&D for Future ZEPLIN

Event generation (7)

Proportional scintillation UV photons converted into photoelectrons

Pawel Majewski, Univ. of Sheffield Cryogenic Liquid Detectors for Future Particle Physics; LNGS, 13-14 III 2006

Page 18: R&D for Future ZEPLIN

Event generation (8)

Second pulse generated

Pawel Majewski, Univ. of Sheffield Cryogenic Liquid Detectors for Future Particle Physics; LNGS, 13-14 III 2006

Page 19: R&D for Future ZEPLIN

Event generation (9)

First after–pulse generated

Pawel Majewski, Univ. of Sheffield Cryogenic Liquid Detectors for Future Particle Physics; LNGS, 13-14 III 2006

Page 20: R&D for Future ZEPLIN

Event generation (10)

Second after–pulse generated and pulses generation continues …

Pawel Majewski, Univ. of Sheffield Cryogenic Liquid Detectors for Future Particle Physics; LNGS, 13-14 III 2006

Page 21: R&D for Future ZEPLIN

Light collection MC calculations

•Energy to produce UV photon: W= 21.6 eV

•Light attenuation length: 100 cm

•CsI QE : 20, 30 %

•Electron lifetime: 0.5, 1 and 5 ms

Shadowing

3D example:

Pawel Majewski, Univ. of Sheffield Cryogenic Liquid Detectors for Future Particle Physics; LNGS, 13-14 III 2006

Page 22: R&D for Future ZEPLIN

MC calculations: results

At R=50 cm, light collection = 4-7.5 phe/keV

Pawel Majewski, Univ. of Sheffield Cryogenic Liquid Detectors for Future Particle Physics; LNGS, 13-14 III 2006

Page 23: R&D for Future ZEPLIN

Charge amplification - wires

S.E Derenzo et al. Phys. Rev. A Vol 9,1974 maximum gain : 400

M.Miyajima et al. NIM Vol 134 ,1976 maximum gain : 100

Pawel Majewski, Univ. of Sheffield Cryogenic Liquid Detectors for Future Particle Physics; LNGS, 13-14 III 2006

Readout wires

Page 24: R&D for Future ZEPLIN

Problems with gain in liquid

• Slow motion of avalanche ions building space charge

• Local imperfections of the readout structure

• Purity of LXe

• Large amount of created UV photons causing after-pulses leading to discharge

• Bubble formation on the sharp edges of the readout electrode hence conducting path creation(J.G. Kim et al. NIM A 535 2004)

Pawel Majewski, Univ. of Sheffield Cryogenic Liquid Detectors for Future Particle Physics; LNGS, 13-14 III 2006

Page 25: R&D for Future ZEPLIN

Charge readout - microstructures

Micropattern detectors :• micromegas• micro-dot• MSGC (already used in LXe with gain =10) (A.P.L. Policarpo et al. NIM A 365 1995)

Already used in LAr (no gain due to discharges)

Cold field emission device:

High electric field ~ 1MV/cm with small differential voltage

(J.G. Kim et al. NIM A 535 2004)

Pawel Majewski, Univ. of Sheffield Cryogenic Liquid Detectors for Future Particle Physics; LNGS, 13-14 III 2006

Page 26: R&D for Future ZEPLIN

Charge readout – simulation (1)

Tools: Garfield (Analytic) by R.Veenhof (CERN) Maxwell (FEM) by Ansoft

Electric field near wire surface

Recalculated LXe gain in single wire chamber

Townsend coefficient from S. Derenzo et al. Phys. Rev. A Vol 9,1979 (large errors)

Pawel Majewski, Univ. of Sheffield Cryogenic Liquid Detectors for Future Particle Physics; LNGS, 13-14 III 2006

Page 27: R&D for Future ZEPLIN

Charge readout - simulation (2)

Microstructure modelling

What is needed :

• Local high electric field for high gain

• 100 % 4 charge collection

• Electric field < 400 kV/cm when V_cath=0 and E_drift = 75 kV/cm

Drift field

75 kV/cm

5 kV/cm

Pawel Majewski, Univ. of Sheffield Cryogenic Liquid Detectors for Future Particle Physics; LNGS, 13-14 III 2006

Page 28: R&D for Future ZEPLIN

Charge readout – simulation (3)

Simulated multiplication Electric field strengthon the axis of the cell

75 kV/cm

0 V at the cathode

Pawel Majewski, Univ. of Sheffield Cryogenic Liquid Detectors for Future Particle Physics; LNGS, 13-14 III 2006

Page 29: R&D for Future ZEPLIN

How to avoid feedback pulses ?

Using HV switch : When V_cath = 0 E_max < 400 kV/cm

Field on the cell axis:

Field at the cell entrance:

Pawel Majewski, Univ. of Sheffield Cryogenic Liquid Detectors for Future Particle Physics; LNGS, 13-14 III 2006

Page 30: R&D for Future ZEPLIN

Dark Matter Limit

Assumptions:• LXe mass: 1 Tonne• Run period: 1 year• Energy range: 4-50 keVnr

O events detected

1O events detected

Pawel Majewski, Univ. of Sheffield Cryogenic Liquid Detectors for Future Particle Physics; LNGS, 13-14 III 2006

Backgrund sources in 1 Tonne LXe detector:(M.Carson et. al. NIM A 548 (2005) 418)

A)222 Rn events/year: 1.46*10^6B) PMTs (Hamamatsu R8778) events/year: 3.65*10^5C) 85 Kr events/year: 9.1*10^5

Page 31: R&D for Future ZEPLIN

R&D program (goals to achieve)

• Study of the scintillation properties of LXe at high electric field (scintillation light and

charge yield)

• Study of the electric field threshold for proportional light creation

• Explore possibility of the high gain in LXe using micro-structure devices

(study of the limitations: maximum gain, stability in time, energy resolution)

• Work on the feedback pulses suppression

Pawel Majewski, Univ. of Sheffield Cryogenic Liquid Detectors for Future Particle Physics; LNGS, 13-14 III 2006